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Results are presented for a semicoherent search for continuous gravitational waves from the low-mass x-
ray binary Scorpius X-1, using a hidden Markov model (HMM) to allow for spin wandering. This search
improves on previous HMM-based searches of Laser Interferometer Gravitational-Wave Observatory data
by including the orbital period in the search template grid, and by analyzing data from the latest (third)
observing run. In the frequency range searched, from 60 to 500 Hz, we find no evidence of gravitational
radiation. This is the most sensitive search for Scorpius X-1 using a HMM to date. For the most sensitive
subband, starting at 256.06 Hz, we report an upper limit on gravitational wave strain (at 95% confidence) of
h95%0 ¼ 6.16 × 10−26, assuming the orbital inclination angle takes its electromagnetically restricted value
ι ¼ 44°. The upper limits on gravitational wave strain reported here are on average a factor of ∼3 lower than
in the second observing run HMM search. This is the first Scorpius X-1 HMM search with upper limits that
reach below the indirect torque-balance limit for certain subbands, assuming ι ¼ 44°.
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I. INTRODUCTION

Rotating neutron stars are promising candidates for
continuous-wave searches with terrestrial gravitational
wave (GW) detectors such as the second-generation
Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1–5], Advanced Virgo [4], and the
Kamioka Gravitational-Wave Detector [6]. Continuous
GWs from neutron stars are emitted by an oscillating
quadrupole moment, which can be produced in various
ways, including elastic strain [7,8], magnetic gradients
[9–11], r-modes [12–14], or nonaxisymmetric circulation
of the superfluid interior [15–18]. These mechanisms emit
GWs at specific multiples of the spin frequency f⋆ [1]. Low-
mass x-ray binaries (LMXBs) have been targeted by
previous LIGO searches, [19–24] because they may emit
GWs relatively stronglywhile existing in a state of rotational
equilibrium, in which the accretion torque balances the GW
torque [25–27]. Under torque-balance conditions, the char-
acteristic GW strain h0 is proportional to the square root of
the x-ray flux, implying that the brightest LMXB, Scorpius
X-1 (Sco X-1), is also a strong GW emitter [1,27].
Continuous-wave searches directed at Sco X-1 have been

performed with data from the first (O1) and second (O2)
observing runs of LIGO [19–21,23,28–31]. No signal has
been detected to date, but astrophysically interesting upper
limits have been obtained. For O1, a hidden Markov model
(HMM) pipeline [29] obtained an upper limit at 95% con-
fidence level of h95%0 ¼ 8.3 × 10−25 in the 100–200 Hz

frequency range, while a cross-correlation (CrossCorr)
pipeline [28,32] achieved h95%0 ¼ 2.3 × 10−25 in the same
frequency range. For O2, the HMM pipeline [21] obtained
h95%0 ¼ 3.47 × 10−25, in the 100–200 Hz frequency range,
while CrossCorr [23] improved on its O1 results by a factor
of ≈1.8. All of these upper limits on h95%0 are marginalized
over the neutron star spin inclination ι, assuming an isotropic
prior. If instead one assumes an electromagnetically
informed prior, ι ¼ 44°� 6° [33], the O2 upper limits
obtained by CrossCorr reduce to ∼10−26 [23]. As with
any observation the upper limits are conditional on the signal
model. CrossCorr and the HMM assume different phase
evolution, so the foregoing h95%0 values cannot be compared
directly (see Sec. V B), although they are broadly indicative
of course. Now, the third observation run (O3), which is
longer and more sensitive than O1 and O2, offers an
opportunity to repeat the O1 andO2 searches with improved
sensitivity. The improved HMM search is the subject of
this paper.
Searching for LMXBs presents two challenges. First, f⋆

(and hence the GW frequency) wanders stochastically in
objects where it is measured electromagnetically, due to
fluctuations in the hydromagnetic accretion torque [34–37].
Second, in some LMXBs including Sco X-1, which do not
exhibit x-ray pulsations, f⋆ is not measured electromag-
netically [1,37]. Hence a GW search must cover a wide
band (width ∼1 kHz) looking for an unknown, wandering,
quasimonochromatic tone [38,39]. HMM tracking is a tried
and tested method for searches of the above sort, with a
long history of practical use in telecommunications [40]*Full author list given at the end of the article.
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and remote sensing [41]. HMM tracking has been
used in numerous searches for GWs, e.g. for Sco X-1 in
O1 [29] and O2 [21], young supernova remnants in O3
[42], accreting millisecond x-ray pulsars in O2 [22]
and O3 [24], all sky searches [43], and long-duration
transients [44].
The J -statistic [45], a frequency domain matched

filter, is used in tandem with the HMM described in
Refs. [21,29,45,46]. The outline of the rest of the paper
is as follows. Section II explains briefly the HMM
formulation used and the J -statistic. In Sec. III, the search
pipeline and parameter space are described. In Secs. IVand
V, we present the search results and upper limits, respec-
tively. We conclude in Sec. VI.

II. HMM ALGORITHM

In Sec. II Awe review the HMM formalism used to track
the wandering GW emission frequency from one time step
to the next, according to a user-selected set of transition
probabilities. For each time step we calculate the likelihood
of a signal being present given the data, via a maximum
likelihood matched filter called the J -statistic, which is
reviewed in Sec. II B.

A. Hidden state structure and automaton

A HMM is a probabilistic finite state automaton charac-
terized by a hidden state variable qðtÞ, which takes the
discrete values fq1;…; qNQ

g, and an observable state var-
iable oðtÞ, which takes the discrete values fo1;…; oNO

g. The
automaton jumps between states at discrete time epochs
ft1;…; tNT

g. The probability of being in hidden stateqðtnþ1Þ
at time tnþ1 depends only upon the state at the previous time
step tn. This is known as a Markov process.
To complete the model, two matrices are defined. First,

the transition probability matrix Aqðtnþ1ÞqðtnÞ, which relates
the probability of a state qðtnÞ to jump to qðtnþ1Þ, takes the
form

Aqðtnþ1ÞqðtnÞ ¼
1

3
½δ½qðtnþ1Þ�½qðtnÞ−Δq�

þ δ½qðtnþ1Þ�½qðtnÞ� þ δ½qðtnþ1Þ�½qðtnÞþΔq��; ð1Þ

where δij is the Kronecker delta, with i and j given by the
terms in square brackets, respectively. Equation (1) defines
the signal model as a piecewise constant function that
jumps by −1, 0, or 1 frequency bin Δq at each discrete
transition time. See Sec. III A for the details on the search
frequency bin size. The other matrix is the emission
probability matrix LoðtnÞqðtnÞ that relates the likelihood of
observing oðtnÞ if the hidden state variable is qðtnÞ.
LoðtnÞqðtnÞ is constructed from the matched-filter J -statistic,
which we review in Sec. II B. In our GWapplication, f⋆ðtÞ
maps onto qðtÞ, noting that f⋆ðtÞ is hidden because it
cannot be measured electromagnetically for Sco X-1.

