
2023Publication Year

2023-03-06T14:32:47ZAcceptance in OA@INAF

Agilepy: A Python framework for AGILE dataTitle

BARONCELLI, LEONARDO; ADDIS, ANTONIO; BULGARELLI, ANDREA;
PARMIGGIANI, Nicolo'; DI PIANO, AMBRA; et al.

Authors

http://hdl.handle.net/20.500.12386/33988Handle

Agilepy’s documentation
Agilepy is an open-source Python package developed at INAF/OAS
Bologna [https://www.oas.inaf.it] to analyse AGILE/GRID data built on top of the
command-line version of the AGILE/GRID Science Tools.

The main purpose of the package is to provide an easy to use high-level
Python interface to analyse AGILE/GRID data by simplifying the
configuration of the tasks and ensuring straightforward access to the data.
The current features are the generation and display of sky maps and light
curves, the access to gamma-ray sources catalogues, the analysis to perform
spectral model and position fitting including the background evaluation, the
aperture photometry analysis, and the wavelet analysis. In addition, Agilepy
provides an engineering interface to analyse the time evolution of the
AGILE off-axis viewing angle for a chosen sky region, comparing them
with Fermi/LAT off-axis evolution.

https://www.oas.inaf.it/

Quickstart

Agilepy
AGILE
AGILE Science Tools
Agilepy analysis
Maximium Likelihood Estimator caveats

Installation
Installation with Anaconda
Installation with Docker
Manual Installation
Uninstalling
Package distribution structure

Quickstart guide
Jupyter Notebooks

Tutorial notebooks
Analysis notebooks

Manual

Download AGILE-GRID data
Automated download using SSDC REST Api
Manual download
Agilepy test data

Configuration file
General
Updating the configuration options
Configuration options

Sources file
Spectral models
Source library format (xml document)

Working with sources
The Source abstraction
How to load or add new sources
How to select Source objects
How to let the source’s parameters to vary
How to check which source’s parameters are free to vary

The “multi” description of a Source object
How to manually inspect source’s attributes
How to manually change a source’s attributes

Products
Sky maps
Result of the Maximum Likelihood Estimator
Light curves

Advanced configuration
Selection
Maps
Model
mle

API

Analysis API
AGBaseAnalysis
AGAnalysis
AGAnalysisWavelet

Engineering API
AGEngAgileOffaxisVisibility
AGEngAgileFermiOffAxisVisibilityComparison

AstroUtils API
Source API

Source
Point Source

Science Tools

Science Tools
Input files of the MLE

Map list input files
‘.maplist4’ file

AGILE format (text file)
Output files of the MLE

‘.source’ file
‘.source’ Attributes
‘.source.con’ file

‘.source.reg’ file
‘.log’ file
HTML output

Help

Need Help
Known issues

Development
Install the development environment

Anaconda
Docker

Git flow
Branches
Versioning
Branches names
Getting started

Development of a new feature
Add configuration parameters
Add a new science tool
Release of a new version

DevOps

Agilepy
Agilepy is an open-source Python package developed at INAF/OAS
Bologna [https://www.oas.inaf.it] to analyse AGILE/GRID data built on top of the
command-line version of the AGILE/GRID Science Tools.

The main purpose of the package is to provide an easy to use high-level
Python interface to analyse AGILE/GRID data by simplifying the
configuration of the tasks and ensuring straightforward access to the data.
The current features are the generation and display of sky maps and light
curves, the access to gamma-ray sources catalogues, the analysis to perform
spectral model and position fitting including the background evaluation, the
aperture photometry analysis, and the wavelet analysis. In addition, Agilepy
provides an engineering interface to analyse the time evolution of the
AGILE off-axis viewing angle for a chosen sky region, comparing them
with Fermi/LAT off-axis evolution.

Agilepy is similar to Fermipy (https://fermipy.readthedocs.io/) and
gammapy (https://docs.gammapy.org/) tools, providing a common way to
analyse gamma-ray data.

Agilepy provides the last version of the available Science Tools
(BUILD25), the H0025 instrument response functions (IRFs), and the latest
version of the diffuse Galactic emission model.

Agilepy (and its dependencies) can be easily installed using Anaconda
(https://www.anaconda.com/).

