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Abstract: We present NEAR, a new experimental area at the CERN-n_TOF facility and a possible
setup for cross section measurements of interest to nuclear astrophysics. This was recently realized
with the aim of performing spectral-averaged neutron-capture cross section measurements by means
of the activation technique. The recently commissioned NEAR station at n_TOF is now ready for
the physics program, which includes a preliminary benchmark of the proposed idea. Based on the
results obtained by dedicated Monte Carlo simulations and calculation, a suitable filtering of the
neutron beam is expected to enable measurements of Maxwellian Averaged Cross Section (MACS) at
different temperatures. To validate the feasibility of these studies we plan to start the measurement
campaign by irradiating several isotopes whose MACS at different temperatures have recently been
or are planned to be determined with high accuracy at n_TOF, as a function of energy in the two time-
of-flight measurement stations. For instance, the physical cases of 88Sr(n,γ), 89Y(n,γ), 94Zr(n,γ) and
64Ni(n,γ) are discussed. As the neutron capture on 89Y produces a pure β-decay emitter, we plan to
test the possibility to perform activation measurements on such class of isotopes as well. The expected
results of these measurements would open the way to challenging measurements of MACS by the
activation technique at n_TOF, for rare and/or exotic isotopes of interest for nuclear astrophysics.
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1. Introduction

Understanding our universe from the basic laws of nature is an ambitious goal in-
volving many disciplines in physics. One key ingredient is nuclear astrophysics, with its
focus on explaining energy production and chemical evolution in the universe, topics that
are coupled through nuclear reactions that transform elements and may also release (or
absorb) energy. In this context, neutron-induced reactions play a relevant role for the Big
Bang and stellar nucleosynthesis. In addition, they are also important in classical nuclear
physics topics, as symmetry-breaking effects in compound nuclei, the study of nuclear-level
densities and for applications in advanced nuclear technology. This last includes nuclear
medicine, transmutation of nuclear waste and nuclear fuel cycle investigations.

With the aim of collecting nuclear data of interest to these topics, the neutron time-
of-flight (TOF) facility n_TOF [1] was built at CERN some 20 years ago. It is based upon
the CERN Proton Synchrotron (PS), which accelerates protons up to 20 GeV/c in bunches
of up to 1013 protons. Impinging on a massive Pb block surrounded by a water layer
acting as moderator [2], each proton produces hundreds of neutrons. This makes n_TOF an
intense white spallation neutron source, with neutron kinetic energies from a few milli-eV
to several GeV. It is important to recall that several white neutron sources (called white
because they deliver beams of neutrons over a wide range of energies) are operating
worldwide, each of them with specific characteristics and features, depending on the
specific user requests [3]. However, only a few of them are pulsed and optimized for high
energy resolution time-of-flight measurements, as in the case of n_TOF.

Two experimental areas, EAR1 and EAR2, are connected to the n_TOF spallation source
by flight paths of 185 m and 19 m, respectively. So far, cross-sections have been measured
in both EAR1 and EAR2 experimental areas for more than a hundred reactions and the
data have been successfully exploited in modelling stellar and primordial nucleosynthesis
(see, for instance, refs. [4,5]).

The idea of expanding n_TOF measurement capabilities suggested a third beam line
able to take advantage of the extremely high neutron fluence expected at a position very
close to the spallation target (of the order of 3 m). This new beam line would make
it possible to perform activation measurements on extremely small mass samples and
on radioactive isotopes with very short half lives. Several feasibility studies have been
performed and, since July 2021, the new experimental area, called NEAR, has become
operative at n_TOF.

The number of neutrons at the target position at NEAR is on average increased by a
factor of ≈100 with respect to the EAR2 beam line and a factor ≈4000 with respect to EAR1.
Since NEAR can operate in parallel with EAR1 and EAR2, it will contribute to a substantial
improvement in experimental opportunities. In fact, we strongly believe that NEAR will
allow us to investigate neutron-induced reactions which were not previously accessible.