The data, specifically the Fourier transform of the time
series output by the detector, map onto oðtÞ. The total
observation time Tobs is divided into NT segments of
duration Tdrift rounded down to the nearest integer, i.e.
NT ¼ bTobs=Tdriftc. Tdrift is chosen to prevent f⋆ðtÞ from
wandering by more than one frequency bin per time step.
The rate of spin wandering is unknown a priori in Sco X-1,
as f⋆ðtÞ cannot be measured electromagnetically. The
observed x-ray flux variability can be used to estimate
the stochastic variation in f⋆ðtÞ [38,47], and from this we
make an informed choice of Tdrift, as in previous searches.
The probability that the hidden state follows some path

Q ¼ fqðt1Þ;…; qtNT
g given some observed data O ¼

foðt0Þ;…; oðtNT
Þg is then given by the product of the

transition and emission probabilities for each step, viz.

PðQjOÞ ¼ LoðtNT
ÞqðtNT

ÞAqðtNT
ÞqðtNT−1Þ…

× Loðt1Þqðt1ÞAqðt1Þqðt0ÞΠqðt0Þ; ð2Þ

where we define the prior probability of being in some
initial state qðt0Þ at time t0 as Πðt0Þ. In this paper we assign
equal probability to all initial states, with Πqðt0Þ ¼ 1=NQ.
We seek the path Q� that maximizes PðQjOÞ in Eq. (2).

But it is computationally inefficient to consider all the
NNTþ1

Q possible paths. A robust and computationally
efficient way to find Q� is the Viterbi algorithm [48].
This recursive algorithm exploits the principle of optimality
to find Q� given O. A comprehensive description of the
algorithm can be found in Appendix A of Ref. [29].
In this paper we use as detection statistic the log-

likelihood of the most likely path L ¼ lnPðQ�jOÞ.

B. J -statistic

The emission probability LoðtnÞqðtnÞ relates the observed
data oðtnÞ, collected in the interval tn ≤ t ≤ tn þ Tdrift to
the hidden states qðtnÞ. In this paper, we express LoðtnÞqðtnÞ
in terms of the J -statistic [21,45]. The J -statistic is a
maximum likelihood, frequency domain, matched-filter
which tracks the orbital phase of the neutron star in its
binary system. It is an extension of the traditional
F -statistic [49], which is a matched filter for a biaxial
rotor [50]. The Doppler shift due to the binary motion
disperses the F -statistic power into orbital sidebands of the
GW carrier frequency. Although the F -statistic can be used
to produce matched filters to account for the Doppler shift
due to the binary motion, the J -statistic is used for
computational efficiency. Section III in Ref. [45] presents
the detailed derivation of the J -statistic.
In general, to account for the dispersed power, the

J -statistic is constructed from matched filters of the
suggestive form

GðfÞ ¼ F ðfÞ ⊗ BðfÞ; ð3Þ
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with

BðfÞ ¼
Xm
s¼−m

Jsð2πf0a0Þ expð−{sϕaÞδ
�
f −

s
P

�
; ð4Þ

where ⊗ denotes convolution, JsðxÞ is the Bessel function
of the first kind of order s, m ¼ ceilð2πf0a0Þ, and f0 is the
central frequency of the subband (see Sec. III A for details).
Equation (4) assumes the GW signal is produced by a
biaxial rotor in a circular Keplerian orbit and requires three
binary orbital parameters: the projected semimajor axis a0,
the orbital phase at a reference time ϕa, and P is the binary
orbital period.

III. SEARCH IMPLEMENTATION

In this section we discuss the practical details of the
search. Sections III A and III B define the parameter
domain and grid, respectively. Section III C sets out the
workflow. Section III D justifies the selection of the false
alarm probability in terms of the number of search
templates. Section III E specifies the primary and secon-
dary data products ingested by the search.

A. Sco X-1 parameters

The J -statistic depends on the location of the source,
described by the right ascension α and declination δ. It also
depends on the three binary orbital elements: P, a0, and ϕa.
The time of passage through the ascending node Tasc is
linked to ϕa via ϕa ¼ 2πTasc=Pðmod 2πÞ. Henceforth we
use Tasc instead of ϕa. Some of these parameters have been
measured electromagnetically for Sco X-1. Their values
and uncertainties are summarized in Table I.
The last electromagnetic measurements [51] for the time

of ascension Tasc;ref ¼ 974 416 624 Global Positioning
System (GPS) time are dated November 22 04:00:15
Greenwich Mean Time 2010, here denoted T0. We forward

propagate Tasc;ref to the start of O3, TO3;0 ¼ 1238166483

GPS time, viz.

Tasc;0 ¼ Tasc;ref þ NorbP0; ð5Þ

where P0 ¼ 68023.86048 s is the central value of the
orbital period in Table I, and Norb ¼ ⌈ TO3;0−T0

P0
⌉ is the

number of full orbits between the reference time T0 and
TO3;0. The original uncertainties for Tasc;ref and P are also
propagated using Eq. (5). This is illustrated in Fig. 1. The
propagation maps the original uncertainty ellipses of
Tasc;ref − P (upper panel in Fig. 1) to the present uncertainty
ellipses Tasc − P (lower panel in Fig. 1). Propagating the
original uncertainties via Eq. (5) creates correlations
between the uncertainties of Tasc and P.
The propagated priors on Tasc and P change throughout

the search duration as their correlation grows with time.
The lower panel of Fig. 1 shows the change from the start of
O3 marked as solid color lines, to its end, TO3end ¼
1269361423 GPS time, shown as dotted lines. The search
has been designed to cover the whole 3σ region of the
propagated Tasc − P space, from start to end of O3.
For a0, we cover the range 1.45 ≤ a0=ð1sÞ ≤ 3.25,

following the electromagnetic measurements presented in
[51]. We can write this range equivalently as ā0 � 3σa0 ,
with ā0 ¼ 2.35 and σa0 ¼ 0.3 s.
The coherence time is set toTdrift ¼ 10 d.The latter choice

is justified astrophysically: it is the characteristic timescale of
the random walk in f⋆ inferred from accretion-driven
fluctuations in the x-ray flux of Sco X-1 [19,38,47]. It also
matches the value used in previous published searches for
Sco X-1, enabling direct comparison with historical results
[19,21,28,29]. The resolution in frequency space Δfdrift, i.e.
the size of the frequency bins, is set by the coherence time
as Δfdrift ¼ 1=ð2TdriftÞ ¼ 5.787037 × 10−7 Hz.

TABLE I. Search parameters and their range. The column headed “EM data” records the availability of
electromagnetic measurements in the references in the last column. All parameter ranges include the central value
together with �1σ uncertainties; values without uncertainties are treated as constants. In the text generally the
central values are denoted with the subscript 0, e.g. P0. The time of ascension Tasc stands for the value in [51]
propagated up to the start of O3, as described in Sec. III A. As written here Tasc and P, plus their uncertainties, define
a rectangular parameter domain. We only search over the grid points that have support from the propagated priors,
defined by all the ellipses in the lower panel of Fig. 1; see Sec. III B for details.