AGILE

AGILE (Astrorivelatore Gamma ad Immagini LEggero) is an astrophysics
mission of the Italian Space Agency (ASI) operating since 2007 April
devoted to gamma-ray and X-ray astrophysics. It carries two instruments
observing at hard X-rays between 18 and 60 keV (Super-AGILE) and in the
gamma-ray band between 30 MeV and 50 GeV (Silicon Tracker). The

https://www.oas.inaf.it/
https://fermipy.readthedocs.io/
https://docs.gammapy.org/
https://www.anaconda.com/

payload is completed by a calorimeter (MCAL) sensitive in the 0.4–100
MeV range and an anticoincidence (AC) system. The combination of the
Silicon Tracker, MCAL, and AC forms the Gamma-Ray Imaging Detector
(GRID).

A set of different on-board triggers enables the discrimination of
background events (mainly cosmic rays in the AGILE Low Earth Orbit)
from gamma-ray events. AGILE raw data are down-linked every about 100
min to the ASI Malindi ground station in Kenya, and transmitted first to the
Telespazio Mission Control Center at Fucino, and then to the AGILE Data
Center (ADC), which is part of the ASI Space Science Data Center (SSDC,
previously known as ASDC) and then to the INAF/OAS Bologna for the
real-time analysis of data.

Main AGILE websites:

SSDC: https://agile.ssdc.asi.it
IAPS/Rome: http://agile.rm.iasf.cnr.it/

AGILE Apps:

iOs iPhone: https://apps.apple.com/it/app/agilescience/id587328264
iOs iPad: https://apps.apple.com/it/app/agilescience-for-
ipad/id690462286
Android: https://play.google.com/store/apps/details?
id=com.agile.science&hl=en&gl=US
Support wed site: http://www.agilescienceapp.it/wp/agilescienceen/

AGILE Science Tools

The AGILE/GRID Science Tools developed by the AGILE Team are used
to analyse gamma-ray data starting from spacecraft files (called LOG), and
the acquired events (EVT files or event list). They provide a way to
generate gamma-ray counts, exposure and diffuse emission maps that are
used as input for the binned maximum likelihood estimator (MLE). The
analysis depends on the isotropic and Galactic diffuse emission, the
gamma-ray photon statistics, and on the instrument response functions

https://agile.ssdc.asi.it/
http://agile.rm.iasf.cnr.it/
https://apps.apple.com/it/app/agilescience/id587328264
https://apps.apple.com/it/app/agilescience-for-ipad/id690462286
https://play.google.com/store/apps/details?id=com.agile.science&hl=en&gl=US
http://www.agilescienceapp.it/wp/agilescienceen/
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/quickstart/sciencetoolstools.html

(IRFs). IRFs are matrices that characterise the effective area (Aeff), the
point spread function (PSF), and the energy dispersion probability (EDP),
that depend on the direction of the incoming gamma-ray in instrument
coordinates, its energy and on the on-ground event filter.

The result of the MLE is an evaluation of the presence of one or more
point-like or extended sources in the sky maps: this is the essential step for
the scientific results of AGILE.

A full description and characterisation of the last release of the Science
Tools is available in https://arxiv.org/abs/1903.06957. Science Tools, IRFs
and Galactic emission model are publicly available from the AGILE
website at SSDC: https://agile.ssdc.asi.it.

Agilepy analysis

The AGILE-GRID data analysis can be performed with Agilepy with
different techniques:

using the maximum likelihood estimator analysis
wavelet techniques
Lomb-Scargle periodogram analysis (coming soon)

The likelihood analysis reach better sensitivity, more accurate flux
measurement, better evaluation of the backgrounds and can work with a
detailed source models where more sources can be considered at the same
time.

AGILE-GRID light curves can be created in two different ways:

using the maximum likelihood estimator analysis
using aperture photometry.

Aperture photometry provides a raw measure of the flux of a sigle source
and is less computing demanding.

Maximium Likelihood Estimator caveats

https://arxiv.org/abs/1903.06957
https://agile.ssdc.asi.it/

During the fitting process some values are fixed and others are variable,
depending on the values of the flags. The execution time strongly depends
on the number of the variable parameters. It is not possible to predict how
long the fitting process will last or how it depends on the number of
parameters, but the dependence is not linear. If all the diffuse coefficients
are variable and all spectral parameters are free, for M maps and S sources
the number of variable parameters will be 2M+4S. In the case of many
maps and many sources, this may lead to a very long execution time.

The fitting process takes place in two steps, according to the method of
Maximum Likelihood. During each step all the sources are considered one
by one, and several fitting attempts are performed by invoking the function
TH1D::Fit() provided by the ROOT library, developed by CERN and will
find the related documentation on the CERN web site.

