

Publication Year	2002
Acceptance in OA@INAF	2023-02-20T11:46:50Z
Title	4KRL adhesive thermal cycle facility
Authors	TERENZI, LUCA; VALENZIANO, Luca
Handle	http://hdl.handle.net/20.500.12386/33584
Number	PL-LFI-TES-TN-008 2002

TITLE: 4KRL adhesive thermal cycle facility

DOC. TYPE: TECHNICAL NOTE

PROJECT REF.:PL-LFI-TES-TN-008**PAGE:** I of V, 9**ISSUE/REV.:**1.0**DATE:** May 2002

Prepared by	L. TERENZI L. VALENZIANO IASF – CNR	Date: Signature:	May 2002
Agreed by	C. BUTLER LFI Program Manager	Date: Signature:	May 2002
Approved by	N. MANDOLESI LFI Principal Investigator	Date: Signature:	May 2002

DISTRIBUTION LIST

Recipient	Company / Institute		Sent
Ксерене			Sent
T. PASSVOGEL	ESA – Noordwijk	tpassvog@estec.esa.nl	Yes
G. CRONE	ESA – Noordwijk	Gerald.Crone@esa.int	Yes
J. MARTI-CANALES	ESA – Noordwijk	Javier.Marti.Canales@esa.int	Yes
A. HESKE	ESA – Noordwijk	aheske@estec.esa.nl	Yes
M. VON HOEGEN	ESA – Noordwijk	mvhoegen@estec.esa.nl	Yes
P. OLIVIER	ESA – Noordwijk	Pierre.olivier@esa.int	Yes
N. MANDOLESI	TESRE – Bologna	reno@tesre.bo.cnr.it	Yes
C. BUTLER	TESRE – Bologna	butler@tesre.bo.cnr.it	Yes
M. BERSANELLI	IFCTR – Milano	marco@ifctr.mi.cnr.it	Yes
E. ALIPPI	LABEN – Vimodrone	ealippi@webmail.laben.it	Yes
R. FUSI	LABEN – Vimodrone	rfusi@webmail.laben.it	Yes
A. DRAGONI	LABEN – Vimodrone	adragoni@webmail.laben.it	Yes
G. MORGANTE	TESRE - Bologna	morgante@tesre.bo.cnr.it	Yes
G. MORIGI	TESRE - Bologna	morigi@tesre.bo.cnr.it	Yes
G. VENTURA	TESRE - Bologna	ventura@tesre.bo.cnr.it	Yes
RWG members		rwg@beta.jpl.nasa.gov	Yes
LFI CO-I's			Yes
LFI Local PROGRAM MANAGER			Yes
LFI System PCC	TESRE – Bologna	lfispcc@tesre.bo.cnr.it	Yes

CHANGE RECORD

Issue Date Shee		Sheet Description of Change			
1.0		All	First issue of this document		

TABLE OF CONTENTS

1	SCC	DPE	. 1
	1.1	Purpose	.1
	1.2	Document Overview	. 1
	1.3	TERMS and ACRONYMS	. 1
2	APF	PLICABLE AND REFERENCE DOCUMENTS	.2
	2.1	Applicable documents	.2
	2.2	Reference documents	.2
3	Intro	oduction	.3
4	The	rmal cycles requirement and setup	.3
5	The	rmal design	.3
	5.1	Thermal model description	.4
	5.2	Thermal model results	.4
6	Mar	nufacturing	.7
	6.1	Temperature sensors	.8
7	Exp	erimental verification test	.8
8	Con	clusions	.9

1 SCOPE

1.1 Purpose

The 4KRL unit will provide a stable reference signal to the LFI radiometers. It is fully described in RD 1. Each RT will be bonded to the mounting structure using an epoxy adhesive. Details on the adhesives under study can be found in RD 3, RD 4.

Before being tested as in RD 4, samples are submitted to thermal cycles to cryogenic temperature. This will ensure tat the operating conditions during ground tests and space operation are simulated.

1.2 Document Overview

This document will describe the cryo facility designed for sample thermal cycling.