In this article we report some results from the extensive Monte Carlo simulations that
have been performed to optimize the characteristics of the NEAR neutron beam, in terms of
neutron intensity and energy distribution for various combinations of collimators, modera-
tors and filtering system. The adopted technical solutions and the achieved neutron beam
characteristics are presented and discussed. In particular, we show that with a suitable
choice of filter material and dimension, a Maxwellian-like neutron spectrum could be
produced in the energy range of interest to stellar evolution investigations and Big Bang nu-
cleosynthesis (i.e., kT ≈ keV). In more detail, Maxwellian Average Cross Sections (MACS)
can be measured by very thin targets (≈µg/cm2), this feature being of key importance for
radioactive isotopes and rare materials. In addition, the activation method can be applied
on isotope radioactive targets of very short half-life, down to a few days—never measured
before at n_TOF. A new dedicated laboratory for activity measurements of γ and β rays
(also referred to as γ-ray Spectroscopy Experimental Area or GEAR) is being equipped and
soon will be made available.

An important advantage of NEAR, beside the presence of the activation laboratory, is
its proximity to the ISOLDE facility, from which sample material to be irradiated could be
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produced. This synergy has been already recently established [6] while its full exploitation
is presently under study.

2. Stellar Evolution Investigations

Optical observations of stars reveal their element abundances. It is well-established
that old stars belonging to the Galactic Halo are metal-poor (following the convention in
astronomy that all elements above helium are metals) and that their heavy element (i.e.,
heavier than iron) distribution is mostly attributable to the main component of the rapid
neutron capture process (the so-called r process [7]). For instance, the relative abundances
for elements above barium fit well with r-process abundances deduced for solar-system
material (see, e.g., [8]), but for lighter elements there are differences that could prove the
presence of a second, so-called “weak”, r process. The question is open, and a better and
refined understanding of this topic may come from the detailed study of the slow neutron
capture process (the so-called s process; see e.g., [9]). Such a process appears later in
the chemical evolution of our Galaxy, when Asymptotic Giant Branch (AGB) stars start
polluting the interstellar medium [10]. An additional contribution to the s-process (the
so-called weak s-process) comes from the quiescent burning phases of massive stars [11].
Overall, the s-process is responsible for the production of about half the cosmic elements
heavier than iron.

Besides spectroscopic observations, a source of extremely precise data, precious to
constrain stellar models, comes from pre-solar grains embedded in primitive meteorites.
Those dust particles are relics of ancient stars that evolved prior to the formation of the
Solar System, being trapped in minor bodies of the early Solar System (which later fell to the
Earth). The extraction of isotopic ratios for many different grains represents a breakthrough
in the field (e.g., [12,13]). In fact, such detailed information about isotope abundance can
constrain the astrophysical conditions in which the grains were formed.

During s-process nucleosynthesis, neutron captures mostly occur on stable isotopes,
because the unstable ones decay to their stable isobars before capturing a neutron. At higher
temperatures, reactions involving radioactive nuclei become more important, with neutron
captures possibly competing with the corresponding β decays (opening branchings in
the s-process path). Unfortunately, the measurement of neutron capture cross sections on
unstable isotopes is a very difficult task, due to the lack of a large enough quantity of the
radioactive sample and of its intrinsic radioactivity. Both problems could be potentially
overcome at NEAR station.

Another interesting field which could be approached at the NEAR station is the study
of moderately neutron-rich unstable isotopes, lying on the right side of the β stability
valley (i.e., with 1 to 6–7 more neutrons with respect to the most n-rich stable isotope).
Recent works in the field of stellar spectroscopy (with relative theoretical interpretations)
brought back the existence of a third neutron-capture process with intermediate neutron
densities (i-process: Nn ≈ 1014–1017 cm−3), which are intermediate between the s-process
(Nn ≈ 107 cm−3) and the r-process (Nn > 1021 cm−3). The hosting object(s) of such
a process has (have) not still been unequivocally identified (low-mass low-metallicity
stars [14,15], Rapidly Accreting White Dwarfs [16], fast-rotating massive star experiencing
a jet-like explosion [17]). Regardless of the stellar object, neutron capture cross sections on
those unstable isotopes, which are currently only derived theoretically, need to be known
with enough accuracy. The NEAR station will play a relevant role in this topic. Actually,
theoretical studies on another nucleosynthesis process will benefit from this effort: the
so-called n-process. The latter is at work during the explosive phase of massive stars, when
the Supernova shock passes through the He-shell region, triggering a large production of
neutrons in a very short timescale [18].