Installation
Agilepy is available as Anaconda package or into a ready-to-use Docker
container (from 1.4.0)

Note

AGILE DATASET DOWNLOAD Now it possible to download all the
public AGILE dataset stored on SSDC datacenter through a REST Api.
Agilepy automatically handles the data and no actions are required from
the user. For more information visit this page. This major release includes
many new important features and a general refactoring.

Installation with Anaconda

Agilepy (and its dependencies) can be easily installed using Anaconda. You
just need to decide the name of the virtual environment that will be created
by anaconda.

conda config --add channels conda-forge
conda config --add channels plotly
conda create -n <virtualenv_name> -c agilescience agilepy

Note

If you want to try agilepy’s new features that are not officially released
yet, a develpoment environment called agilepy-environment is available
into Anaconda cloud. It contains all the dependencies unless agilepy,
which must be installed by hand cloning the repository. Check the
installation instructions here

Supported platforms:

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/Ag_dataset_rest_api.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/help/development.html#install-the-development-environment

linux-64
osx-64

Note

An experimental package for IBM POWER architecture(ppc64le) is
available on Anaconda cloud. Due to some incompability this package
does not contain ROOT and AGILE science tools that need to be installed
from source. Check the instructions to install AGILE science tools here
[https://github.com/AGILESCIENCE/AGILE-GRID-ScienceTools-Setup]

Tested on:

CentOs 7.6
Ubuntu 18.04
Ubuntu 19.10
Ubuntu 20.04
macOs 10.14
macOs 10.15
macOS 12.0.1

In order to use the software you need to activate the virtual environment
first:

conda activate <virtualenv_name>

or

source activate <virtualenv_name>

Running jupyter server:

start_agilepy_notebooks.sh

Installation with Docker

https://github.com/AGILESCIENCE/AGILE-GRID-ScienceTools-Setup

You can pull the image directly from dockerhub using the following
command:

docker pull agilescience/agilepy:release-<version>

Note

Check the installation instructions for Docker here [https://docs.docker.com/get-
docker/]

Note

If you want to try agilepy’s new features that are not officially released
yet, you need to pull a develop image available using agilepy:develop-
latest tag

Using this command you can launch the container and automatically start
jupyter notebook.

shared_dir must be created before launching the command, it is not
necessary, but useful for several cases (exporting analysis outside the
container, link another dataset etc.)

Jupyter server is at localhost:8888

Agilepy’s containers can be found at dockerhub page
[https://hub.docker.com/repository/docker/agilescience/agilepy]

Supported platforms:

docker run --rm -it -p 8888:8888 \
-e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
-v $PWD/shared_dir:/shared_dir \
agilescience/agilepy:release-<version> /bin/bash -c \
"source /opt/anaconda3/etc/profile.d/conda.sh && conda activate
jupyter notebook --ip='*' --port=8888 --no-browser --allow-root

https://docs.docker.com/get-docker/
https://hub.docker.com/repository/docker/agilescience/agilepy

linux-64
osx-64
win-64(see note)

Tested on:

CentOs 7.6
Ubuntu 18.04
Ubuntu 19.10
Ubuntu 20.04
macOs 10.14
macOs 10.15
Windows 10 v2004 (May 2020 Update)

Note

It’s possible to run Agilepy’s container in Windows10(still not supported
by Anaconda installation), in order to do that, you need to install WSL2
and docker first.

Check the installation instructions for WSL2 here [https://docs.microsoft.com/en-
us/windows/wsl/install-win10] and docker here [https://docs.docker.com/docker-for-
windows/wsl/]

Manual Installation

If the isntallation does not work with the instructions above, it is
recommended to install agilepy and its dependencies from scratch. The
dependencies required by Agilepy are:

Root 6.26 Cfitsio 4.1 Zlib

AGILE’s Science Tools [https://github.com/AGILESCIENCE/AGILE-GRID-ScienceTools-
Setup/tree/master] (the correct tag to install is on sciencetools_version.txt in the
repository main directory)

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.docker.com/docker-for-windows/wsl/
https://github.com/AGILESCIENCE/AGILE-GRID-ScienceTools-Setup/tree/master

Agilepy python dependencies [https://github.com/AGILESCIENCE/Agilepy-
recipe/blob/master/recipes/docker/base/requirements.txt]

Uninstalling

Anaconda

conda env remove --name <virtualenv_name>

Docker

docker rmi agilescience/agilepy:release-<version>

Package distribution structure

The virtual environment <virtualenv_name> folder is under the “envs”
folder within the root folder of your anaconda installation.