Parameter Symbol Search range EM data Reference

Right ascension α 16 h 19 m 55.0850 s Y [52]
Declination δ −15°38024:900 Y [52]
Orbital inclination angle ι 44� 6° Y [33]
Projected semimajor axis a0 2.35� 0.3 s Y [51]
Orbital period P 68 023.86048� 0.0432 s Y [51]
GPS time of ascension Tasc 1 238 149 477.03488� 200 s Y [51]
Frequency f 60–500 Hz N � � �
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The range of frequencies to be searched, 60–500 Hz,
covers the region where LIGO is most sensitive. This
frequency range is divided into subbands. This eases the
manipulation of the data and allows one to approximate f0 in
Eq. (4) by the midpoint frequency f̄ in each subband,
accelerating the process of creating each matched filter via
Eq. (4) [45]. The subbands are designed to contain a number
of frequency bins Nf that is a power of 2, in order to
accelerate the fast Fourier transform involved in calculating
the convolution in Eq. (4). For this search we use
Nf ¼ 220, setting the subbandwidth toΔfsub ¼ NfΔfdrift ¼
0.6068148 Hz. As such the total number of subbands to
consider in our search is Nsub ¼ ⌈ð500–60Þ Hz=Δfsub⌉ ¼
725. As the J -statistic is less sensitive farther away from f̄,
we create subbandswith an overlap ofΔfsub=4. This way the
area with less sensitivity in a subband is covered with greater
sensitivity in the neighboring subband. All of the parameters
discussed in this section are summarized in Table I.

B. Number and placing of orbital templates

In this subsection we describe the procedure to calculate
and place the orbital templates needed to cover the search
parameter domain per subband.
As explained in Sec. III A, the forward propagation of

the reference Tasc;ref increases its uncertainty as a function

of Norb. To be conservative, we choose to propagate the
uncertainties on Tasc;ref to the end of O3 with

σTasc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2Tasc;ref

þ ðNorb;endσPÞ2
q

; ð6Þ

where one has Norb;end ¼ ⌈ TO3end−T0

P0
⌉, and σTasc;ref

¼ 50 and
σP ¼ 0.0432 s are the uncertainties for Tasc;ref and P,
respectively, the result σTasc

¼ 200 s is included in
Table I. Although the uncertainties are propagated to the
end of O3, the central value for the time of ascension is only
propagated to the start of O3, Tasc0 ¼1238149477.03488 s,
as shown in Sec. III A.
We cover the parameter space by using a rectangular grid

defined by the limits ðā0 � 3σa0 ; Tasc � 3σTasc0
; P0 � 3σPÞ.

We set the spacing of the grid points by selecting an
acceptable maximum mismatch μmax, following [53]. This
mismatch represents the fractional loss in signal-to-noise
ratio between the search with the true parameters and the
nearest grid point. For the search we use μmax ¼ 0.1. The
number of grid points needed to cover the ða0; Tasc; PÞ
space, for a given μmax, are calculated using Eq. (71) of
Ref. [53], namely

Na0 ¼ ⌈3
ffiffiffi
2

p
μ−1=2max fσa0⌉; ð7Þ

NTasc
¼ ⌈6π2

ffiffiffi
2

p
μ−1=2max fa0P−1σTasc

⌉; ð8Þ

NP ¼ ⌈π2
ffiffiffi
6

p
μ−1=2max fa0TdriftNTP−2σP⌉: ð9Þ

For O3 the number of contiguous semicoherent segments
is NT ¼ 36. To be conservative when applying Eqs. (7)–
(9), we use the highest frequency in each subband for f, the
highest a0 ¼ ā0 þ 3σa0 , and the lowest P ¼ P0 − 3σP.
Table II lists the number of grid points in selected
subbands. For Tasc and P we search only the points defined
by Eqs. (7)–(9) that lie within the start (color lines) and end
(dotted lines) ellipses in the bottom panel of Fig. 1.

C. Workflow

The workflow for the search is illustrated in Fig. 2, as a
flowchart.

FIG. 1. Uncertainty ellipses corresponding to 1σ (blue line), 2σ
(yellow line), and 3σ (green line), for Tasc and P. Top: the curves
at the reference time T0, when Tasc;ref is uncorrelated with P0 or
its uncertainties. Bottom: the effect of propagating Tasc;ref and
P0, with their respective uncertainties, to the start of O3
(TO3;0 ¼ 1238166483 GPS time) (solid lines) or the end of O3
(TO3end ¼ 1269361423 GPS time) (black dots). Tasc;0 represents
the central value of Tasc;ref propagated to the start or end of O3;
that is, Tasc;0 is different for the solid and dotted lines. In both
panels we have P0 ¼ 68023.86048 s.

TABLE II. Selected subbands and corresponding Na0 ; NTasc
; NP

values, using μmax ¼ 0.1. The table serves to illustrate how the
number of orbital templates varies across the full frequency band.

Subband (Hz) Na0 NTasc
NP

60 767 149 5
160 2031 394 12
260 3296 640 19
360 4560 885 27
460 6331 1228 37
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At the outset, the time series from the detector is
converted into short Fourier transforms (SFTs) lasting
TSFT ¼ 1800 s. The corresponding data, for each fre-
quency subband, are divided into NT blocks of duration
Tdrift ¼ 10d. All of the SFTs in a single block are used to
calculate an F -statistic atom [54] with the fixed parameters

α and δ in Table I. The process is repeated for all the blocks,
generating NT atoms. The F -statistic atoms do not depend
on the orbital parameters so they are stored in a look-up
table. The steps in this paragraph conclude in the blue
parallelogram denoted “NTF -statistic atoms” in Fig. 2.
In every subband, eachF -statistic atom is fed into the J -

statistic in Eq. (4) for a triad of orbital parameters
ða0; Tasc; PÞ. The Viterbi algorithm (see [48] or Sec. II B
of Ref. [45]) finds the optimal frequency path connecting
the J -statistic blocks and its associated log-likelihood. In
Fig. 2, the latter steps extend from the orange rectangle
“Calculate the J -statistic” up to the blue parallelogram
marked “log-likelihood and optimal path for ða0; Tasc; PÞi."
For a subband centered on the frequency f̄, the

search scans over all binary templates ða0; Tasc; PÞi with
1 ≤ i ≤ Na0ðf̄ÞNTasc

ðf̄ÞNPðf̄Þ, calculated using Eqs. (7)–
(9). This step is illustrated as the green oval denoted “Used
all templates?” in Fig. 2. For each ða0; Tasc; PÞi an optimal
path and its associated log-likelihood are recorded.
Following the loop over all binary templates, the optimal

path with highest log-likelihood, denoted maxðLÞ, is
selected in the blue parallelogram marked “maxðLÞ and
assoc. optimal path” in Fig. 2. If maxðLÞ is higher than the
detection threshold (see Sec. III D), then the subband is
recorded as a candidate and passed through a hierarchy of
vetoes (see Sec. IV B), via the “yes” output of the upper
green oval.
Subbands with maxðLÞ below the detection threshold are

used to calculate GW strain upper limits via the “no” output
of the upper green oval. Vetoed subbands are not used to
calculate GW upper limits.