On a longer timescale, the NEAR station could potentially provide a breakthrough in
our current knowledge of the r-process, by providing neutron-induced fission cross sections
on short-lived unstable actinides. As a matter of fact, an exciting report on quantitative
calculations of the r process suggests that nuclear fission, and in particular neutron-induced
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fission, might play a very important role for the dynamics in later stages of the r process [19].
To that purpose, it is important to stress that all neutron-induced fission cross sections on
short-lived unstable isotopes are derived theoretically.

In conclusion, modelling the evolution of stars and their sometimes-violent death
requires information coming from different and often distant research fields. It is akin to
assembling a giant multi-dimensional puzzle, but one in which the pieces have first to
be found. Some researchers concentrate on finding these pieces, while others focus on
how to fit them together to form a coherent picture. However, we have still not identified
the important ingredients for all stellar events. The NEAR facility could successfully cast
new light on some nuclear aspects related to the above-mentioned studies. In one of the
following paragraphs we relate about the first planned measurements of interest to nuclear
astrophysics, needed to characterize the newly established experimental area.

3. The n_TOF NEAR Station Beam Line: A Brief Overview

As already mentioned, the neutron time-of-flight (n_TOF) facility at the European
Laboratory for Particle Physics (CERN) is a neutron source able to provide high-intensity
pulsed white-spectrum neutrons covering almost 11 orders of magnitude, from thermal
neutrons to several GeV. Since July 2021, a new experimental area called NEAR has been
made available. Located at the end of a horizontal beam line, NEAR is only 3 m from the
spallation target, see Figure 1.

Figure 1. Layout of the n_TOF Facility. A high-intensity proton beam from the CERN’s Proton
Synchrotron collides with a pure lead target, producing neutrons that travel along three flight paths
toward the experimental areas: EAR1, EAR2 and NEAR. EAR1 is located 185 m from the target,
EAR-2 is located 19 m above the target and NEAR at 3 m.
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The new beam line was conceived to study the neutron–nucleus interactions of interest
for nuclear astrophysics, nuclear technology and medical research applications that require
a highest neutron fluence and that were, up to now, outside the performance of the two
already existing experimental areas. The PS accelerator delivers proton bunches with a
minimum pulse period of 1.2 s and the maximum average intensity allowed on target is
1.67 × 1012 protons per second, corresponding to an average power on the spallation target
of 5.4 kW. With a pulse duration of 7 ns (rms), this yields a peak deposited power of 1.8 TW.
The proton beam size on target is around 15 mm (rms).

It is worth recalling that a new spallation target (also referred to as third-generation
spallation target) able to couple with the high power deposition has been installed during
the Long Shutdown (a 3-year stop of the CERN accelerators that ended in the summer
of 2021). High-purity lead has been chosen as the core material owing to its very good
performances in terms of reduced photon background and neutron production. The new
assembly is shown, in exploded view, in Figure 2: housed inside a stainless steel vessel,
six lead slices are cooled by gaseous nitrogen and are supported by precisely machined
anticreep plates [2]. These are made of aluminum alloy and include the channels through
which the cooling fluid flows. The cooling gas is distributed through two main channels
inside a cradle made from aluminum alloy, which supports the lead core from below.
The bond between the stainless steel vessel and the aluminum cradle is obtained by an
explosive-bonded joint technique where two different metals are forced together under
very high pressure.

Figure 2. Exploded model of the target. The cooling nitrogen gas flows through the channels
machined into the anticreep plates. The inner core is enclosed in an AISI 316L stainless steel vessel
(figure from ref. [2]).