It contains all the dependencies Agilepy requires. Here, there is the
“agiletools” directory, containing AGILE’s scientific software.

https://github.com/AGILESCIENCE/Agilepy-recipe/blob/master/recipes/docker/base/requirements.txt

Quickstart guide
To import the library:

from agilepy.api import AGAnalysis

You can create the (required) yaml configuration file, calling the following
static method:

In order to interact with the library you need to obtain an instance of the
AGAnalysis class:

ag = AGAnalysis('agconfig.yaml')

Then you have to load the models of the sources (you can filter them by
their distance (degree) from l,b provided within the configuration file):

sources = ag.loadSourcesFromCatalog('2AGL', rangeDist=(0, 10))

Keyword arguments can be passed via setOptions() to override
configuration parameters:

ag.setOptions(binsize=0.50, outdir="./output")

AGAnalysis.getConfiguration(
 "./agconfig.yaml", # the destination path of the configura
 "username", # the name of the flare advocate
 "OJ287", # the name of the source
 58930, # tmin
 58936, # tmax
 "MJD", # time type
 206.8121188769472, # glon
 35.8208923457401, # glat
 "$HOME/agilepy_analysis", # the destination path of the ou
 1, # the verbosity level
 evtfile="/AGILE_PROC3/FM3.119_ASDC2/INDEX/EVT.index", # op
 logfile="/AGILE_PROC3/DATA_ASDC2/INDEX/LOG.log.index" # op
)

To generate sky maps:

maplistfile = ag.generateMaps()

To display and interact with the sky maps:

ag.displayCtsSkyMaps(smooth=True, sigma=3)
ag.displayExpSkyMaps()
ag.displayGasSkyMaps()

To perform an maximum likelyhood estimation analysis:

sourcefiles = ag.mle()

You can query the sources with an arbitrary boolean expression string..

..and fix or free a source’s parameter:

sourcefiles = ag.freeSources('name == "CYGX3"', "flux", True)

You can generate a light curve data file with…

…and display the interactive light curve plot with:

ag.displayLightCurve("mle")

If you want to manually update the value of a source’s spectrum parameter,
you can do it with:

sources = ag.selectSources('name == "2AGLJ2021+4029"')
source = sources.pop()
source.spectrum.set("index", 1.8)

Hint

selectedSources = ag.selectSources("flux > 0 AND dist <= 1 OR sq

lightCurveData = ag.lightCurveMLE("CYGX3", tmin=58930 , tmax=589

Check out the API documentation and the Jupiter notebooks section!

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/quickstart/jupyter_notebooks.html

Jupyter Notebooks
Several Jupyter notebooks are available. You can start a Jupyter server
calling:

start_agilepy_notebooks.sh

Tutorial notebooks

There’re several categories of tutorial notebooks:

science_api_tutorial: the most important ones. They show the basic
usage of Agilepy to perform a scientific analysis for sources detection.
The following notebooks are useful example of the use of Agilepy and
they can be runned using provided sample data:

VELA: analysis of Vela region
3C454.3: analysis of November’s 2010 gamma-ray flare of AGN
3C454.3.
AITOFF: how to produce a full sky AITOFF projection image.

Wavelet analysis: it shows how to use the Agilepy’s wavelet analysis
API.
engineering_api_tutorial: they show how to use the Agilepy’s
engineering analysis API.

The following notebook is another useful example of the use of Agilepy
that is runned downloading AGILE data from SSDC website:

PKS1510-089: analysis of 2009 gamma-ray flare

Analysis notebooks

These notebooks have been developed for internal purposes of the AGILE
Team. A template notebook is also provided to speed up the development of
a new analysis notebook for AGILE Flare Advocate team.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/notebooks/VELA.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/notebooks/3C454d3-final.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/notebooks/aitoff_maps.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/notebooks/wavelet_analysis.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/notebooks/PKS1510-089_2009.html

Download AGILE-GRID data
The AGILE-GRID data can be downloaded in two ways: automated by
Agilepy or manually.

Automated download using SSDC REST Api

The AGILE-GRID data is download automatically by agilepy.

Version 1.5.0 has implemented the SSDC REST Api in order to get the
AGILE dataset from SSDC datacenter. All the required data is downloaded
according to tmin and tmax values selected in configuration file. This
feature works when generatesmaps method is called.

Pre-requisites:
Internet connection (> 200 Mb/s)

SSDC Data policy:
EVT files contain 15 days of data (2 files per month)
LOG files contain 1 day of data

Eg for getting data from 10/10/2018 to 05/11/2018 it returns:
3 EVT files (30/09-15/10, 15/10-31/10, 31/10-15/11)
26 LOG files, one file for each day

Two query files are created to keep track of the query history and to
implement the policy above. Before calling Rest api, Agilepy checks if the
dates selected are in query files, if True download is not performed. If False
Agilepy downloads the data in /tmp/ folder, it unpacks them into the
selected datapath and it automatically calls indexgen tool for generating
index files. Finally, it updates query files.