D. False alarm probability and detection threshold

A subband is registered as a candidate, when maxðLÞ
exceeds a threshold Lth, corresponding to a user-selected
false alarm probability. As the distribution of maxðLÞ in
pure noise is unknown, we rely onMonte Carlo simulations
to determine Lth in each subband of the search. To estimate
the distribution of maxðLÞ in pure noise, we generate
synthetic Gaussian data using the lalapp_Makefakedata_v5
program in the LIGO Scientific Collaboration Algorithm
Library [55]. The synthetic data are generated for a subband
centered on the frequency f̄, with α and δ copied from
Table I. Then the search workflow described in Sec. III C is
applied. To avoid needless computation, we limit the grid to
Na0 ¼ 322; NTasc

¼ 35, and NP ¼ 5 in every subband,
independent of f̄.
In general, Lth depends on the number of generated log-

likelihoods per subband, i.e. Ntot ¼ NfNa0NTasc
NP. We

describe the false alarm probability αNtot
of a subband with

Ntot log-likelihoods in terms of the probability of a false
alarm in a single terminating frequency bin per orbital
template α as

FIG. 2. Flowchart of the search pipeline for a subband. The
light red octagons are the start and end points, the orange
rectangles are processes, the blue parallelograms are input or
output data, and the green ovals stand for decision points. The full
search repeats the steps in the flowchart for 725 subbands from 60
to 500 Hz.
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αNtot
¼ 1 − ð1 − αÞNtot : ð10Þ

The probability density function of the log-likelihood per
subband pðLÞ for the most likely path given an orbital
template is observed to follow an exponential tail, pðLÞ ¼
A exp½−λðL − LtailÞ� in noise. The cutoff Ltail and the λ-
parameter are obtained empirically. From our synthetic
Gaussian trials we obtain λ ¼ 0.23 across all subbands. The
normalization A ¼ Ntail=Ntot, where Ntail is the number of
log-likelihoods above Ltail, is calculated from the Ntot
samples used to generate pðLÞ. The probability α in
Eq. (10) is given by

α ¼
Z

∞

Lth

pðLÞdL: ð11Þ

Combining pðLÞ, Eq. (10), and Eq. (11) yields for Lth

Lth ¼ Ltail −
1

λ
log

�
αNtot

Ntail

�
; ð12Þ

provided Eq. (10) is Taylor expanded to first order, given
Ntot ≫ 1. Note that Lth is an implicit function of the
subband frequency through Ntail.
Historically HMM Sco X-1 searches [21,29] use

αNtot
¼ 0.01, a choice we adopt here to avoid excessive

follow-up of candidates and ease the comparison with
previous HMM Sco X-1 searches. A false alarm probability
of 1% per subband applied to a total of 725 subbands

implies we should expect ∼7 false alarms from the search.
Searches with electromagnetically constrained f⋆ such as
Refs. [22,24] allow for αNtot

¼ 0.3, given the reduced
search space. Appendix A in Ref. [24] presents the detailed
procedure to set thresholds using Monte Carlo simulations.

E. O3 data

The search uses all the O3 dataset, starting April 1, 2019,
15:00 UTC and finishing March 27, 2020, 17:00 UTC. The
dataset is divided in two. The first part (O3a) spans April 1,
2019 to October 1, 2019 followed by a month-long
commissioning break. The second part (O3b) was intended
to span November 1, 2019 to April 30, 2020 but was
suspended in March 2020 due to the COVID-19 corona-
virus pandemic. SFTs are generated from the “C01 cali-
brated self-gated” dataset, specifically designed to remove
loud glitches from the strain data, following the procedure
in Ref. [56].
Due to the month-long commissioning break between

O3a and O3b, two out of NT segments have no SFTs. The
two segments are dated October 8, 2019, 15:00 UTC and
October 15, 2019, 15:00 UTC, respectively. We replace
them by segments with uniform log-likelihood across all
frequency bins, to allow the HMM to connect data from
O3a with data from O3b while accommodating spin
wandering. Every time atoms are created, such as in
Secs. III D, IV B 2, and IV B, the relevant missing atoms
are replaced with uniform log-likelihood atoms.

FIG. 3. Candidates plotted as a function of their terminating frequency bin q�ðtNT
Þ (horizontal axis, units in hertz) and the orbital

parameters a0 (vertical axis in left panel, units in seconds), offset from the central time of ascension Tasc − Tasc0 (vertical axis in central
panel; units in seconds) and offset from the central period P − P0 (vertical axis in right panel; units in seconds). The color scale indicates
the maxðLÞ obtained for the candidate. Candidates marked with purple squares are eliminated by the single IFO veto, while red circles
mark the ones eliminated by the known lines veto. The candidate with no marking survives both the single IFO and known lines vetoes,
but is eliminated by its absence when using noise-subtracted data (see Sec. IVA).
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IV. O3 ANALYSIS

A. Candidates

The results of the search are plotted in Fig. 3. On the
horizontal axis we show the terminating frequency bin of
the optimal path, i.e. q�ðtNT

Þ per subband, that satisfies
maxðLÞ > Lth, defining preliminary signal candidates. On
the vertical axes we graph the orbital parameters a0 (left
panel), Tasc (middle panel), and P (right panel).
Figure 3 contains 35 candidates with maxðLÞ > Lth. To

eliminate false alarms we use the hierarchy of vetoes
employed in Ref. [21]. The vetoes discard candidates that
(i) lie near an instrumental noise line (known line veto) or
(ii) appear in one interferometer (IFO) but not the other
(single IFO veto). In previous searches, other vetoes, e.g.
candidates that appear in half of the observation time
(Tobs=2 veto), have been used in addition to (i) and
(ii) [21,22,24,29,42]. Additional vetoes are unnecessary
in this paper; all but one of the candidates are vetoed
by (i) and (ii), and the survivor is eliminated by other
means, as discussed below. The outcomes of the vetoes in
the 35 subbands containing outliers are recorded in
Table III.
The sole candidate that passes vetoes (i) and (ii),

contained in the subband starting at 60.05 Hz, is suspi-
ciously close to the known 60 Hz noise line due to the
United States of America power grid [57]. Additionally,
several other candidates appear near harmonics of
60.05 Hz, for instance 119.52 and 179.60 Hz. When we
search the subband using the C01 calibrated self-gated
60 Hz subtracted dataset, which uses the algorithm
described in Ref. [58] to subtract the 60 Hz noise line,
the candidate disappears.

B. Vetoes

1. Known lines

Narrow band noise features in the IFO are caused
by a plethora of reasons, such as the suspension system
or the electricity grid [59,60]. As noise lines artificially
increase the output of the F -statistic, subbands that con-
tain them tend to be flagged as candidates. In response, we
veto any candidate whose optimal frequency path fðtiÞ
satisfies

jfðtiÞ − flinej <
2πa0fline

P
; ð13Þ

for any epoch ti in the search. Here fline is the frequency of
the noise line. We refer to the vetted known lines list in
Ref. [61]. This test vetoes 30 out of the 35 candidates. We
note that the number of remaining candidates, after
eliminating those caused by noise lines, is consistent with
our original number of expected candidates.

