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ABSTRACT

Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double
synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we
investigate the matter with further data extending over a wider energy range.
Methods. The GLAST-AGILE Support Program (GASP) of the whole earth blazar telescope (WEBT) monitored BL Lacertae in 2008–2009 at
radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMM-Newton,
Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the
source broad-band variability.
Results. The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time
scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely
caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate
(∼4–7%) flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at
lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a
synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet
model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation
from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms
of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an
increase of the Doppler beaming factor.
Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral variability.
Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen,
with strong consequences on the source multiwavelength behaviour.

Key words. galaxies: active – BL Lacertae objects: general – BL Lacertae objects: individual: BL Lacertae – galaxies: jets

1. Introduction

Blazars are active galactic nuclei whose extreme properties are
thought to be owing to their relativistic jets pointing toward us.
BL Lacertae, the prototype of the “BL Lac objects” blazar class,
has been the target of many campaigns by the whole earth blazar
telescope (WEBT) collaboration1 since 1999. The tens of thou-
sands of optical-to-radio data collected by the WEBT allowed us
to study its multiwavelength flux variability, colour behaviour,
and the correlations among flux variations in different bands,
and revealed a possible periodicity of the radio outbursts. The

� The radio-to-optical data presented in this paper are stored
in the GASP-WEBT archive; for questions regarding their avail-
ability, please contact the WEBT President Massimo Villata
(villata@oato.inaf.it).
1 http://www.oato.inaf.it/blazars/webt/

results have been published by Villata et al. (2002), Ravasio et al.
(2002), Böttcher et al. (2003), Villata et al. (2004b), Villata et al.
(2004a), Bach et al. (2006), Papadakis et al. (2007), Villata et al.
(2009b), Larionov et al. (2010).

In a recent paper, Raiteri et al. (2009) analysed the multi-
wavelength data from the 2007–2008 WEBT campaign, includ-
ing three pointings by XMM-Newton. The XMM-Newton data
revealed a UV excess, which was interpreted to be due to ther-
mal emission from the accretion disc, as well as a spectral curva-
ture in the X-ray band. The authors constructed spectral energy
distributions (SEDs) of BL Lacertae corresponding to various
epochs where the source was in different brightness states, using
both their own data and data from the literature. They applied the
inhomogeneous, rotating helical jet model by Villata & Raiteri
(1999, see also Raiteri et al. 1999; Raiteri et al. 2003; Ostorero
et al. 2004) to fit the SEDs, and suggested that the broad-band
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spectral properties of BL Lacertae may result from the combi-
nation of two synchrotron emission components with their self
inverse-Compton emission, plus a thermal component from the
disc. Subsequently, Capetti et al. (2010) analysed optical spectra
acquired in the same period with the 3.56 m telescopio nazionale
galileo (TNG). They found a broad Hα emission line, with lu-
minosity of ∼4 × 1041 erg s−1 and FWHM of ∼4600 km s−1,
even brighter than that found in 1995–1997 by Vermeulen et al.
(1995) and Corbett et al. (1996, 2000). This favours the hypoth-
esis that the UV excess is caused by thermal emission from the
accretion disc, the most likely source of ionising photons for
the broad line region. The multiwavelength data available for the
Raiteri et al. (2009) analysis lacked simultaneous information in
the γ-ray band, so that the inverse-Compton spectral region was
poorly constrained. But in 2008 the Fermi satellite was able to
detect BL Lacertae (Abdo et al. 2010a), even if in a low state
compared to the past detections by the compton gamma ray ob-
servatory2 (CGRO, Hartman et al. 1999; Bloom et al. 1997). In
the same period, observations in the UV and X-ray bands were
performed by Swift, while in the optical, near-IR, mm and cm
radio bands the source was monitored by the GLAST-AGILE
Support Program (GASP) of the WEBT. This offered the unique
opportunity to study the source emission over a very extended
spectral range. The results of this further investigation effort on
BL Lacertae are presented in this paper.

2. GASP observations

The GASP was born in 2007 as a WEBT project, with the aim
of monitoring a list of 28 γ-ray loud blazars in the optical, near-
IR, mm, and cm radio bands during the γ-ray observations of
the AGILE3 and Fermi4 (formerly GLAST) satellites (see e.g.
Villata et al. 2008, 2009a). Data are collected periodically by
the WEBT President, who checks the consistency of the vari-
ous datasets. The GASP light curves are then available for mul-
tiwavelength studies, mostly in the framework of the GASP
collaboration with the AGILE and Fermi research teams. The
GASP data presented in this paper were taken at the observato-
ries listed in Table 1.

The optical data were calibrated with respect to a common
choice of reference stars in the same field of the source (Bertaud
et al. 1969 in U and B bands; Fiorucci & Tosti 1996 in V , R, and
I). The source photometry was evaluated from a circular region
with an 8 arcsec aperture radius, while the background was taken
in a surrounding annulus with 10 and 16 arcsec radii. In this way
the measure is essentially seeing-independent and all datasets
are affected by the same contamination from the light of the host
galaxy. Raiteri et al. (2009) estimated that with the above pre-
scriptions the contamination amounts to about 60% of the host
total flux density, which is 0.36, 1.30, 2.89, 4.23, 5.90, 11.83,
13.97, and 10.62 mJy in the U, B, V , R, I, J, H, and K bands, re-
spectively. When converting magnitudes into flux densities, we
corrected for the Galactic extinction according to the Cardelli
et al. (1989) laws, using RV = 3.1, the standard value for the
diffuse interstellar medium, and AB = 1.42 (from Schlegel et al.
1998). We adopted the absolute fluxes by Bessell et al. (1998).

Figure 1 shows the best-sampled total R-band light curve
from February 2008 to February 2009 built with GASP data,
which are not corrected for the host galaxy contribution here.
A noticeable flare was observed at the beginning of the period,

2 http://heasarc.gsfc.nasa.gov/docs/cgro/
3 http://agile.iasf-roma.inaf.it/
4 http://fermi.gsfc.nasa.gov/

Table 1. List of optical, near-IR, and mm–cm radio observatories con-
tributing data to this work.