The neutron flux emerging from the spallation target is online monitored by a set of
10 self-powered neutron detectors (SPNDs) placed around the spallation target, divided
in two stations on both sides of the target with respect to the beam direction (Figure 3).
SPNDs are rugged miniature detectors, capable of of operating without any bias voltage
by exploiting the direct detection of secondary electrons. With a typical diameter of a few
mm, they are usually built in a coaxial configuration with a core (emitter), an electrically
conductive collector and an insulating medium of aluminum oxide between them. Different
reactions can take place inside SPNDs, inducing a measurable current through the emission
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of electrons. These electrons can be emitted either by the β-decays of neutron-induced
daughter nuclei, or by Compton or photoelectric interactions of photons. To monitor the
neutron and gamma flux from the spallation target, SPNDs with a central emitter made
of Rh, Co, Pt, V, Inconel (the latter for background current evaluation) have been chosen.
The different materials allow us to disentangle between the signals induced by prompt
gamma, prompt and delayed neutron response [20].

Figure 3. The n_TOF spallation target during the installation phase. The right side station with
5 SPNDs is visible at the centre of the photo.

At present, the neutron beam arrives at the NEAR experimental area through a hole in
the shielding wall and no moderator is present. However, the study of the effect of different
moderators (for instance, AlF3, D2O, BeO, . . . ) to be added inside the target hall in the near
future (see Figure 4) is ongoing.
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Figure 4. Schematic drawing of the spallation target and the possible position of a moderator (block
in red).

A moderator is needed to reduce the high energy components (En > 1 MeV) of the
neutron spectrum and then to shape the neutron energy distribution as a Maxwellian-like
distribution. (n,γ) cross sections typically decrease rapidly above 1 MeV.

In addition, out of this target station (see Figure 5) boron and cadmium slices (also
referred to as filters) can be placed in the beam to remove low-energy neutrons. As an exam-
ple Figure 6 shows the expected neutron flux at NEAR (i.e., at the position of the irradiation
for activation measurements) with and without a 1.5 cm-thick filter containing 10B.

Figure 5. View of the concrete and marble shielding around the spallation target (left panel) and the
zoom on the irradiation position at NEAR (right panel).
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Figure 6. Expected neutron flux at the irradiation position with and without a 1.5 cm-thick boron filter.

It is also necessary to reduce efficiently the effect of back-scattered neutrons from the
wall of the NEAR station; for this purpose, the filter made of a slab of material requires
specific modification. According to our simulations, a suitable filter consists of a boron
carbide B4C cylinder highly enriched in 10B. Figure 7 shows the absorption cross section of
10B and C.

Figure 7. Neutron-induced total and elastic cross sections of 10B and 12C. The absorption cross section
of 10B and 12C is, respectively, orders of magnitudes higher and lower than the elastic cross section.
Consequently, 10B is very effective to absorb low energy neutrons, while 12C can moderate them, thus
reducing the initial kinetic energy. It is worth noticing that the elastic cross section on 12C almost
coincides with the n+12C total cross section.
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MC simulations show that the neutron energy distribution changes sizeably as a func-
tion of the cylinder’s thickness (from 0.5 to 2 cm), see Figure 6. We have also investigated
the idea of performing several irradiations in parallel, by using a cylinder with a radius of
5 cm to house samples of 1 cm radius. The neutron energy distribution inside the cylinder
slightly changes with position, along its radius and thickness: while the total number of
neutrons reduces by approximately 30%, moving from the center to the position at 3 cm
from the center, the shape of the energy distribution does not change appreciably. To reduce
this effect, the samples are located in the same plane (i.e., experiencing the same moderator
thickness) with respect to the beam axis and symmetrically from the axis.