Example

AGAnalysis.getConfiguration(
 confFilePath = confFilePath,
 evtfile=None,

 logfile=None,
 userName = "username",
 sourceName = "PKS1510-089",
 tmin = 54891,
 tmax = 54921,
 timetype = "MJD",
 glon = 351.29,
 glat = 40.13,
 outputDir = "$HOME/agilepy_analysis",
 verboselvl = 0,
 userestapi=True,
 datapath="$HOME/agile_dataset"
)

Advanced Information

Query files

Agilepy uses text files called “qfiles”. These files contain the slots
requested by the user, according to SSDC policies. With query file it is
possible to avoid multiple downloads for the same dates (useful for slow
connections and if there are no data in the selected range days).

Index files

Index file is created by Indexgen tool immediately after the download. No
action is required from the user.

Plotting index files vs query files

A function to plot the dates from index and query file can be useful to check
differences between asked data and real data. Sometimes could happen that
data are not available for several reasons (instruments off etc), data will not
be downloaded but agilepy writes in query files in order to not perform a
second request.

AGILE Data Coverage

SSDC uploads AGILE dataset once per month, this means that it could not
be possible to select a date close to the present day. In this particular case,
query files must not be uploaded, because in the future data will be
available. Agilepy gets AGILE data coverage from SSDC and writes it into
a file called Agilepy_coverage, when AGDataset starts it checks if last
coverage is more than 60 days old from the present date and it updates it if
positive.

Manual download

The AGILE-GRID data obtained both in pointing and in spinning mode are
publicly available and can be download manually from the ASI/SSDC
https://www.asdc.asi.it/mmia/index.php?mission=agilemmia

Prepare index files

There’re two types of data files: events list (EVT) and log data (LOG).
They both are compressed fits files. Each file refers to a specific time
interval.

Example:

agql1511240600_1511240730.LOG.gz
agql1511240730_1511240900.EVT__FM.gz

In order to use Agilepy (or the Agile science tools) a special file, called
“index”, is needed. This file is used by Agilepy to know the position of the
data files and which file refers to which interval. Two index files are
needed: one for the event data and one for the log data.

Those index files have four column:

file name
time start of the file in Terrestrial Time (TT)
time end of the file in Terrestial time (TT)
LOG or EVT marker to identify the fole types

https://www.asdc.asi.it/mmia/index.php?mission=agilemmia

Here some examples of LOG and EVT indexes:

You can use the AG_indexgen tool to generate the .index file:

AG_indexgen <path to data> <type> <output file>

Where <type> can be EVT or LOG.

Example:

Agilepy test data

The Agilepy conda package gets shipped with two subsets of the AGILE
data archive for the purpose of unit testing and to show how to run
scientific analysis with the tutorial notebooks.

test_dataset_6.0

A test data to analyse Vela region. The provided period is MJD 58026.50-
58031.50.

The index files are the following:

head -n 3 /ASDC_PROC3/DATA_ASDCe/INDEX/LOG.log.index
/AGILE_PROC3/DATA_ASDCe/LOG/ag-107092735_STD0P_GO.LOG.gz 1070927
/AGILE_PROC3/DATA_ASDCe/LOG/ag-107179135_STD0P_GO.LOG.gz 1071791
/AGILE_PROC3/DATA_ASDCe/LOG/ag-107265535_STD0P_GO.LOG.gz 1072655

head -n 3 /ASDC_PROC3/FM3.119_ASDCSTDk/INDEX/EVT.index
/ASDC_PROC3/FM3.119_ASDCSTDk/EVT/ag0910311200_0911301200_STD1Kal
/ASDC_PROC3/FM3.119_ASDCSTDk/EVT/ag0911301200_0912201200_STD1Kal
/ASDC_PROC3/FM3.119_ASDCSTDk/EVT/ag0912201200_1001151200_STD1Kal

AG_indexgen /AGILE_PROC3/FM3.119_ASDC2/EVT EVT /home/user/data.i

evtfile="$AGILE/agilepy-test-data/test_dataset_6.0/EVT/EVT.index
logfile="$AGILE/agilepy-test-data/test_dataset_6.0/LOG/LOG.index

test_dataset_agn

A test data to analyse the November’s 2010 flare of 3C454.3 source. The
provided period is MJD 55513.00-55520.00.