Optical and near-infrared
Observatory Tel. size Bands

[cm]
Abastumani, Georgia 70 R
Armenzano, Italy 35 BRI
Armenzano, Italy 40 BVRI
Calar Alto, Spaina 220 R
Campo Imperatore, Italy 110 JHK
Crimean, Ukraine 70 BVRI
El Vendrell, Spain 20 R
Kitt Peak (MDM), USA 130 UBVRI
L’Ampolla, Spain 36 R
Lulin, Taiwan 40 R
New Mexico Skies, USA 30 VRI
Roque (KVA), Spain 35 R
Sabadell, Spain 50 R
St. Petersburg, Russia 40 BVRI
Talmassons, Italy 35 BVR
Teide (BRT), Spain 35 BVR
Tuorla, Finland 103 R
Valle d’Aosta, Italy 81 BVRI

Radio
Observatory Tel. size Frequencies

[m] [GHz]

Mauna Kea (SMA), USA 8 × 6b 230, 345
Medicina, Italy 32 5, 8, 22
Metsähovi, Finland 14 37
Noto, Italy 32 43
UMRAO, USA 26 4.8, 8.0, 14.5

Notes. (a) Calar Alto data were acquired as part of the MAPCAT
(Monitoring AGN with Polarimetry at the Calar Alto Telescopes)
project; (b) radio interferometer including 8 dishes of 6 m size.

in 2008 February–March; afterwards both the average bright-
ness level and the variability amplitude decreased. However,
the source remained active, its brightness oscillating by several
tenths of magnitude on a few-day time scale. This is not an un-
usual behaviour for BL Lacertae (see e.g. Raiteri et al. 2009, who
reported on a 0.9 mag brightening in 24 h).

Optical data at other wavelengths as well as near-IR data
are shown in Fig. 2 for the period June–November 2008 (the
UV data displayed in the figure are presented in Sect. 3). The
host galaxy contribution has been subtracted to distinguish the
behaviour of the active nucleus. This reveals that the bright-
ness evolution follows the same trend in the various bands, but
magnitude variations are more pronounced at higher frequen-
cies, which is a common feature of BL Lac objects. For ex-
ample, the brightness increase following the almost symmetric
dip around JD ∼ 2454681 involved a variation of 0.79, 0.64,
0.57, and 0.54 mag in ∼5 days in the B, V , R, and I bands,
respectively. We notice that the source redshift is z = 0.0686
(Vermeulen et al. 1995) and hence the broad Hα emission line
enters the tails of the R and I passbands. However, referring to
Capetti et al. (2010), one can estimate that its flux contribution
is only a few thousandths of that of the continuum. Hence, the
presence of the line cannot affect the variability in these bands,
at least when the source brightness is at these levels. Another
interesting example of fast variability is the rise of ∼0.9 mag in
4 days, from JD = 2454752.3 to 2454756.3, in the R band, which
unfortunately was not observed in other bands.
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Fig. 1. R-band light curve by the GASP collab-
oration from February 2008 to February 2009.
Data are not corrected for the host galaxy con-
tamination or Galactic extinction. The partici-
pating observatories are marked with different
symbols and colours. The total number of data
points is indicated in the upper right.

Fig. 2. June–November 2008 light curves of
BL Lacertae from UV to near-IR after correc-
tion for the host galaxy contribution, but not
for the Galactic extinction. Data taken by the
GASP-WEBT collaboration are plotted as blue
circles, UVOT data as red triangles. The UVOT
u, b, and v light curves have been shifted to
match the ground-based U, B, and V ones (see
text for details).

Page 3 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015191&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201015191&pdf_id=2


A&A 524, A43 (2010)

Radio flux densities at cm–mm wavelengths are displayed
in Fig. 3 together with de-reddened and host-galaxy subtracted
R-band optical flux densities. The former are complemented
by data from the VLA/VLBA polarization calibration database5

(PCD). The flux variation amplitude appears to decrease from
the highest to the lowest frequencies, as usual. One interesting
feature is the fast radio flare that is visible in the 37 GHz light
curve at JD ∼ 2454760, because it occurred simultaneously with
an optical flare. The correlation between optical and radio flux
variations in BL Lacertae has been the subject of several stud-
ies, and most of them found a correlation with a long time de-
lay (a few months) of the radio after the optical flux changes
(see e.g. Hufnagel & Bregman 1992; Tornikoski et al. 1994b;
Clements et al. 1995; Villata et al. 2004a; Bach et al. 2006;
Villata et al. 2009b). However, simultaneous variations have al-
ready been found (Tornikoski et al. 1994a). The 37 GHz data
we are dealing with are affected by large uncertainties due to
unfavourable weather conditions; but an increase of the radio
flux is visible also at 43, 22, and 14.5 GHz, giving strength to
the possibility that these events are correlated. We also notice
that there is neither a contemporaneous nor a delayed clear radio
counterpart to the optical flare observed at the beginning of the
period (JD ∼ 2454520). Yet, one would have expected to see it
in the high-frequency radio light curves. A better sampling in the
mm wavelength range perhaps would have helped to understand
whether the variability mechanism responsible for this flare af-
fected the optical emission region only or if it extended also to
the radio domain.

3. Swift observations

The Swift satellite observed BL Lacertae in 2008 August,
September, and October, for a total of 24 pointings. In particular,
from August 20 to September 9 a daily sampling was obtained.

3.1. UVOT data

The Ultraviolet/Optical Telescope (UVOT; Roming et al. 2005)
onboard the Swift spacecraft acquires data in the optical v, b, and
u bands, as well as in the UV filters uvw1, uvm2, and uvw2 (Poole
et al. 2008).

We reduced the BL Lacertae data with the HEAsoft pack-
age version 6.7, with CALDB updated at the end of November
2009. Source counts were extracted from a circular region with
a radius of 5 arcsec, while background counts were estimated in
a neighbouring source-free region. When multiple exposures in
the same filter were present during an observing epoch, we first
processed each frame separately with the task uvotmaghist and
then binned the results. These values were compared with those
obtained by first summing the frames acquired in the same band
with uvotimsum, and then performing the aperture photometry
with the task uvotsource. We verified that the two methods are
equivalent.