2. Single IFO

A plausible astrophysical signal that has escaped
detection in prior searches would likely be weak enough
to need data from both IFOs to be detectable, or strong
enough to be seen in both, given their comparable sensi-
tivities in most frequency bands. In contrast, instrumental
artifacts are unlikely to appear simultaneously in both
IFOs. Let maxðLÞa and maxðLÞb > maxðLÞa denote the

TABLE III. Candidates for the O3 search. The first column
corresponds to the minimum frequency in the subband that
contains the candidate. The second column is the log-likelihood
of the candidate. The other columns record the outcome of the
two vetoes used in Secs. IV B 1 and IV B 2. A candidate that
passes or fails a veto is marked with a✓ orX, respectively. H and
L are the Hanford-only and Livingston-only maxðLÞ values. The
remaining candidate, contained in the 60.05 Hz subband, is
eliminated when using the C01 calibrated self-gated 60 Hz
subtracted dataset.

Subband
(Hz) maxðLÞ=103

Known
lines veto Single IFO veto

60.05 0.45 ✓ ✓; H:398.58, L:427.97
60.66 0.40 X � � �
63.09 1.73 X � � �
63.70 1.39 X � � �
64.30 0.39 ✓ X
67.94 0.37 ✓ X
69.76 0.60 X � � �
74.62 4.33 X � � �
76.44 0.35 X � � �
78.87 0.35 X � � �
79.47 0.46 X � � �
82.51 0.53 ✓ X
84.93 0.41 X � � �
95.25 0.56 X � � �
99.50 1.35 X � � �
119.52 0.64 X � � �
149.26 0.47 X � � �
178.99 0.43 X � � �
179.60 0.59 X � � �
298.53 1.18 X � � �
299.14 2.81 X � � �
299.75 0.38 X � � �
301.57 3.75 X � � �
302.78 4.26 X � � �
305.21 2.34 X � � �
305.81 4.79 X � � �
306.42 0.59 X � � �
307.03 5.21 X � � �
314.31 3.00 X � � �
314.92 1.50 X � � �
331.30 6.40 ✓ X
332.51 0.45 X � � �
409.58 332.67 X � � �
433.85 155.83 X � � �
434.46 412.41 X � � �
Total: 35
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log-likelihoods in each IFO, and let maxðLÞ∪ denote the
log-likelihood of the original candidate. There are four
possible outcomes:
(1) If one finds maxðLÞa<Lth and maxðLÞb>maxðLÞ∪,

and the optimal path fbðtiÞ, associated with
maxðLÞb, satisfies

jf∪ðtiÞ − fbðtiÞj <
2πa0f∪

P
ð14Þ

for any epoch ti in the search, where f∪ðtiÞ is the
optimal path associated with maxðLÞ∪ then the
candidate is consistent with an instrumental artifact
in detector b. It is vetoed.

(2) If one finds maxðLÞa < Lth and maxðLÞb >
maxðLÞ∪ but the candidate does not satisfy
Eq. (14), then it is saved for further postprocessing.
Such a candidate could be a faint astrophysical
signal which needs both IFOs to be detected.

(3) If one finds maxðLÞa > Lth and maxðLÞb > Lth,
then the candidate could be a strong astrophysical
signal. It could also imply a common noise source in
both detectors. The candidate is flagged for post-
processing.

(4) If one finds maxðLÞa<Lth and maxðLÞb<maxðLÞ∪,
the candidate could be a weak astrophysical signal
that needs both detectors to appear above threshold.
This candidate is also saved for postprocessing.

This test vetoes four out of the remaining five candidates,
with the last candidate eliminated by its nonappearance in
noise-subtracted data, as discussed in Sec. IVA.

V. FREQUENTIST UPPER LIMITS

A. Procedure

Subbands without candidates are used to place upper
limits on the gravitational wave strain detectable at a
95% confidence level h95%0 . We use the approach in the
historical HMM Sco X-1 searches [21,29] to set frequentist
upper limits. This is done to facilitate comparison with
previous upper limits.
To capture the variation of the wave strain as a function

of the inclination angle ι, we define the effective strain [47]

heff0 ¼ h02−1=2f½ð1þ cos2 ιÞ=2�2 þ cos2 ιg1=2: ð15Þ

We note that Eq. (15) allows us to rescale h95%0 for the
circularly polarized case, j cos ιj ¼ 1, to any other incli-
nation angle ι. For example, if we assume the electromag-
netically measured inclination of Sco X-1 orbit as ι ¼ 44°
then Eq. (15) yields heff;95%0 ¼ 1.35h95%0 .
To set frequentist upper limits in a subband with central

frequency f̄, we start by generating 100 copies of theO3data
for this subband. A Sco X-1-like signal, i.e. using the
astrophysical parameters in Table I, is injected into each
copy of the subband. The parameters fψ ; a0; Tasc; Pginj used

to create the injected signal are drawn from uniform
distributions within the range given by their respective 3σ
error bars. We make sure the injected Tasc;inj and Pinj values
lie inside the propagated priors shown in Fig. 1, second
panel. The injected frequency finj is uniformly selected from
the interval f̄ � δf with δf ¼ 0.05 Hz. The interval f̄ � δf
is chosen for simplicity. The initial value ofh0 is chosen such
that there is at least one frequency path with maxðLÞ > Lth.
We progressively reduce h0, holding fψ ; a0; Tasc; Pginj
constant, until the signal is no longer detectable. We record
the last detectable amplitude as h0 min i. The procedure is
repeated for all copies of the subband, choosing a new set of
injection parameters fψ ; a0; Tasc; Pginj per copy. Finally
fh0 min 1;…; h0 min 100g are sorted in ascending order and the
95th becomes h95%0 . The injections have j cos ιj ¼ 1, so we
use Eq. (15) to convert h95%0 to other polarizations.

B. Upper limits

The limits on h95%0 are plotted in Fig. 4. We present three
cases, as in Ref. [21]: circular polarization ι ¼ 0 (blue dots
in Fig. 4), ι ¼ 44° (following the electromagnetic mea-
surements in Ref. [51]; denoted by green dots in Fig. 4),
and unknown polarization (orange dots in Fig. 4). In the
latter context, unknown polarization means we marginalize
over all possible polarizations assuming a uniform distri-
bution in cos ι from −1 to 1.
The upper limits from the O3 search are on average ∼3

times lower than those from the O2 HMM search [21]. For
the subband starting at 256.06 Hz we obtain the lowest h95%0 ,
given by 4.56 × 10−26, 6.16 × 10−26, and 9.41 × 10−26 for
circular, electromagnetically restricted (ι ¼ 44°), and
unknown polarizations, respectively. Compared to the most
sensitive subbands in previous HMM Sco X-1 searches, the
lowest h95%0 is a factor of∼13 lower than in O1 data [29] and
∼3 lower than in O2 data [21].
It is tempting to compare the results presented in this

section with the results of searches with other pipelines,
such as CrossCorr O1 [28] and O2 [23]. Such comparisons
can be broadly indicative, if done informally. However, the
h95%0 values output by different pipelines cannot be com-
pared directly, when the pipelines assume different phase
models, as foreshadowed in Sec. I. The phase evolution
assumed by CrossCorr is given by Eq. (4.15) in Ref. [20],
viz. ΦK ¼ Φ0 þ 2πf0ftK − dK − a0 sin½2πðtK − tascÞ=P�g,
where K indexes jointly the detector and the selected time
interval, with tK the midpoint of the latter, and dK is the
projected distance from the solar system barycenter to the
detector. In previously published CrossCorr implementa-
tions [20,23,28,32], it is assumed that f0 stays constant
throughout the total observation time Tobs. Section VA of
Ref. [20] explores how the foregoing phase evolution can
be generalized in future CrossCorr implementations. On the
other hand, the HMM executes an unbiased random walk in
fðtÞ, which is piecewise constant in the coherent blocks
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tn ≤ t ≤ tn þ Tdrift, as presented in Sec. II A. The different
phase evolution for CrossCorr and the HMM translates into
upper limits that are specific to the two different sets of
phase paths.