In summary, MC simulations have indicated that, with a suitable choice of filter mate-
rial and dimension, a Maxwellian-like neutron spectrum could be produced (see Figure 8),
corresponding to thermal energies in the range of astrophysical interest (from a few keV to
a few tens of keV) that would allow us to derive MACS by means of activation technique.
The role of the B4C on the thermal and epithermal region is apparent (see Figure 6). In fact,
low-energy neutrons are absorbed (or moderated and eventually absorbed) inside the B4C
cylinder. As a result, the mean energy of the distribution is shifted at higher energies and a
large fraction of the lower energy neutrons is lost. The advantage is that the neutron energy
distribution presents a dominant peak, roughly shaped to resemble a Maxwell–Boltzmann
distribution, as showed in Figure 8. Although not completely satisfying, mainly because of
the tail at high energies, this preliminary configuration can already provide strong indica-
tion on the effectiveness of the proposed setup. With future upgrades we are confident to
improve the agreement between shaped and expected Maxwell–Boltzmann distributions.

Figure 8. Expected neutron flux shape in the NEAR Station area at the measuring position with
0.5 cm (left panel) and 2 cm (right panel)-thick boron layers, respectively. The spectra are compared
to a Maxwellian spectrum of thermal energy kT = 0.15 keV and kT = 27.7 keV respectively.

4. MACS cross Section by Activation Method

The limits of the TOF technique in measuring small stellar cross sections and/or small
mass samples are well known [21]. Therefore, if applicable, the higher sensitivity of the
activation method would be preferable in these cases. With this latter method, the activity
A of an irradiated sample can be related to the the decay rate (i.e., decays per unit time:
A = ∆N/∆t, where ∆N is the number of decays that occur in time ∆t). In fact, several
radioactive nuclei are present in an neutron-irradiated sample, eventually decaying by γ
and/or β emission.

On the other hand, the activity of an irradiated sample is directly proportional to the
amount of the radionuclides present in the sample (that in turn is strictly linked to the
neutron capture cross section value), and is inversely proportional to its half-life.

The radiation emitted by the produced unstable nuclei can be detected after an ex-
tended period (of the order of 2 weeks, corresponding to ≈1013 neutrons on target) of
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irradiation via their decay signatures and then the determination of MACS cross sections,
extremely helpful for modelling the advanced phases of massive stars in which very large
temperatures are reached. We refer to ref. [21] for a detailed description of the observables
and corrections.

The new GEAR laboratory is equipped with two spectrometers for γ and β spec-
troscopy with lead-copper shielding. The available instrumentation will be used to measure
the induced activity.

Accurate γ-ray spectroscopy requires (i) high detection efficiency, (ii) high energy
resolution and (iii) the lowest possible background. In order to satisfy these conditions, we
use a HPGe (High Purity Germanium) spectrometer electrically cooled and with a relative
efficiency as high as 60%. In addition, the HPGe window is made of carbon epoxy, thus
enabling the measurement of γ rays in a very wide energy spectrum ranging from a few
keV up to 10 MeV, see Figure 9.

Figure 9. Example of γ-ray spectrum acquired with the HPGe detector and zoom on the X-ray lines
from 152Eu calibration in the 20–70 keV energy region.

Furthermore, to optimize the background conditions as much as possible, the detector
is installed and operated inside a specially designed lead shielding (CANBERRA 747).
Accordingly, thanks to the high neutron flux of NEAR in combination with the high energy
resolution and the low-background setup described above, we can perform high-accuracy
studies on low-mass samples, even of the order of mg.

Apart from the standard γ-spectroscopy, special effort is being devoted to the feasibility
study of β spectroscopy measurements. A possible detection set-up under investigation is
based upon a couple of HPGe crystals, with 30% efficiency each, mounted very close face
to face with the activated sample to be inserted in between (then covering more than 80%
solid angle) or, alternatively plastic scintillators in almost 4π geometrical setup.

At any depth in the sample, electrons or positrons are emitted isotropically with a
continuum of energies up to the maximum energy Emax. Unlike the case of γ rays, which
travel almost in straight line with a well-defined range, β particles travel along twisted
trajectories that could end at any distance from the emission point inside the sample up to
the continuous slowing down approximation range of β particles. To accurately evaluate
the sample activity for β particle emission it is necessary to rely on the Monte Carlo method
to correct the experimental spectra.
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Finally, it is important to mention that the primary proton beam intensity for each
delivered pulse is recorded, allowing us to reconstruct—in detail—the time dependence of
the neutron flux throughout the irradiations. In fact, the knowledge of the experimental
conditions during activation allow us to assess the corresponding correction factors to
be applied [21]. Most importantly, the activated samples will be sandwiched between
reference gold foils and placed inside NEAR, in front of the neutron beam. The 197Au(n,γ)
reaction will be used as a reference cross section and therefore the results will be provided
relative to it.