The final UVOT light curves are shown in Fig. 2. We sub-
tracted the host galaxy contribution, taking into account that with
the 5 arcsec aperture radius we used for the photometry, about
50% of the host flux was included. We adopted the host galaxy
flux densities given by Raiteri et al. (2009, see also Sect. 2); these
authors also discussed that the host contribution can be consid-
ered negligible in the UV.

The comparison between the UVOT u, b, and v data and the
U, B, and V data taken by the GASP observers reveals that an

5 http://www.vla.nrao.edu/astro/calib/polar/

Fig. 3. Optical flux densities (R band, top panel), after correction for
Galactic extinction and host galaxy contamination, compared to radio
flux densities at different frequencies. Blue circles represent GASP data;
red diamonds indicate data from the VLA/VLBA PCD. The vertical
green line corresponds to the XMM-Newton pointing of May 16–17;
the yellow strip highlights the period of Swift observations, from 2008
August 20 to October 2.

offset is present between the space light curves and the ground-
based ones. We estimated mean offsets U − u = 0.2, B− b = 0.1,
and V − v = −0.05. The UVOT light curves shown in Fig. 2 have
been shifted accordingly. Taking into account that the average
UVOT colour indices of BL Lacertae are u−b ∼ −0.4 and b−v ∼
0.8, the above offsets disagree with those derived by Poole et al.
(2008) for the objects on which they based their photometric
calibration of UVOT, i.e. Pickles stars and GRB models. Indeed,
these objects have a different spectral shape, so that the Poole
et al. (2008) calibrations may not hold for BL Lacertae.

The UVOT data confirm the variability trend traced
by the ground-based ones, extending it to UV frequencies.
This indicates that the variability mechanism affecting the
near-IR–optical emission, which is dominated by beamed syn-
chrotron radiation, can also produce flux changes in the UV,
where a contribution from the synchrotron emission is thus ex-
pected, besides a possible contribution from thermal disc radia-
tion.

The derivation of the source intrinsic flux densities for fur-
ther analysis (see Sect. 5) requires some attention. In their pa-
per on the photometric calibration of UVOT, Poole et al. (2008)
give effective wavelengths of 5402, 4329, 3501, 2634, 2231, and
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Fig. 4. Top: observed spectrum of BL Lacertae in the optical-UV
band. Red diamonds refer to the mean UVOT spectrum resulting from
16 epochs analysed in this paper. Blue circles represent the average
spectrum obtained from the three observations of the OM instrument
onboard XMM-Newton in 2007–2008 (Raiteri et al. 2009), normalised
to the mean UVOT spectrum in the v band. The solid line is the log-
parabolic fit used in the calibration procedure. Bottom: optical-UV
SEDs of BL Lacertae. Blue circles and red diamonds are derived from
the OM and UVOT average spectra shown in the top panel by us-
ing standard prescriptions to obtain dereddened flux densities. Black
squares represent the mean UVOT SED after recalibration as explained
in the text. In both panels the filter labels are centred on the standard
UVOT λeff (Poole et al. 2008).

2030 Å for the v, b, u, uvw1, uvm2, and uvw2 filters, respec-
tively, but warn that the λeff of the UV filters will be longer for
very red spectra. Moreover, they provide count-rate-to-flux con-
version factors for both Pickles stars and GRB models, but in
the UV bands their validity range is limited to b − v = 0.1 and
b − v = 0.03, respectively, while BL Lacertae has b − v ∼ 0.8.

In order to attenuate possible calibration problems, we thus
calculated both the effective wavelengths λeff and count-rate-
to-flux conversion factors CF for the UVOT filters by fold-
ing the BL Lacertae spectrum with their effective areas (see
Poole et al. 2008). We first built a composite observed spectrum
of BL Lacertae by combining a mean OM spectrum (obtained
from the three XMM-Newton pointings of 2007–2008, Raiteri
et al. 2009) with an average UVOT spectrum (resulting from 16
UVOT observing epochs analysed in this paper). To compen-
sate for the different brightness state, we increased the OM flux
densities by ∼6% so that the two spectra match in the V band.
The composite spectrum is shown in Fig. 4 (top panel), together
with its log-parabolic fit that we used in the folding procedure.
The resulting effective wavelengths (see Eq. (8) in Poole et al.
2008) are: 5439, 4381, 3500, 2776, 2295, and 2225 Å for the

v, b, u, uvw1, uvm2, and uvw2 filters, respectively, showing a
clear shift towards longer wavelengths in the ultraviolet. As for
the count-rate-to-flux conversion factors, we obtained 2.60, 1.47,
1.65, 4.31, 8.54, and 6.72 × 10−16 erg cm−2 s−1 Å−1 from the v
to the uvw2 band, respectively. These new CF differ from those
given by Poole et al. (2008) for the GRB models by <∼1%, with
the only exceptions of CF(uvw1) and CF(uvw2), which are now
8% larger6.

The new λeff would produce a decrease of extinction in the
uvw1 and uvm2 bands with respect to those given by Poole
et al. (2008), and an increase in the uvw2 band. Indeed, the
Galactic mean extinction curve shows a dramatic bump peaking
at λ ∼ 2175 Å owing to absorption by graphite dust. Actually, an
accurate evaluation of extinction in this critical frequency range
requires that the Cardelli et al. (1989) law is folded with the fil-
ter’s effective area and BL Lacertae spectrum, similarly to what
was done above for the λeff and CF:

AΛ = 2.5 log

∫
dλ EΛ(λ) Fλ(λ) 10A(λ)/2.5

∫
dλ EΛ(λ) Fλ(λ)

, (1)

where AΛ is the extinction in the Λ band, EΛ is the effective area
of that band, and Fλ is the source flux density. The result is a
Galactic extinction of 1.10, 1.44, 1.74, 2.40, 3.04, and 2.92 mag
from the v to the uvw2 band, respectively.