C. Torque-balance upper limit

Torque balance assumes the spin-down torque due to
gravitational wave emission balances the accretion spin-up
torque. From this assumption theoretical upper limits on
gravitational wave strain can be estimated from x-ray
observations. Following Eq. (4) in Ref. [23], the amplitude
of the GW signal produced in torque equilibrium heq0 is

heq0 ¼ 3.4×10−26
�

R
10 km

�
1=2

�
1.4M⊙

M

�
1=4

�
rm

10 km

�
1=4

×

�
FX

3.9×10−7 ergcm−2 s−1

�
1=2

�
600Hz
fGW

�
1=2

: ð16Þ

In Eq. (16), FX is the x-ray flux,M is the fiducial neutron
star mass, rm is the lever arm, R is the neutron star radius,
and fGW is the GW frequency. Equation (16) assumes the
maximum accretion luminosity is completely radiated as x
rays, i.e. X ¼ 1 in Eq. (4) of Ref. [23]. To calculate
Eq. (16), we use rm ¼ R ¼ 10 km, plotted as a solid red
line in Fig. 4, or rm ¼ RA, where RA is the Alfvén radius,

which corresponds approximately to the inner edge of the
accretion disk [29,36]. This is given by

RA ¼ 35

�
B⋆

109G

�
1=4

�
R

10 km

�
12=7

×

�
1.4 M⊙

M

�
1=7

�
10−8 M⊙ yr−1

_M

�
2=7

km; ð17Þ

where B⋆ is the polar magnetic field strength at the stellar
surface, G is Newton’s gravitational constant, and _M is the
accretion rate set to the Eddington limit 2 × 10−8 M⊙ yr−1,
for a fiducial neutron star with mass M ¼ 1.4 M⊙ and
radius R ¼ 10 km [62,63]. This limit is plotted in Fig. 4 as
the dashed red line.
The electromagnetic inclination ι ¼ 44° produces upper

limits that dip under the theoretical torque-balance limits
(red lines in Fig. 4) for the first time in the HMM Sco X-1
search history. The CrossCorr search pipeline achieved this
milestone in the O2 search; see Fig. 1 in Ref. [23]. Again,
the reader is reminded that different pipelines assume
different signal models, and upper limits conditional on
different signal models cannot be compared directly.

FIG. 4. Frequentist effective wave strain upper limits at 95% confidence as a function of subband frequency, for three scenarios:
circular polarization with ι ¼ 0 (blue stars), ι ≈ 44° based on the electromagnetic measurements (see Ref. [51]; orange dots), and a flat
prior on cos ι (green dots). Indirect torque-balance upper limits (see Sec. V C) for two torque lever arms are also shown: the stellar radius
(red solid line) and the Alfvén radius (dashed red line).
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VI. CONCLUSIONS

In this paper we search the LIGO O3 data for continuous
GWs from the LMXB Sco X-1, using a hidden Markov
model, combined with the maximum-likelihood J -statistic
and a binary template grid that includes the projected
semimajor axis a0, time of ascension Tasc, and orbital
period P. The binary orbital elements are constrained via
electromagnetic observations, but the spin frequency is
unknown. Monte Carlo simulations are used to establish a
detection threshold Lth, with a false alarm probability
αNtot

¼ 0.01, per subband. The search is conducted in
the range 60–500 Hz, partitioned into subbands of width
Δfsub ¼ 0.606 Hz. The subbands with an optimal path
satisfying maxðLÞ > Lth are passed through a hierarchy of
vetoes. One candidate survives the vetoes, but this candi-
date is eliminated when using the C01 calibrated self-gated
60 Hz subtracted dataset.
The most sensitive subband, starting at 256.06 Hz, yields

h95%0 ¼ 4.56 × 10−26; 6.16 × 10−26, and 9.41 × 10−26 for
circular, electromagnetically restricted (ι ¼ 44°), and
unknown polarizations, respectively.
The above results improve on the two previous HMM

Sco X-1 searches [21,29] by using data from O3 and
including the orbital period P in the searched template grid.
For comparison, the most sensitive subband in the O2
HMM search, 194.6 Hz, obtained h95%0 ¼ 1.42 × 10−25 for
ι ¼ 0 [21], while for the same subband and polarization the
present search obtains h95%0 ¼ 5.40 × 10−26. On average
our upper limits are a factor of ∼3 below the O2 HMM
results. The present search sets the lowest upper limits for
the HMM searches, beating for first time the torque-balance
limit for the electromagnetically restricted ι ¼ 44° case.
Other LMXBs are not as bright in x rays as Sco X-1, but

they are important targets too. Some LMXBs emit x-ray
pulsations, so that f⋆ is measured to high precision
electromagnetically, an important advantage. However,
the gravitational wave frequency emitted by such objects
may be displaced from f⋆ and wander randomly with
respect to it. A HMM-based search is well placed to track
such wandering. Searches for LMXBs with electromag-
netically constrained rotation frequencies have been per-
formed in O2 [22] and O3 [24] data. Reference [24]
reported strain upper limits in the range 5.1 × 10−26 ≤
h95%0 ≤ 1.1 × 10−25 for its 20 candidates. Such searches
offer considerable promise in future observing runs.
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Y. Fujimoto,177 P. Fulda,76 M. Fyffe,56 H. A. Gabbard,24 B. U. Gadre,111 J. R. Gair,111 J. Gais,130 S. Galaudage,5 R. Gamba,13

D. Ganapathy,74 A. Ganguly,11 D. Gao,178 S. G. Gaonkar,11 B. Garaventa,92,118 C. García Núñez,100 C. García-Quirós,144

F. Garufi,25,4 B. Gateley,72 V. Gayathri,76 G.-G. Ge,178 G. Gemme,92 A. Gennai,18 J. George,94 O. Gerberding,127

L. Gergely,179 P. Gewecke,127 S. Ghonge,48 Abhirup Ghosh,111 Archisman Ghosh,85 Shaon Ghosh,167 Shrobana Ghosh,17

Tathagata Ghosh,11 B. Giacomazzo,69,70,71 L. Giacoppo,104,57 J. A. Giaime,7,56 K. D. Giardina,56 D. R. Gibson,100 C. Gier,33