1.3 TERMS and ACRONYMS

4K RL	4K Reference Load
CMB	Cosmic Microwave Background
EBB	Elegant Bread Board
FEM	Front End Module
FM	Flight Model
FPU	Focal Plane Unit
FS	Flight Spare
HFI	High Frequency Instrument
I/F	Interface
IL	Insertion Loss
LFI	Low Frequency Instrument
MS	Mounting Structure
N/A	Not Applicable
PD	Prototype Demonstrator
QM	Qualification Model
RH	Reference Horn
RL	Return Loss
RT	Reference Target
SS	Spin-Synchronous
TBC	To Be Confirmed
TBD	To Be Defined
TBR	To Be Refined
ThL	Thermal Link
WG	Waveguide

2 APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable documents

- AD 1: FIRST/Planck Instrument Interface Document, Part A (SCI-PT-IIDA-04624, 2/0)
- AD 2: FIRST/Planck Instrument Interface Document, Part B (SCI-PT-IIDB/LFI-04142, 2/0)
- AD 3: LFI Interface Control Document (PL-LFI-PST-ID-010, 2.0)
- AD 4: LFI/HFI Interface Document (PL-LFI-PST-ID-001, 1.0)
- AD 5: LFI Specification (PL-LFI-PST-SP-001, 3.0)
- AD 6: Planck LFI Instrument Design and Development Plan (PL-LFI-PST-PL-002, 2.0)
- AD 7: Planck LFI Product Assurance Plan (PL-LFI-PST-PL-003, 3.0)
- AD 8: Planck LFI Assembly Integration & Verification Plan (PL-LFI-PST-Pl-004, 3.0)
- AD 9: FIRST/Planck Operations Interface Requirements Document (SCI-PT-RS-07360, 2/1)
- AD 10: LFI Configuration and Data Management CADM Plan (PL-LFI-PST-PL-001, 3.0)
- AD 11: LFI Instrument Deliverable Documentation List (DDL) (PL-LFI-PST-LI-007, 1.0)
- AD 12: 4K Reference Load Requirement Specification (PL-LFI-TES-SP-001, 1.0)

2.2 Reference documents

- RD 1: 4K Reference Load Design Report (PL-LFI-TES-RP-001, 2.0)
- RD 2: Planck LFI Mechanical Design (PL-LFI-LAB-RP-001, 3.0)
- RD 3: Adhesive data for the 4KRL (PL-LFI-TES-TN-002, 1.0)
- RD 4: 4KRL a proposal for mechanical test on adhesives for the LFI 4K Reference Load Collaboration TeSRE-ESA (PL-LFI-TES-TN-006, 0.1)

3 Introduction

The reference load of LFI instrument consists of fine-shaped Eccosorb blocks contained in aluminium MS, thermally linked to the 4 K stage of HFI instrument. We are testing cryogenic properties of adhesives, commercially available, to bond Eccosorb to aluminium in their flight configuration. So we are interested in carrying on thermal tests of samples to verify the efficiency of adhesives during both thermal shocks and long period thermal cycles.

thermal

4 Thermal cycles requirement and setup

We prepared a cryostat to implement a cycle from 300 to 77 K and back by means of nitrogen fillings. The requirement we imposed was of a temperature gradient of about 30K/hour, which implies duration of about 10 hours of the cooling and a symmetric heating of the same duration. We had to use a two stage cryostat consisting of two tanks for cryogenic liquids connected with two flanges over which we had to mount our Eccosorb samples. Of course, the cooling of the flanges is almost instantaneous. So we decided to mount our samples on a brass flange thermally isolated from the cold flange by means of a low conduction struts.

Figure 1: Sketch of the cryostat used for thermal cycles. Mounting flange is illustrated in Figure 2.

5 Thermal design

In order to evaluate the better screw material for an insulation matching our requirement, we built a simple thermal model of the setup discussed above.

We selected three isolating materials (nylon, teflon and stainless steel) and considered their mean thermal properties, in the range of temperatures of our cycle, as input to the model. Data used are reported in Table 1.