We verified the stability of our results by iterating the pro-
cedure with the recalibrated UVOT flux densities and λeff. The
bottom panel of Fig. 4 shows the mean SED obtained after recal-
ibration of the UVOT data according to our procedure. For com-
parison, we also show the OM and UVOT SEDs derived from the
average spectra shown in the top panel, for which the amount of
Galactic extinction was calculated from the Cardelli et al. (1989)
law at the standard λeff . Notice that the recalibration process has
shifted λeff(uvw2) redward so much that it overlaps with the stan-
dard λeff(uvm2). This is because of the noticeable red tail of the
uvw2 filter (Poole et al. 2008) as well as to the red BL Lacertae
spectrum. Recalibration has solved the uvw1-dip problem, which
is a common feature of UVOT SEDs for a number of blazars at
different redshifts (see e.g. Villata et al. 2008; Raiteri et al. 2008;
D’Ammando et al. 2009). Moreover, it seems to confirm the UV
excess claimed by Raiteri et al. (2009) that was ascribed to ther-
mal emission from the accretion disc, even if this excess may
be less pronounced than indicated by the OM data. Our analy-
sis highlights the importance of calculating the amount of ex-
tinction in the critical UV bands, close to the 2175 Å bump, by
folding the Galactic mean extinction law through the effective
area curves and source spectrum. In any case, as pointed out by
Fitzpatrick & Massa (2007), one has to keep in mind that the
use of an average dereddening curve implies a significant error
owing to the scatter of Galactic extinction curves.

3.2. XRT data

The X-ray Telescope (XRT; Burrows et al. 2005) data were
processed with version 0.12.3 of the xrtpipeline task con-
tained in the FTOOLS package, applying standard screening
criteria. Inspection of the light curves revealed that the count
rate was low, from 0.15 to 0.24 counts s−1, so that observa-
tions were performed in photon counting mode, and no correc-
tion for pile-up was necessary. Source and background spectra
were extracted with xselect from a circular region of 20 pixel

6 Notice that our CF(uvw1) corresponds to that given by Poole et al.
(2008) for the Pickles stars.
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(47 arcsec) radius centred on the source and from a surround-
ing annulus of 30 and 50 pixel radii, respectively. We used ver-
sion 011 of the response matrix available in the HEASARC
calibration database (CALDB), and calculated the ancillary re-
sponse file with xrtmkarf, using the exposure map created by
xrtpipeline. The source spectra were binned with grppha to
have a minimum of 20 counts in each bin, and they were finally
analysed with version 12.5.1 of the Xspec task, using the energy
channels greater than 0.3 keV.

Spectral analysis was performed for each observation fol-
lowing Raiteri et al. (2009): we first fitted a single power law
with free absorption7, and then fixed the Galactic absorption to
NH = 3.4 × 1021 cm−2, which takes into account both atomic
and molecular column density. Statistics is not good enough to
evaluate if a double power law model can improve the fit. The
results of spectral fitting on XRT data are reported in Table 2 for
all observations with an exposure longer than 3 ks; Col. 1 gives
the date and start time of the observation; Col. 2 its duration;
Col. 3 the hydrogen column; Col. 4 the power law photon index;
Col. 5 the 1 keV flux density; Col. 6 the χ2/ν (and degrees of
freedom). One spectrum (August 29) is shown in Fig. 5.

Fits with free absorption resulted in a very variable NH,
which is unlikely to correspond to a real change of absorption.
The average and median values are 3.46 and 3.44 × 1021 cm−2,
respectively, confirming that the value assumed for the Galactic
absorption is quite reasonable. Hence, we favoured the second
model, whose χ2/ν is usually smaller than in the NH-free case,
and that produces results with smaller errors (because of one
degree of freedom more). In only two cases (August 23 and
September 2) a double power law model with absorption fixed
to the Galactic value clearly improved the fit.

The photon index Γ ranges from 1.92 to 2.25, indicating
a spectrum that oscillates from moderately hard to moderately
soft. The average value is 2.07, with standard deviation of 0.08.
To understand whether these spectral changes correspond to real
variations or are owing to noise, we recall the definition of the
mean fractional variation Fvar =

√
σ2 − δ2/〈 f 〉 (Peterson 2001),

which is commonly used to characterise variability. Here 〈 f 〉 is
the mean value of the variable we are analysing, σ2 its variance,
and δ2 the mean square uncertainty. In our case, σ2 = 0.006 is
smaller than δ2 = 0.011, so that the result is imaginary; thus we
conclude that the variations are consistent with noise rather than
source variability.

The 1 keV flux density varies between 1.34 and 2.24 μJy,
with a mean value of 1.75 and standard deviation of 0.24. In this
case Fvar = 0.11, and the variations can be considered reliable.

Multiwavelength light curves of BL Lacertae in the period
around the Swift observations are shown in Fig. 6. The source
behaviour at 1 keV differs from the common trend characterising
the UV, optical, and near-IR bands. In particular, the X-ray flux
peaks when the near-IR–UV fluxes reach a minimum. However,
there are also similarities, like the flux increase at the beginning
of the common observing period, and the final decrease. This
may indicate that the 1 keV flux behaviour sometimes is related
to the brightness changes that occur at lower wavelengths, while
in other cases another variability mechanism prevails. Indeed,
according to Raiteri et al. (2009) this frequency domain receives
the variable contribution of two different emission components
(see also Sect. 5).

7 We adopted the Tuebingen-Boulder ISM absorption model (Wilms
et al. 2000).

4. XMM-Newton observations

The X-ray multi-mirror mission (XMM) - Newton satellite ob-
served the source during revolution 1545, on 2008 May 16–17,
with a total exposure of ∼134 ks. Data were processed with the
science analysis system (SAS) package version 9.0.