M. Giesler,180 P. Giri,18,78 F. Gissi,87 S. Gkaitatzis,18,78 J. Glanzer,7 A. E. Gleckl,44 P. Godwin,149 E. Goetz,181 R. Goetz,76

N. Gohlke,9,10 J. Golomb,1 B. Goncharov,32 G. González,7 M. Gosselin,47 R. Gouaty,30 D.W. Gould,8 S. Goyal,19 B. Grace,8

A. Grado,182,4 V. Graham,24 M. Granata,157 V. Granata,102 A. Grant,24 S. Gras,74 P. Grassia,1 C. Gray,72 R. Gray,24

G. Greco,40 A. C. Green,76 R. Green,17 A. M. Gretarsson,36 E. M. Gretarsson,36 D. Griffith,1 W. L. Griffiths,17

H. L. Griggs,48 G. Grignani,79,40 A. Grimaldi,98,99 E. Grimes,36 S. J. Grimm,32,107 H. Grote,17 S. Grunewald,111 P. Gruning,46

A. S. Gruson,44 D. Guerra,126 G. M. Guidi,54,55 A. R. Guimaraes,7 G. Guixé,29 H. K. Gulati,84 A. M. Gunny,74 H.-K. Guo,160
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S. Khadka,77 F. Y. Khalili,97 S. Khan,17 T. Khanam,147 E. A. Khazanov,215 N. Khetan,32,107 M. Khursheed,94 N. Kijbunchoo,8

A. Kim,15 C. Kim,207 J. C. Kim,216 J. Kim,217 K. Kim,207 W. S. Kim,62 Y.-M. Kim,186 C. Kimball,15 N. Kimura,190

M. Kinley-Hanlon,24 R. Kirchhoff,9,10 J. S. Kissel,72 S. Klimenko,76 T. Klinger,12 A. M. Knee,181 T. D. Knowles,165

N. Knust,9,10 E. Knyazev,74 Y. Kobayashi,177 P. Koch,9,10 G. Koekoek,59,154 K. Kohri,218 K. Kokeyama,219 S. Koley,32

P. Kolitsidou,17 M. Kolstein,31 K. Komori,74 V. Kondrashov,1 A. K. H. Kong,195 A. Kontos,82 N. Koper,9,10 M. Korobko,127

M. Kovalam,93 N. Koyama,176 D. B. Kozak,1 C. Kozakai,52 V. Kringel,9,10 N. V. Krishnendu,9,10 A. Królak,220,221

G. Kuehn,9,10 F. Kuei,129 P. Kuijer,59 S. Kulkarni,183 A. Kumar,203 Prayush Kumar,19 Rahul Kumar,72 Rakesh Kumar,84

J. Kume,28 K. Kuns,74 Y. Kuromiya,201 S. Kuroyanagi,222,223 K. Kwak,186 G. Lacaille,24 P. Lagabbe,30 D. Laghi,112

E. Lalande,224 M. Lalleman,205 T. L. Lam,130 A. Lamberts,37,225 M. Landry,72 B. B. Lane,74 R. N. Lang,74 J. Lange,170

B. Lantz,77 I. La Rosa,30 A. Lartaux-Vollard,46 P. D. Lasky,5 M. Laxen,56 A. Lazzarini,1 C. Lazzaro,80,81 P. Leaci,104,57

S. Leavey,9,10 S. LeBohec,160 Y. K. Lecoeuche,181 E. Lee,188 H. M. Lee,226 H.W. Lee,216 K. Lee,227 R. Lee,137 I. N. Legred,1

J. Lehmann,9,10 A. Lemaître,228 M. Lenti,55,229 M. Leonardi,20 E. Leonova,38 N. Leroy,46 N. Letendre,30 C. Levesque,224

Y. Levin,5 J. N. Leviton,184 K. Leyde,45 A. K. Y. Li,1 B. Li,129 J. Li,15 K. L. Li,230 P. Li,231 T. G. F. Li,130 X. Li,136 C-Y. Lin,232

E. T. Lin,195 F-K. Lin,139 F-L. Lin,233 H. L. Lin,135 L. C.-C. Lin,230 F. Linde,212,59 S. D. Linker,125,90 J. N. Linley,24

T. B. Littenberg,234 G. C. Liu,133 J. Liu,93 K. Liu,129 X. Liu,6 F. Llamas,89 R. K. L. Lo,1 T. Lo,129 L. T. London,38,74

A. Longo,235 D. Lopez,162 M. Lopez Portilla,65 M. Lorenzini,123,124 V. Loriette,236 M. Lormand,56 G. Losurdo,18 T. P. Lott,48

J. D. Lough,9,10 C. O. Lousto,128 G. Lovelace,44 J. F. Lucaccioni,237 H. Lück,9,10 D. Lumaca,123,124 A. P. Lundgren,51

L.-W. Luo,139 J. E. Lynam,63 M. Ma’arif,135 R. Macas,51 J. B. Machtinger,15 M. MacInnis,74 D. M. Macleod,17

I. A. O. MacMillan,1 A. Macquet,37 I. Magaña Hernandez,6 C. Magazzù,18 R. M. Magee,1 R. Maggiore,14

M. Magnozzi,92,118 S. Mahesh,165 E. Majorana,104,57 I. Maksimovic,236 S. Maliakal,1 A. Malik,94 N. Man,37 V. Mandic,148

V. Mangano,104,57 G. L. Mansell,72,74 M. Manske,6 M. Mantovani,47 M. Mapelli,80,81 F. Marchesoni,41,40,238 D. Marín Pina,29

F. Marion,30 Z. Mark,136 S. Márka,50 Z. Márka,50 C. Markakis,12 A. S. Markosyan,77 A. Markowitz,1 E. Maros,1

A. Marquina,146 S. Marsat,45 F. Martelli,54,55 I. W. Martin,24 R. M. Martin,167 M. Martinez,31 V. A. Martinez,76 V. Martinez,26

K. Martinovic,60 D. V. Martynov,14 E. J. Marx,74 H. Masalehdan,127 K. Mason,74 E. Massera,156 A. Masserot,30

M. Masso-Reid,24 S. Mastrogiovanni,45 A. Matas,111 M. Mateu-Lucena,144 F. Matichard,1,74 M. Matiushechkina,9,10

N. Mavalvala,74 J. J. McCann,93 R. McCarthy,72 D. E. McClelland,8 P. K. McClincy,149 S. McCormick,56 L. McCuller,74

G. I. McGhee,24 S. C. McGuire,56 C. McIsaac,51 J. McIver,181 T. McRae,8 S. T. McWilliams,165 D. Meacher,6

M. Mehmet,9,10 A. K. Mehta,111 Q. Meijer,65 A. Melatos,120 D. A. Melchor,44 G. Mendell,72 A. Menendez-Vazquez,31

C. S. Menoni,168 R. A. Mercer,6 L. Mereni,157 K. Merfeld,66 E. L. Merilh,56 J. D. Merritt,66 M. Merzougui,37 S. Meshkov,1,a