The index files are the following:

evtfile="$AGILE/agilepy-test-data/test_dataset_agn/EVT/EVT.index
logfile="$AGILE/agilepy-test-data/test_dataset_agn/LOG/LOG.index

Configuration file
General

A yaml [https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html] configuration file is
required in order to run Agilepy.

It is composed by several sections and each section holds several configuration options,
some of which are optional (having a default value), some others are required.

It supports environment variables (they can be used to define file system paths).

It can be created easily, calling the following static method and passing the minimal set of
(required) configuration parameters.

The method above will create the following configuration file:

input:
 evtfile: None
 logfile: None
 userestapi: True
 datapath: datapath
output:
 outdir: $HOME/agilepy_analysis
 filenameprefix: analysis_product
 logfilenameprefix: analysis_log
 sourcename: sourcename

AGAnalysis.getConfiguration(
 confilepath="./agconfig.yaml", # the destination path of the configura
 userName="username", # the name of the flare advocate
 sourceName="OJ287", # the name of the source
 tmin=58930, # tmin
 tmax=58936, # tmax
 timetype="MJD", # time type
 glon=206.8121188769472, # glon
 glat=35.8208923457401, # glat
 outputDir="$HOME/agilepy_analysis", # the destination path of the outp
 verboselvl=1, # the verbosity level
 evtfile="evt indexfile", # optional parameter
 logfile="log indexfile", # optional parameter
 datapath="datapath",
 userestapi=True,

)

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

 username: username
 verboselvl: 2

selection:
 emin: 100
 emax: 10000
 tmin: 54935.0
 tmax: 54936.0
 timetype: MJD
 glon: 355.447
 glat: -0.2689
 proj: ARC
 timelist: None
 filtercode: 5
 fovradmin: 0
 fovradmax: 60
 albedorad: 80
 dq: 0
 phasecode: null
 lonpole: 180
 lpointing: null
 bpointing: null
 maplistgen: "None"

maps:
 mapsize: 40
 useEDPmatrixforEXP: false
 expstep: null
 spectralindex: 2.1
 timestep: 160
 projtype: WCS
 proj: ARC
 binsize: 0.25
 energybins:
 - 100, 10000
 fovbinnumber: 1
 offaxisangle: 30

model:
 modelfile: null
 galmode: 1
 isomode: 1
 galcoeff: null
 isocoeff: null
 emin_sources: 100
 emax_sources: 10000
 galmode2: 0
 galmode2fit: 0
 isomode2: 0
 isomode2fit: 0

mle:
 ranal: 10
 ulcl: 2
 loccl: 95
 expratioevaluation: true
 expratio_minthr: 0
 expratio_maxthr: 15
 expratio_size: 10
 minimizertype: Minuit
 minimizeralg: Migrad
 minimizerdefstrategy: 2
 mindefaulttolerance: 0.01
 integratortype: 1
 contourpoints: 40
 edpcorrection: 0.75
 fluxcorrection: 0

ap:
 radius: 3
 timeslot: 3600

plotting:
 twocolumns: False

Updating the configuration options

The user should not directly manipulate the configuration file, because the configuration
file is read only once, when the AGBaseAnalysis constructor is called. Hence, the
configuration file modification will not affect the internal configuration object. Also,
updating the values held by this object will not affect the original values written on disk.

In order to update the internal configuration object, the user can rely on the following
methods:

getOption(optionName)
setOption(**kwargs)

For example:

ag.setOptions(binsize=0.50, energybins=[[100, 300], [500, 1000]])
print(ag.getOption("energybins"))

Configuration options

This section describes the configuration options.

Section: ‘input’

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api.AGBaseAnalysis-AGBaseAnalysis-getOption
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api.AGBaseAnalysis-AGBaseAnalysis-setOptions

This section defines the input data files. The input data files are indexes: each row holds
the file system position of an actual event data/log file, together with the time interval it
refers to. If userestapi if True the selection of evtfile and logfile is not required, Agilepy
creates its own index files automatically. See more details in this link.

Option Description Type Required Default

evtfile Path to index evt file name str no None

logfile Path to index log file name str no None

userestapi If true downloads date into datapath bool no True

datapath the position of AGILE data str no None

Section: ‘output’

The output section collects options related to the output files generation and logging.

The ‘outdir’ option sets the root directory of the analysis results where all output files are
written.