4.1. OM data

The Optical Monitor (OM; Mason et al. 2001) onboard XMM-
Newton is a 30-cm telescope carrying six optical/UV filters, and
two grisms. BL Lacertae observations in May 2008 consisted of
10 subsequent exposures in UVW1, followed by 9 in UVM2,
and then 8 in UVW2. All exposures were ∼4000 s long. We
used the SAS task omichain to reduce the data and the tasks
omsource and omphotom to derive the source magnitude. The
error on the aperture photometry is 0.03, 0.04, and 0.09 mag
for the UVW1, UVM2, and UVW2 filters, respectively. The re-
sulting light curves are shown in Fig. 7; average magnitudes are
UVW1 = 15.45, UVM2 = 16.25, and UVW2 = 16.54.

To obtain flux densities for further analysis, OM magnitudes
were corrected for the Galactic extinction calculated according
to the Cardelli et al. (1989, see Sect. 2) laws at the effective
wavelengths of the OM filters (2910, 2310, and 2120 Å for the
UVW1, UVM2, and UVW2 filters, respectively). Conversion of
de-reddened magnitudes into flux densities was done with re-
spect to Vega.

4.2. EPIC data

The European Photon Imaging Camera (EPIC) onboard
XMM-Newton includes three detectors: MOS1, MOS2 (Turner
et al. 2001), and pn (Strüder et al. 2001). All instruments were
used with a thin filter. The two MOS cameras observed in small-
window imaging mode, while pn was used in timing mode.

We followed the standard prescription to reduce the data, in-
cluding filtering of high background periods with a threshold
of 0.35 counts s−1 for MOS, but with a stricter threshold of
0.1 counts s−1 for pn.

For both MOS1 and MOS2, we created a filtered sky image,
and extracted the source counts from a 50 arcsec radius circular
region, while background was evaluated in a circle on an ex-
ternal CCD. As for pn, we extracted the source counts from a
strip between RAWX=35 and 39, and the background from two
strips at columns 24–28 and 48–52. To get the most reliable and
best calibrated events, we used the FLAG==0 selection expres-
sion and kept only single and double events (PATTERN<=4).
We verified that pile-up effects were not affecting the MOS data
with the epatplot task.

Through the grppha task of the FTOOL package we binned
the source spectra to have a minimum of 25 counts in each bin
and then analysed them together by means of the Xspec task
of the XANADU package. Only spectral bins corresponding to
energies between 0.3 and 10 keV for MOS1 and MOS2 and in
the range 0.5–10 keV for pn were considered, because they have
both a better calibration and a higher signal-to-noise ratio.

The three EPIC spectra were analysed together by first fit-
ting a single power law with free absorption, and then fixing the
Galactic absorption to NH = 3.4 × 1021 cm−2. We also tried a
double power law with the same Galactic absorption. The re-
sults are shown in Table 3 (see also Fig. 8). In agreement with
Raiteri et al. (2009), the χ2/ν suggests that a single power law
with Galactic absorption of NH = 3.4 × 1021 cm−2 does not rep-
resent a good fit to the data. As for the other two fits, the double
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Table 2. Spectral fitting to the XRT data from Swift observations in 2008.

Start Exp NH Γ F1 keV χ2/ν (ν)
[s] [1021 cm−2] [μJy]

2008-08-20 @ 15:19:01 5072 3.47+0.12
−0.11 2.09+0.22

−0.20 1.37+0.35
−0.27 0.87 (29)

3.4 2.07 ± 0.12 1.34 ± 0.12 0.84 (30)

2008-08-21 @ 11:53:00 5200 3.12+0.09
−0.08 1.98+0.18

−0.16 1.59+0.30
−0.25 1.03 (39)

3.4 2.03 ± 0.10 1.66 ± 0.13 1.01 (40)

2008-08-22 @ 00:45:00 5374 3.92+0.10
−0.09 2.15+0.18

−0.17 1.87+0.37
−0.31 0.88 (36)

3.4 2.06 ± 0.10 1.70 ± 0.14 0.88 (37)

2008-08-23 @ 00:51:01 4859 1.90+0.12
−0.11 1.83+0.22

−0.21 1.15+0.29
−0.23 1.25 (33)

3.4 2.06 ± 0.13 1.50 ± 0.14 1.34 (34)

2008-08-24 @ 13:50:00 5118 3.30+0.10
−0.09 1.95+0.17

−0.16 1.76+0.34
−0.28 0.96 (41)

3.4 1.97 ± 0.10 1.78 ± 0.14 0.93 (42)

2008-08-25 @ 09:07:01 5013 3.85+0.09
−0.08 1.99+0.16

−0.15 1.75+0.33
−0.27 0.98 (45)

3.4 1.92 ± 0.09 1.62 ± 0.12 0.97 (46)

2008-08-26 @ 09:16:00 4756 3.29+0.08
−0.07 1.99+0.16

−0.15 1.85+0.31
−0.27 0.65 (45)

3.4 2.01 ± 0.09 1.89 ± 0.14 0.64 (46)

2008-08-27 @ 00:07:00 4197 2.81+0.10
−0.09 1.99+0.21

−0.19 1.69+0.37
−0.30 0.62 (37)

3.4 2.10 ± 0.11 1.89 ± 0.15 0.63 (38)

2008-08-27 @ 23:59:00 3002 3.53+0.15
−0.13 2.05+0.25

−0.23 1.68+0.49
−0.37 0.71 (20)

3.4 2.03 ± 0.14 1.63 ± 0.18 0.68 (21)

2008-08-29 @ 12:48:00 5828 3.16+0.07
−0.06 2.01+0.14

−0.13 1.89+0.28
−0.24 1.03 (58)

3.4 2.05 ± 0.08 1.97 ± 0.13 1.02 (59)

2008-08-30 @ 08:05:00 5044 4.69+0.09
−0.08 2.38+0.18

−0.17 2.86+0.53
−0.44 1.01 (50)

3.4 2.15 ± 0.08 2.24 ± 0.14 1.13 (51)

2008-08-31 @ 08:11:01 5100 3.22+0.08
−0.07 2.12+0.17

−0.16 2.02+0.36
−0.30 0.95 (51)

3.4 2.15 ± 0.09 2.09 ± 0.14 0.93 (52)

2008-09-01 @ 08:17:01 5491 3.44+0.08
−0.07 1.99 ± 0.14 1.85+0.30

0.25 1.01 (54)
3.4 1.99 ± 0.08 1.83 ± 0.12 0.99 (55)