C. Messenger,24 C. Messick,74 P. M. Meyers,120 F. Meylahn,9,10 A. Mhaske,11 A. Miani,98,99 H. Miao,14 I. Michaloliakos,76

C. Michel,157 Y. Michimura,27 H. Middleton,120 D. P. Mihaylov,111 L. Milano,25,b A. L. Miller,58 A. Miller,90 B. Miller,38,59

M. Millhouse,120 J. C. Mills,17 E. Milotti,239,35 Y. Minenkov,124 N. Mio,240 Ll. M. Mir,31 M. Miravet-Tenés,126 A. Mishkin,76

C. Mishra,241 T. Mishra,76 T. Mistry,156 S. Mitra,11 V. P. Mitrofanov,97 G. Mitselmakher,76 R. Mittleman,74 O. Miyakawa,190

K. Miyo,190 S. Miyoki,190 Geoffrey Mo,74 L. M. Modafferi,144 E. Moguel,237 K. Mogushi,95 S. R. P. Mohapatra,74

S. R. Mohite,6 I. Molina,44 M. Molina-Ruiz,191 M. Mondin,90 M. Montani,54,55 C. J. Moore,14 J. Moragues,144 D. Moraru,72

F. Morawski,86 A. More,11 C. Moreno,36 G. Moreno,72 Y. Mori,201 S. Morisaki,6 N. Morisue,177 Y. Moriwaki,189

SEARCH FOR GRAVITATIONAL WAVES FROM SCORPIUS X-1 … PHYS. REV. D 106, 062002 (2022)

062002-15



B. Mours,164 C. M. Mow-Lowry,59,96 S. Mozzon,51 F. Muciaccia,104,57 Arunava Mukherjee,242 D. Mukherjee,149

Soma Mukherjee,89 Subroto Mukherjee,84 Suvodip Mukherjee,163,38 N. Mukund,9,10 A. Mullavey,56 J. Munch,88

E. A. Muñiz,67 P. G. Murray,24 R. Musenich,92,118 S. Muusse,88 S. L. Nadji,9,10 K. Nagano,243 A. Nagar,23,244 K. Nakamura,20

H. Nakano,245 M. Nakano,188 Y. Nakayama,201 V. Napolano,47 I. Nardecchia,123,124 T. Narikawa,188 H. Narola,65

L. Naticchioni,57 B. Nayak,90 R. K. Nayak,246 B. F. Neil,93 J. Neilson,87,103 A. Nelson,185 T. J. N. Nelson,56 M. Nery,9,10

P. Neubauer,237 A. Neunzert,214 K. Y. Ng,74 S. W. S. Ng,88 C. Nguyen,45 P. Nguyen,66 T. Nguyen,74 L. Nguyen Quynh,247

J. Ni,148 W.-T. Ni,208,178,137 S. A. Nichols,7 T. Nishimoto,188 A. Nishizawa,28 S. Nissanke,38,59 E. Nitoglia,140 F. Nocera,47

M. Norman,17 C. North,17 S. Nozaki,189 G. Nurbek,89 L. K. Nuttall,51 Y. Obayashi,188 J. Oberling,72 B. D. O’Brien,76

J. O’Dell,196 E. Oelker,24 W. Ogaki,188 G. Oganesyan,32,107 J. J. Oh,62 K. Oh,197 S. H. Oh,62 M. Ohashi,190 T. Ohashi,177

M. Ohkawa,176 F. Ohme,9,10 H. Ohta,28 M. A. Okada,16 Y. Okutani,198 C. Olivetto,47 K. Oohara,188,248 R. Oram,56

B. O’Reilly,56 R. G. Ormiston,148 N. D. Ormsby,63 R. O’Shaughnessy,128 E. O’Shea,180 S. Oshino,190 S. Ossokine,111

C. Osthelder,1 S. Otabe,2 D. J. Ottaway,88 H. Overmier,56 A. E. Pace,149 G. Pagano,78,18 R. Pagano,7 M. A. Page,93

G. Pagliaroli,32,107 A. Pai,106 S. A. Pai,94 S. Pal,246 J. R. Palamos,66 O. Palashov,215 C. Palomba,57 H. Pan,129 K.-C. Pan,137,195

P. K. Panda,203 P. T. H. Pang,59,65 C. Pankow,15 F. Pannarale,104,57 B. C. Pant,94 F. H. Panther,93 F. Paoletti,18 A. Paoli,47

A. Paolone,57,249 G. Pappas,200 A. Parisi,133 H. Park,6 J. Park,250 W. Parker,56 D. Pascucci,59,85 A. Pasqualetti,47

R. Passaquieti,78,18 D. Passuello,18 M. Patel,63 M. Pathak,88 B. Patricelli,47,18 A. S. Patron,7 S. Paul,66 E. Payne,5 M. Pedraza,1

R. Pedurand,103 M. Pegoraro,81 A. Pele,56 F. E. Peña Arellano,190 S. Penano,77 S. Penn,251 A. Perego,98,99 A. Pereira,26
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25Università di Napoli “Federico II,” Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
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35INFN, Sezione di Trieste, I-34127 Trieste, Italy

36Embry-Riddle Aeronautical University, Prescott, Arizona 86301, USA
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98Università di Trento, Dipartimento di Fisica, I-38123 Povo, Trento, Italy
99INFN, Trento Institute for Fundamental Physics and Applications, I-38123 Povo, Trento, Italy

100SUPA, University of the West of Scotland, Paisley PN1 2BE, United Kingdom
101Bar-Ilan University, Ramat Gan 5290002, Israel

102Dipartimento di Fisica “E.R. Caianiello,” Università di Salerno, I-84084 Fisciano, Salerno, Italy
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139Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
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147Texas Tech University, Lubbock, Texas 79409, USA
148University of Minnesota, Minneapolis, Minnesota 55455, USA

149The Pennsylvania State University, University Park, Pennsylvania 16802, USA
150University of Rhode Island, Kingston, Rhode Island 02881, USA

151Bellevue College, Bellevue, Washington 98007, USA
152Scuola Normale Superiore, Piazza dei Cavalieri, 7–56126 Pisa, Italy

153Eötvös University, Budapest 1117, Hungary
154Maastricht University, P.O. Box 616, 6200 MD Maastricht, Netherlands

155Chennai Mathematical Institute, Chennai 603103, India
156The University of Sheffield, Sheffield S10 2TN, United Kingdom
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164Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

165West Virginia University, Morgantown, West Virginia 26506, USA
166University of Chicago, Chicago, Illinois 60637, USA

167Montclair State University, Montclair, New Jersey 07043, USA
168Colorado State University, Fort Collins, Colorado 80523, USA

169Institute for Nuclear Research, Bem t’er 18/c, H-4026 Debrecen, Hungary

R. ABBOTT et al. PHYS. REV. D 106, 062002 (2022)

062002-20



170University of Texas, Austin, Texas 78712, USA
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172Scuola di Ingegneria, Università della Basilicata, I-85100 Potenza, Italy
173Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
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