Agilepy use two loggers, one logs messages on the console, the other writes messages on
disk. The ‘verboselvl’ option sets the verbosity of the Agilepy console logger. The
Agilepy file logger verbosity is set to 2 by default. There are 4 kind of messages based on
their importance factor:

CRITICAL: a message describing a critical problem, something unexpected,
preceding a program crash or an Exception raise.
WARNING: an indication that something unexpected happened, or indicative of
some problem in the near future (e.g. ‘disk space low’). The software is still
working as expected.
INFO: confirmation that things are working as expected.
DEBUG: detailed information, typically of interest only when diagnosing
problems.

Option Description Type Required Default

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/Ag_dataset_rest_api.html

Option Description Type Required Default

outdir

Path of the output directory str

yes

null

filenameprefix The filename prefix of each output file str yes null

logfilenameprefix The filename prefix of the log file str yes null

sourcename The name of the source under analysis str yes null

userName The name of the user performing the
analysis str yes null

verboselvl

0 ⇒ CRITICAL and WARNING
messages are logged on the console.
1 ⇒ CRITICAL, WARNING and INFO
messages are logged on the console.
2 ⇒ CRITICAL, WARNING, INFO
and DEBUG messages are logged on
the console

int no 1

Section: ‘selection’

The temporal, spatial and spectral binning of the data can be customized using the
configuration options of this section.

The center of the ROI (region of interest) is defined by explicit Galactic sky coordinates
(glon and glat).

Option Description Type Default Required

Option Description Type Default Required

emin Energy min in MeV int 100 no

emax Energy max in MeV int 10000 no

glat Center of the ROI (’latitude’ or ‘b’) float null yes

glon Center of the ROI (’longitude’ or ‘l’) float null yes

tmin Minimum time (in MJD or TT) float null yes

tmax Maximum time (in MJD or TT) float null yes

timetype The date format of tmin and tmax.
Possibile values: [‘MJD’, ‘TT’] str null yes

timelist

it’s a path to a file containing a list of time
intervals in TT
format to generate maps
integrated within a time window.
If specified, ‘tmin’ and ‘tmax’ are ignored.

str null no

filtercode filtercode = 5 select G filtercode = 0 select
G+L+S int 5 no

fovradmin fovradmin < fovradmax int 0 no

fovradmax fovradmax > fovradmin (dq = 0 is necessary
for setting) int 60 no

Option Description Type Default Required

albedorad albedo selection cut (dq = 0 is necessary for
setting) int 80 no

dq

Data quality selection filter.
A combination of fovradmax and albedorad.
Possible values are [0,1,2,3,4,5,6,7,8,9]
dq = 0 -> albedorad and fovradmax are free
and they must always be specified in
setOption
dq = 1 -> albedorad=80, fovradmax=60
dq = 2 -> albedorad=80, fovradmax=50
dq = 3 -> albedorad=90, fovradmax=60
dq = 4 -> albedorad=90, fovradmax=50
dq = 5 -> albedorad=100, fovradmax=50
dq = 6 -> albedorad=90, fovradmax=40
dq = 7 -> albedorad=100, fovradmax=40
dq = 8 -> albedorad=90, fovradmax=30
dq = 9 -> albedorad=100, fovradmax=30

int 0 no

phasecode

Photon list selection parameter based
on the orbital phase. If ‘None’, the
automated selection is done following
the ‘phasecode’ rule

int null no

Phasecode rule

phasecode = 2 -> spinning mode, SAA excluded with AC counts method.
phasecode = 6 -> spinning mode, SAA excluded according to the magnetic field
intensity (old definition of SAA, defined by TPZ)
phasecode = 18 -> pointing mode, SAA and recovery exluded.

It is suggested to use phasecode = 2 for data taken in spinning mode.

def setPhaseCode(tmax)
 if @phasecode == -1
 if tmax.to_f >= 182692800.0
 @phasecode = 6 #SPIN
 else

 @phasecode = 18 #POINTING
 end
 end
end

filtercode rule

A set of different on-board triggers enables the discrimination of background events
(mainly cosmic rays in the AGILE Low Earth Orbit) from gamma-ray events. The data
processing of the GRID events use an additional on-ground filters and provides a
classification of each event:

P : events classified as a charged particle and rejected
G : events classified as gamma-ray photons. This is the most useful class for the
analysis
S : events classified as single-track: this is a special class of events with no
separation between the electron and positron tracks
L : limbo events, not clearly classified.

The events provided in the EVT files are of type G, S, and L. The AGILE team
recommends to use the G class for scientific analysis. Only for gamma-ray bursts or other
short transient events, and for pulsar timing analysis the G, S and L classes should be used
together.