2008-09-02 @ 05:11:01 4077 3.31+0.11
−0.10 2.04+0.22

−0.20 1.65+0.39
−0.31 1.01 (34)

3.4 2.06 ± 0.11 1.67 ± 0.14 0.98 (35)

2008-09-03 @ 14:55:00 4791 3.63+0.08
−0.07 2.11+0.18

−0.17 1.92+0.36
−0.27 1.01 (44)

3.4 2.06 ± 0.10 1.84 ± 0.13 1.00 (45)

2008-09-04 @ 07:06:00 5032 4.35+0.11
−0.09 2.23+0.22

−0.20 2.22+0.50
−0.40 0.96 (37)

3.4 2.06 ± 0.10 1.85 ± 0.14 1.01 (38)

2008-09-05 @ 09:02:00 4491 4.11+0.10
−0.09 2.28+0.19

−0.18 2.30+0.47
−0.38 1.11 (39)

3.4 2.16 ± 0.10 2.02 ± 0.15 1.12 (40)

2008-09-06 @ 05:58:31 4676 3.21+0.11
−0.10 2.22+0.22

−0.20 1.58+0.38
−0.30 1.16 (32)

3.4 2.25+0.12
−0.11 1.64 ± 0.14 1.13 (33)

2008-09-08 @ 13:46:01 4860 2.84+0.12
−0.11 2.08+0.23

−0.21 1.29+0.32
−0.25 0.97 (29)

3.4 2.17 ± 0.13 1.42 ± 0.13 0.96 (30)

2008-09-09 @ 02:37:00 4501 4.08+0.13
−0.12 2.15+0.25

−0.23 1.56+0.43
−0.33 1.18 (27)

3.4 2.04+0.13
−0.12 1.38 ± 0.13 1.17 (28)

Notes. Only exposures longer than 3 ks are considered. For each epoch the first line reports the result of the single power law model with free
absorption, while the second line shows that obtained when fixing the Galactic absorption to NH = 3.4 × 1021 cm−2.
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Fig. 5. Swift-XRT spectrum of BL Lacertae on 2008 August 29. The
bottom panel shows the deviations of the observed data from the folded
model (a single power law with fixed absorption) in units of standard
deviations.

power law seems to better fit the data, which is also confirmed
by a very low F-test probability of ∼6.8 × 10−16. This implies a
strong spectral curvature.

To check for possible flux variations, we extracted X-ray
light curves from the same source and background regions de-
fined for the spectra, with the same selection expressions. We
considered only the events in the time intervals free from high
background and belonging to the 0.3–10 keV energy range for
MOS1 and MOS2, and 0.5–10 keV for pn. The source counts
were corrected for the background and then binned in one hour
intervals. The results are shown in Fig. 7, which also displays the
behaviour of the background to check the reliability of the flux
variations. The background increased significantly only in the
last 6 h. Just before, at JD ∼ 2454604.05, there is a small flare
clearly visible in all three light curves. Mean source rates for the
whole period are 1.63, 0.61, and 0.64 counts s−1 for pn, MOS1,
and MOS2, respectively, with standard deviations of 0.15, 0.04,
and 0.03 counts s−1. This means fractional variations Fvar of
7%, 6%, and 4%, which do not change significantly if we ex-
clude the last 6 h. Hence, we can conclude that the X-ray flux of
BL Lacertae is mildly variable on an hour time scale.

5. Modelling the SED

Figure 9 shows the broad-band SED of BL Lacertae in dif-
ferent brightness states. The SED corresponding to 2008 May
16–17 includes the XMM-Newton UV and X-ray data analysed
in Sect. 4. In order to avoid offsets caused by source variabil-
ity, the OM spectrum was constructed with the last UVW1 data
point, the first UVM2 (which is close to the last UVM2), and the
first UVW2 datum of the corresponding light curves (see Fig. 7).
These data indicate a hard UV spectrum. Two SEDs in the figure
refer to the Swift observations of 2008 August 25 and 30, which
were chosen among those analysed in Sect. 3 because of the dif-
ferent spectral slope in the X-ray band. The low-frequency part
of these three SEDs is built with GASP optical and radio data
(see Sect. 2); for August 30 near-IR data were also available.
The strong source variability in the optical band requires that
the optical (and near-IR) data are simultaneous with the satellite

Fig. 6. Details of the multiwavelength behaviour of BL Lacertae in the
period around the Swift observations. The X-ray flux density (at 1 keV,
top) is compared to that in the UV (uvw1 band), optical (R band), near-
IR (K band), and radio (37 GHz, bottom) frequency range.

Fig. 7. UV and X-ray light curves obtained by the OM and EPIC in-
struments onboard XMM-Newton on 2008 May 16–17. Black, red, and
blue filled circles represent UVW1, UVM2, and UVW2 magnitudes,
respectively. Arrows mark the data points used for the SED shown in
Fig. 9. Green diamonds, black squares, and red triangles refer to pn
(0.5–10 keV), MOS1 (0.3–10 keV), and MOS2 (0.3–10 keV) count
rates, respectively. Plus signs show the corresponding backgrounds. In
all panels horizontal dashed lines indicate average values and dotted
lines represent standard deviations from the mean.
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Table 3. Spectral fitting to the EPIC (pn+MOS1+MOS2) data from the
XMM-Newton observations of 2008 May 16–17.

NH Γ F1 keV χ2/ν (ν)
[1021 cm−2] [μJy]
2.60 ± 0.04 1.83 ± 0.01 1.13 ± 0.01 1.09 (2030)

3.40 1.974 ± 0.007 1.322 ± 0.008 1.48 (2031)
3.40 2.80+0.20

−0.17, 1.57+0.08
−0.10 0.66+0.15

−0.14, 0.67+0.13
−0.15 1.05 (2029)

Notes. The first line reports the result of the single power law model
with free absorption; the second shows that obtained when fixing the
Galactic absorption to NH = 3.4 × 1021 cm−2, and the third that from a
double power law model with the same Galactic absorption.

observations. In the radio bands flux variations are slower, so that
we used data taken within 2–3 days from the satellite ones, when
simultaneous data were not available. Near-IR, optical, and UV
data were corrected for the Galactic extinction; the near-IR and
optical data were also corrected for the contribution of the host
galaxy (see Sect. 2). In August 2008 the Fermi γ-ray satellite
detected BL Lacertae; the Fermi data we plotted in Fig. 9 were
derived from Abdo et al. (2010a).