5. First Activation Measurement Campaign at NEAR and Their Physics Cases

In the following we describe and discuss the physics motivation of the next mea-
surement campaign at the NEAR station using the activation method and exploiting the
equipment available at GEAR. In particular, we aim at producing accurate experimental
data for some reactions of special interest for the s process. Nevertheless, it is important to
mention that the MACS of these elements have been already studied at n_TOF with the
time-of-flight technique. Therefore, this measurement campaign aims at benchmarking
the experimental facility. In more detail, we proposed to verify the MC calculations by
measuring the spectrum-averaged cross section at three different temperatures (ranging
form a feV keV up to 100 keV), for isotopes whose energy-dependent cross sections have
recently been measured or are planned to be measured in near future at the two time-of-
fligh measurement stations EAR1 and EAR2. Beside 197Au [22–24], that will be used both
as a benchmark and reference for the other isotopes, possible candidates are 64Ni, 76Ge [25],
88Sr, 89Y, 94Zr and 140Ce [26]. Hereafter, examples of physics cases are discussed.

5.1. The Case of 88Sr(n,γ)

With its very small neutron capture cross section, 88Sr largely affects s-process nu-
cleosynthesis: its large abundance in the Solar System testifies that. As a matter of fact,
Sr is mostly synthesized by the s process in AGB stars, its contribution by r process be-
ing limited to some percent of the total solar abundance [8,27]. Apart from that, it is
important to stress that, after the discovery of a pair of neutron stars merging in 2017,
dubbed GW170817, telescopic observations from Earth revealed a spectroscopic feature
linkable to strontium [28]. The discovery of strontium lines in kilonovae remnants was
one of the first success of the synergy collaboration between spectral observations, gravita-
tional waves hunting and nuclear astrophysics, giving the start to what now is known as
multimessenger astrophysics.

Sr belong to the first preak of the s-process, the so-called “ls” (light-s) peak, which is
routinely used to compare theoretical models to observations. 88Sr has a magic number of
neutrons (N = 50), which implies that its neutron-capture cross section is lower than those
of its neighbouring nuclei. As a result, 88Sr acts as a bottleneck in the neutron-capture path,
constraining the value of the total neutron flux necessary to proceed to the production of
heavier elements up to the second s-process peak, corresponding to the next bottleneck
with neutron magic number of 82 (defining the heavy-s “hs” index). Consequently, 88Sr
influences not only the abundance of neighbouring isotopes, but the whole s-process
abundance distribution. As a final remark, the Sr abundance in stars is relatively easy to
derive from high-resolution spectra thanks to its strong lines. In fact, they have been used
extensively to constrain stellar models [29] and even astrophysical scenarios, e.g., related to
the origin of chemical anomalies in ancient globular clusters [30]. Moreover, Sr isotopic
ratios in SiC grains is strongly dependent upon the 88Sr(n,γ) cross sections [31,32].

On the other hand, the r process only takes place in nature in extreme environments
where atoms are bombarded by a large number of neutrons, and recent works suggest that a
likely source of r-process elements could be the catastrophic aftermath of mergers between
neutron stars, which are the superdense cores of stars left behind after cataclysmic, explosive
star deaths known as supernovas. The neutron star resulting from their gravitational pull is
strong enough to crush protons and electrons together to form neutrons [8]. In this context,
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stellar models require accurate stellar cross section (i.e., MACS) to reproduce the observed
element abundances. Astrophysicists expected to find heavier r-process elements when
looking at a kilonova [33]. The experimental details for this reaction are given below, along
with the 89Y(n,γ) reaction.