	Nylon	Teflon	Stainless steel	Brass
Thermal conductivity (W/m K)	0.339	0.259	12.3	81
Specific heat (J/Kg K)	984	227	300	300

 Table 1: Thermal properties of the materials used in the model

5.1 Thermal model description

We considered the flange linked to the nitrogen tank as a thermal source at 77 K. Then a set of four struts are modelled as follows, the total length of 3 cm is divided in 5 nodes. A grid of 3 X 3 nodes models the brass flange (Fig. 1). These parts starts from the room temperature of 300 K. A radiative link to the source at 77 K represents the aluminium shields in the cryostat.

Figure 2 :The nodes partition in the thermal model. The struts are split into five nodes and the brass flange in nine nodes

Dimensions of the flange and struts are reported in Table 2.

Screw length	30 mm
Flange length	80 mm
Flange width	40 mm
Flange thickness	5 mm

 Table 2: Relevant dimensions used in the model

5.2 Thermal model results

The results are shown in Figure 3, Figure 4 and Figure 5. They show the behaviour of the node on the struts closer to the nitrogen flange, the central node in the struts, the interface between the

_ _/	4KRL	adhesive	thermal	Issue/Rev. No.:	1.0
	cycle fa	cility		Date: Page:	May 2002
	5	9		1 450.	5

screws and the brass flange, the central node in the brass flange. Because of the good brass conductivity the last two nodes are nearly coincident, as evident in the figures.

Considering as a reference the temperature of the central node in the brass flange, our choice to use stainless steel struts sounds optimal.

Figure 3 Temperature vs time of our system using Nylon cylinders

Figure 4 Temperature vs time of our system using Teflon cylindrical struts

4KRL adhesive	thermal	Issue/Rev. No.:	1.0
cycle facility		Date: Page:	May 2002
5 5		1 450.	8

Figure 5 Temperature vs time of our system using stainless steel struts

4KRL	adhesive	thermal	Issue/Rev. No.:	1.0
avala fa	aility	••••••	Date:	May 2002
cycle la	cinty		Page:	7

6 Manufacturing

The flange was manufactured according to the drawing in Figure 6.

Figure 6: Drawing of the brass flange

As insulating struts, stainless steel screws are used. The flange, with samples mounted on it, is illustrated in Figure 7.

Figure 7: Right – The brass flange with samples mounted. The stainless steel struts (screws) are also visible. Left - The cryostat used for thermal cycles with the flange on the cold plate. Temperature sensors and the heater are also visible.

IASF – Sezione di BOLOGNA 4K Load Development Team

_ _/ /	4KRL	adhesive	thermal	Issue/Rev. No.:	1.0
	cycle fa	cility		Date: Page:	May 2002 8

6.1 Temperature sensors

We used two LakeShore DT-470 silicon diodes read by a LakeShore controller 340. From the LakeShore datasheet we have a mean sensitivity for our temperature range of 5 mK and an accuracy of 60 mK. One sensor is mounted over the nitrogen tank and the other upon the brass flange (Fig. 7)

7 Experimental verification test

In order to verify this thermal behaviour I made a cooling monitoring the temperature at the center of the brass flange, together with the reference temperature on the nitrogen flange (Fig. 8 and 9).

Figure 8 Time behavior in the cooling of our cryogenic systems (experimental data).

Figure 9 Time behavior in the heating of our cryogenic systems (experimental data)

We filled the cryostat tanks with liquid nitrogen and then, after the thermalization of the brass flange at 77 K, we emptied the containers and let the system temperature spontaneously warm back to room temperature.

The results are quite well matching the simulations. Longer timescales measured are explained taking into account different combined effects. First of all a delay is simply due to the finite duration of the cryogenic liquid filling, which is about 40 minutes as evident in the Fig. 8. It is important to consider that in the model we used approximated values of thermal properties (averages upon the temperature range). Finally, the struts used are a little longer (about 1 cm) and this increases the insulation.

It is important to stress that in the final configuration the cooling and warming period will be slower because the thermal inertia of the system is increased by Eccosorb samples mounted on the brass flange. So we are going to mount a heater in the main flange to drive the temperature back to room's according to our requirements.

8 Conclusions

Test results are in good agreement with the thermal model. We can therefore conclude that the realized cryo facility satisfies the requirements. It will be used for thermal cycle of the samples.