The August 2008 SEDs indicate a faint, synchrotron-
dominated state of the source that we fitted with the rotating
helical jet model by Villata & Raiteri (1999, see also Raiteri
et al. 1999; Raiteri et al. 2003; Ostorero et al. 2004). This model
has been used by Raiteri et al. (2009) to fit the broad-band
SED of BL Lacertae in December 2007–January 2008. Their
main finding was that the BL Lacertae broad-band SED can-
not be explained by a single synchrotron component plus its
self inverse-Compton emission. Indeed, the very strong histori-
cal X-ray variability requires an additional synchrotron (plus self
inverse-Compton) component. Moreover, the UV excess sug-
gests thermal contribution from the accretion disc (see Sect. 3.1).
The SED analysed by Raiteri et al. (2009) lacked simultaneous
γ-ray data, which made it impossible to constrain the inverse-
Compton emission of the high-energy component. The 2008
August SED in Fig. 9 now offers us the possibility to perform
a more detailed analysis.

In addition, we also display in Fig. 9 the broad-band SED
corresponding to the big outburst of July 1997, which showed
a considerable inverse-Compton dominance. The X-ray spectra
plotted in the figure are the result of the combined analysis of
the ASCA and RXTE data by Tanihata et al. (2000). Because of
the very strong variability of the source in that period, the au-
thors distinguished between a low state, which was well fitted
by a single power law model, and a flare state, for which the
best fit was obtained with a double power law model. This last
fit resulted in a very strong spectral curvature8. In July 1997 ob-
servations in the γ-ray band were performed by CGRO. The data
from the EGRET instrument onboard CGRO in Fig. 9 were taken
from Bloom et al. (1997), while those from the OSSE detector
were derived from the high energy astrophysics science archive
research center9 (HEASARC). The low-frequency information
is from the WEBT archive; the range of optical flux variation in
the period is indicated. This outburst state of the source was fit-
ted with the same rotating helical model that we used to fit the
faint state of 2008.

In performing the model fits our aim was to see whether it
was possible to reproduce the high and low states by changing

8 We notice that Tanihata et al. (2000) adopted a Galactic total absorp-
tion of NH = 4.6 × 1021 cm−2.
9 http://heasarc.gsfc.nasa.gov/
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Fig. 8. EPIC spectrum of BL Lacertae on 2008 May 16–17; black
squares, red triangles, and green diamonds represent MOS1, MOS2,
and pn data, respectively. The bottom panel shows the deviations of the
observed data from the folded model (a double power law with fixed
absorption) in units of standard deviations.

the geometrical configuration only. Moreover, we took into ac-
count the results by Larionov et al. (2010), who explained the
long-term BL Lacertae optical and near-IR variability in terms
of variations of the Doppler boosting factor due to changes of
the viewing angle of the emitting region.

The resulting model parameters are reported in Table 4,
while the corresponding fits are shown in Fig. 9. We also in-
cluded blackbody radiation from an accretion disc with a lu-
minosity of 5 × 1044 erg s−1 and a temperature of ∼16 000 K.
The low-energy (radio-to-optical and related inverse-Compton)
emission component comes from a helix portion with a pitch an-
gle ζ = 2◦, covering an angle a = 180◦. The maximum Lorentz
factor of the relativistic electrons is log γmax(0) = 3.7, while the
bulk Lorentz factor of the plasma in the jet is Γ = 7. The high-
energy (UV–X-ray and related inverse-Compton) emission com-
ponent comes from a helix portion with a pitch angle ζ = 8◦,
covering an angle a = 360◦. The maximum Lorentz factor of the
relativistic electrons is log γmax(0) = 3.8, while the bulk Lorentz
factor is Γ = 13. These parameters, as well as those defining
the power laws according to which the maximum and minimum
emitted frequencies and the flux densities decrease with distance
from the jet apex, are maintained fixed. The difference between
the fits to the 1997 and 2008 SEDs is only due to a variation of
the orientation of the jet emitting regions, through only two geo-
metric parameters: the angle between the helix axis and the line
of sight ψ and the rotation angle φ. The outburst state requires
a better alignment of the emitting regions with the line of sight,
which implies ψ approaching the helix pitch angle, and smaller
rotation angles φ.

6. Discussion

The satisfactory fits that we obtained in the previous section for
both the outburst and faint states of BL Lacertae give strength
to our interpretation of the source SED in terms of two syn-
chrotron plus self inverse-Compton emission components. In the
SED, the synchrotron peak of the low-energy component falls in
the near-IR band, and its inverse-Compton reaches a maximum
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Fig. 9. Broad-band SEDs of BL Lacertae in
August 2008 (blue) and July 1997 (red). The
2008 SED is built with UV and X-ray data
from two epochs of Swift observations (Sect. 3),
2008 August 25 and 30, together with simul-
taneous optical-to-radio data from the GASP-
WEBT collaboration, and contemporaneous
γ-ray data from Fermi (from Abdo et al.
2010a). The 1997 SED includes EGRET data
from Bloom et al. (1997), OSSE data from
the HEASARC archive, ASCA+RXTE spec-
tra from Tanihata et al. (2000), while low-
frequency data are from the WEBT archive.
Solid lines represent model fits; we distin-
guish the low-energy emission component (dot-
ted lines) from the high-energy one (dashed
lines); the contribution by an accretion disc of
∼16 000 K and 5 × 1044 erg s−1 is marked with
a dotted-dashed line. We also show in black the
SED corresponding to the XMM-Newton ob-
servations of May 2008 (Sect. 4); both the sin-
gle power law with free absorption and double
power law with Galactic absorption fits to the
EPIC spectra are displayed.