5.2. The Case of 89Y(n,γ)

Together with 88Sr, 89Y shares the same physical case. Indeed, both are bottlenecked
in the s-process reaction path, strongly constraining the efficiency for the production
of heavier elements up to the second s-process peak (associated to the next bottleneck
that corresponds at Ba, La, Ce, i.e., neutron magic number of 82). The Solar System
abundances of Y, as well as Sr and Zr, all having a magic number of neutrons (N = 50), are
relatively high. The only stable isotope of Yttrium is 89Y that is created by nucleosynthesis,
mainly by the s-process (78%) inside pulsating red giant stars, and by the r-process (22%)
during supernova explosions or the merger of compact objects. Any careful analysis
of the observed abundance pattern in the nuclides mass range 78 < A < 92, i.e., the
decomposition according to the various processes, can only be carried out on the basis of
precise (n,γ) cross sections. In addition, Y has several applications in advanced nuclear
technology and radiation measurement techniques. We remind that the quoted stellar cross
section of 88Sr and 89Y at kT = 30 keV in the literature spans from 5 to 13 mb and from 13
to 27 mb, respectively, these large variations being also related to the used experimental
technique. The major complication with 89Sr and 90Y is that both β decays directly to
the ground state of their daughter nuclei. In particular, 89Sr being a β pure emitter, β
decays with a half-life of 50.52 d directly to the ground state, and therefore there are no
associated γ transitions. However, the ejected electron has a maximum energy of 1502 keV,
large enough to produce an experimental signature above the background. Similarly, 90Y
undergoes a pure β− decay to 90Zr with a half-life of 64.1 h and a decay energy of 2.28 MeV,
corresponding to an average electron energy of 0.934 MeV. For sake of completeness, 90Y
also produces 0.01% 1.7 MeV photons during its decay process to the Jπ = 0+ state of 90Zr,
followed by pair production. As already mentioned before, in these two cases the decays
will be detected using a β spectrometer.

5.3. The Case of 94Zr(n,γ)

Zr is an element widely studied in nuclear astrophysics because of its key role in the
s-process and nuclear technology [34]. It is closely linked to the first s-process peak in the
solar-abundance distribution (according to recent theoretical studies, predicted s-process
contributions to its solar abundance is 82% [8]). The comparison of AGB predictions to
the Zr composition of single SiC data presents some problems, in particular the large
92Zr/94Zr ratios measured in grains. One can argue that improved measurements of
neutron-capture cross sections for the 94Zr isotope may help solving these problems and we
plan to investigate it at NEAR with the aim to reach an accuracy around or better than 5%.
In addition, the activation measurement of 94Zr is relevant outside nuclear astrophysics
too. Ongoing research on k0-standardized reactor neutron activation analysis [35] requires
94Zr(n,γ) data deduced from neutron irradiation. So far, measurements in irradiation
facilities with significantly different spectral characteristics were discrepant far outside
experimental uncertainties. 95Zr is a γ-ray emitter, with two main lines, 724 and 757 keV,
and a half-life of 64.02 d.

5.4. The Case of 64Ni(n,γ)

A large fraction of nuclides in the Fe/Ni mass region is produced by the weak s pro-
cess. In particular, the s-process nucleosynthesis takes place during core He-burning,
when temperatures are high enough to activate the neutron source reaction 22Ne(α,n)25Mg.
In this case neutron densities reach around 106 cm−3 and temperatures corresponding to
kT = 26 keV. The very same neutron source is later reactivated during C-Shell burning at
temperatures of kT = 90 keV. In this latter case, neutron densities are orders of magnitude
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higher with peak densities up to 1012 cm−3, resulting in a reaction flow slightly away from
the nuclear stability valley. In this context, when 63Ni radioisotope is produced, the main
reaction flow proceeds via subsequent neutron capture to 64Ni, bypassing the production
of 63Cu. 64Ni is involved in both burning process He-Core and C-Shell. Clearly, how fast
the 64Ni stable nucleus is turned into 65Ni by neutron capture depends upon its stellar (n,γ)
cross section, and in addition it affects the abundances of all other isotopes following in the
reaction chain (see, e.g., ref. [11]).