Table 4. Main parameters of the helical jet model for the fit to both the
2008 faint-state SED and the 1997 outburst-state SED.

SED 2008 SED 1997
Parameter Low High Low High
ζ 2◦ 8◦ 2◦ 8◦
a 180◦ 360◦ 180◦ 360◦
ψ 5◦ 3◦ 4.5◦ 7◦
φ 150◦ 135◦ 30◦ 70◦
log ν′s(0) 14 17.8 14 17.8
cmin,max 2 2.5 2 2.5
log lmin −3.2 −3.2 −3.2 −3.2
log lmax −1.6 −1.6 −1.6 −1.6
log γmax(0) 3.7 3.8 3.7 3.8
cγ 1 1 1 1
log lγ −0.5 −0.5 −0.5 −0.5
α0 0.5 0.5 0.5 0.5
Γ 7 13 7 13
cs,c 3 1 3 1
log ls,c −1 −1 −1 −1

Notes. For each epoch, “low” and “high” refer to the low- and high-
energy synchrotron plus self inverse-Compton components, respec-
tively.

in the 1–50 MeV energy range. The synchrotron and inverse-
Compton peaks of the high-energy component occur in the far-
UV-soft-X-ray band and in the energy range 0.2–5 GeV, respec-
tively. Whether these two components come from two distinct
helices or from different regions inside the same helical jet is not
clear. We consider it more likely that there is a unique jet, where
the high-energy component comes from a region closer to the
emitting jet apex than the low-energy one. We notice that a dou-
ble synchrotron component is not an unusual interpretation for
the blazar emission properties, as it has been proposed also for
Mkn 421 (Donnarumma et al. 2009) and 3C 454.3 (Ogle et al.
2010).

Moreover, the fits show that the whole range of BL Lacertae
multiwavelength variability can be interpreted in terms of orien-
tation effects. Although the rotating helical jet model we have
adopted in the previous section is not a physically complete

model, but more a phenomenological approach, it has the ad-
vantage of taking into account variations of the orientation of
the emitting regions with respect to the line of sight, with conse-
quent changes of the Doppler beaming factor. This is an aspect
that is usually neglected by theoretical models of blazar emis-
sion, which explain flux and spectral changes uniquely in terms
of energetic processes inside the jet.

Our interpretation is in line with previous results. Marscher
et al. (2008) analysed the evolution of the BL Lacertae optical
polarization during 2005, and suggested that the plasma flows
along helical streamlines. According to Villata et al. (2009b),
the long-term optical and radio behaviour of BL Lacertae sug-
gests a scenario where the emitting plasma flows along a rotat-
ing helical path in a curved jet. This rotating helical structure
could be caused by orbital motion in a binary black hole sys-
tem, coupled with the interaction of the plasma jet with the sur-
rounding medium. Indeed, the binary black hole scenario could
explain the periodicity observed in the radio light curves of
BL Lacertae (Villata et al. 2004a, 2009b), the discovery of a pre-
cessing jet nozzle with the VLBA (Stirling et al. 2003), and pos-
sibly the parsec-to-kiloparsec jet misalignment (see e.g. Kharb
et al. 2010). Moreover, the analysis of the BL Lacertae spectral
evolution in 2000–2008 by Larionov et al. (2010) favoured a pic-
ture where the optical and near-IR flux and colour variability can
be explained by a variable viewing angle of the emitting region.
These authors also suggested that a fractal helical structure may
be at the origin of the different time scales of variability.

The values of the angles ζ = 2◦ and ψ = 4.5–5◦, as well as
the Lorentz factor Γ = 7 adopted in the model fits for the low-
energy component, agree very well with the corresponding val-
ues of Larionov et al. (2010), thus supporting the common inter-
pretation. The helix pitch angle ζ = 8◦ found for the high-energy
component indicates that this inner jet helical region would be
more twisted than the outer, lower-energy one. In practice, our
model results indicate a helical jet whose axis is bent between
the X-ray and optical regions by about 2◦ (see the values of ψ in
Table 4) and that is more wrapped near the apex and then tends
to relax with a decreasing pitch angle. The different orientations
assumed by such a jet in 2008 and 1997 are sketched in Fig. 10,
where all the angles are strongly increased for clarity.
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Outburst 
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Faint 
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Line of sight

Fig. 10. Sketch of our helical jet model during both the 2008 faint state
and the 1997 outburst state. The angle between the jet axis and the line
of sight, ψ, has been multiplied by a factor 10 with respect to the values
given in Table 4 for clarity. We distinguish the inner region, emitting the
high-energy synchrotron plus self inverse-Compton component (purple-
blue) from the outer zone, where the low-energy emission component
is produced (green-yellow-red).

The thermal emission component that we added to the he-
lical jet model is justified by the UV excess found in the OM
data from XMM-Newton, and (though with less evidence) in the
UVOT data from Swift. As discussed in the present paper and in
Raiteri et al. (2009), the amount of this excess strongly depends
on both the Galactic extinction and instrument calibration, but it
is not easy to cancel it out completely. In any case, Capetti et al.
(2010) showed that after twelve years from the first detection
of the Hα broad emission line by Vermeulen et al. (1995) and
Corbett et al. (1996, see also Corbett et al. 2000), the Hα line is
still there, even more luminous than before. This suggests that a
disc is also there to photoionise the broad line region.

Photons coming from the disc or broad line region could then
enter the jet, and be inverse-Compton scattered, giving rise to
other high-energy emission components that are sometimes in-
voked to account for the SED properties of blazars. In particu-
lar, the 1997 outburst state has previously been interpreted by
Madejski et al. (1999) in terms of three emission components:
synchrotron, synchrotron self-Compton, and Comptonisation of
the broad emission line flux. Similar results were obtained by
Böttcher & Bloom (2000) and by Ravasio et al. (2002). Our
“geometrical” interpretation does not require these external-
Compton emission components, which are not expected to con-
tribute if the jet emission regions are parsecs away from the cen-
tral black hole (see e.g. Sikora et al. 2008; Marscher et al. 2010;
Abdo et al. 2010b).
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