Another interesting feature related to nickel isotopic ratios is that they can be measured
in presolar SiC grains: considering the high resolution of these laboratory measurements
(less than 5%), an equivalent accurate determination of nuclear inputs is needed [36,37].
As a final remark, there are few and discrepant reported cross sections in literature (far
outside the uncertainties that in this case amount of a great percent fraction), probably
because of its small absolute value. 64Ni(n,γ)65Ni requires a special consideration: this
reaction is a challenge because of its short half-life (only 2.5 h) with a Q-value of 2137 keV,
and we will then test the actual activity limit of the combination NEAR and GEAR lab.
This could be a good opportunity to investigate the relation between half-life of the sample
and reachable accuracy of the cross section determination. We expect to reach in this
measurement campaign an accuracy of a few percent in all the measurements, apart from
65Ni that is hampered by its short half-life.

6. Activation Measurements at NEAR on a Mid- and Long-Term

In the previous Section we listed the first measurements that will be performed at
NEAR, needed to characterize the experimental setup. Thus, such a list is intended to
be non-exhaustive. As a matter of fact, we are planning to approach the neutron-rich
side of the β-stability valley by measuring neutron captures on n-rich unstable isotopes.
As already recalled in the Introduction, those data are fundamental for the analysis of s-
process branchings and for studies involving processes with intermediate neutron densities
(Nn ≈ 1014–1017 cm−3). Hereafter, we list just a couple of potential cases:

• 135Cs(n,γ) & 136Cs(n,γ): the competition between neutron captures and β decays
of those unstable isotope determine the final surface abundance of 136Ba in AGB
stars. 136Ba is an s-only isotope, in the sense that its entire cosmic production can be
ascribed to the s-process: for this reason it is widely used (together with other s-only
isotopes) to test the robustness of theoretical stellar models [8]. Its abundances is
largely dependent from the branchings at 135Cs and 136Cs, thus the determination of
their neutron capture cross sections is mandatory.

• 89Sr(n,γ) & 90Sr(n,γ): those unstable isotopes do not influence the main s-process
neutron capture path but, with sufficiently large neutron exposures, their neutron
capture may potentially by-pass the neutron-magic nuclei 89Y and 90Zr. This is a
typical condition attained during the i-process, when up to six to seven neutron-rich
nuclei far from the β-stability valley are produced [16]. Different light-s to heavy-s
element distribution could be attained on the surface of the objects where the i-process
is at work, with interesting consequences on the evaluation of the contribution of this
process in the framework of the Galactic chemical evolution.

• 31Si: the branching at this isotope determines the final 32S abundance in particular
classes of pre-solar SiC grains (X grains, related to core-collapse supernovae [38],
and AB grains, whose origin is still under debate [39]). In particular, the measured
32S excess is due to the radiogenic contribution from 32Si, that is strongly affected
by the neutron capture cross section of the unstable 31Si. The latter is far from being
precisely determined.

7. Conclusions

The upgrade of the n_TOF neutron spallation source during the CERN shutdown in
2019–2020 has enabled the construction of NEAR, an irradiation station close to the neutron
source. After the characterization of the neutron beam at NEAR, the n_TOF collaboration is
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proposing for the next future a series of measurements of astrophysical interest: we mention
the s-process in AGB stars (5–30 keV neutron energy range) and s-process in massive stars
(15–90 keV neutron energy range). In particular, a method has been proposed and described
in this article to shape the neutron flux at NEAR so as to resemble a Maxwellian distribution
at different temperatures.

Rare, radioactive or low-mass samples can be irradiated at NEAR (down to few
ng/cm2 thickness) and then the produced activity (we could consider samples with half-life
up to few months) measured in the measurement station GEAR, hosted in a dedicated low-
level underground laboratory equipped with shielded HPGe detectors and beta counters.
This latter station is positioned close to the NEAR station (a few hundred meters away),
thus allowing us to measure the activities of short-lived radioisotopes too.

The physics program of NEAR in the short- and mid-term, described in this article,
consists of several activation measurements on stable and unstable isotopes. They are of
interest to nuclear astrophysics and, in particular, to the study of the production of elements
heavier than iron in the stars.
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