Section: ‘maps’

These options control the behaviour of the sky maps generation tools. The ‘energybin’ and
‘fovbinnumber’ options set the number of maps that are generated:

number of maps = number of energy bins * fovbinnumber

The ‘energybin’ option is a list of strings with the following format:

energybins:
 - 100, 1000
 - 1000, 3000

The ‘fovbinnumber’ option sets the number of bins between ‘fovradmin’ and ‘fovradmax’
as:

number of fov bins = (fovradmax-fovradmin)/fovbinnumber

Note

One map is generated for each possible combination between the ‘energybin’ (emin,
emax) and the ‘fovbinnumber’ (fovmin, fovmax). The order of map generation is

described by the following pseudocode:

For each fovmin..fovmax:
For each emin..emax:

generateMap(fovmin, fovmax, emin, emax)

Option Description Type Default Required

mapsize Width of the ROI in degrees float 40 no

useEDPmatrixforEXP Use the EDP matrix to
generate the exposure map. boolean False no

expstep

Step size of the exposure
map, if ‘None’ it depends by
round(1 / binsize, 2) (e.g. 0.3-
>3, 0.25->4, 0.1->10)

int None no

spectralindex Spectral index of the
exposure map float 2.1 no

timestep
LOG file step size of
exposure map (LOG file are
at 0.1s)

float 160 no

projtype Projection mode. Possible
values: [’WCS’] str WCS no

proj

Spatial projection for WCS
mode.
Possible values: [’ARC’,
‘AIT’]

str ARC no

Option Description Type Default Required

skytype

gasmap:
0) SKY000-1 + SKY000-5,
1) gc_allsky maps +
SKY000-5,
2) SKY000-5
3) SKY001 (old galcenter,
binsize 0.1, full sky),
4) SKY002 (new galcenter,
binsize 0.1, full sky)

int 4 no

binsize Spatial bin size in degrees float 0.25 no

energybin

The enegy bins of analysis. A
list of value. | To configure: |
1) directly in the yaml
configuration file; | 2) Use the
method e.g.
ag.setOptions(energybins=
[[100, 300], [500, 1000]]) | 3)
Use the method
ag.setOptionEnergybin(value)

List<String> [100,
10000] no

fovbinnumber

Number of bins between
fovradmin and fovradmax.
Dim = (fovradmax-
fovradmin)/fovbinnumber

int 1 no

Section: ‘model’

The ‘galcoeff’ and ‘isocoeff’ options values can take the default value of null or they can
be a a list of values separated by a comma. If they are set to null it means they are free to
change.

model:
 galcoeff: 0.8, 0.6, 0.5, 0.4
 isocoeff: 8, 10, 12, 14

In this case, you should pay attention on how the sky maps are generated: the following
example show which iso/gal coefficients are assigned to which map.

selection:
 fovradmin: 0
 fovradmax: 60

maps:
 energybins:
 - 100, 300
 - 300, 1000
 fovbinnumber: 2

model:
 galcoeff: 0.8, 0.6, 0.5, 0.4
 isocoeff: 8, 10, 12, 14

FOV bins:
(0, 30), (30, 60)

Map #1 has: fovmax:0 fovmax:30 emin:100 emax:300 galcoeff:0.8 isocoeff:8
Map #2 has: fovmax:0 fovmax:30 emin:300 emax:1000 galcoeff:0.6 isocoeff:10
Map #3 has: fovmax:30 fovmax:60 emin:100 emax:300 galcoeff:0.5 isocoeff:12
Map #4 has: fovmax:30 fovmax:60 emin:300 emax:1000 galcoeff:0.4 isocoeff:14

Option Description Type Default Required

modelfile A file name that contains point
sources, diffuse and isotropic components string null yes

galmode int 1 no

isomode int 1 no

galcoeff set into .maplist if >= 0
null,
float or
str

null no

Option Description Type Default Required

isocoeff set into .maplist if >= 0
null,
float or
str

null no

emin_sources energy min of the modelfile int 100 no

emax_sources energy max of the modelfile int 10000 no

galcoeff and isocoeff

galcoeff and isocoeff are the coefficients for the Galactic and isotropic diffuse emission
components respectively. The values may be fixed during the fitting process or some or all
of them may be optimized by allowing them to vary. Agilepy allows to evaluate these
coefficient and fix them or to keep these coefficient free.

Positive values are considered fixed, while negative values are free to vary starting from
their absolute values. These coefficients are affected by the galmode and isomode
coefficients described in the following section.

galmode and isomode

‘galmode’ and ‘isomode’ are integer values describing how the corresponding coefficients
‘galcoeff’ or ‘isocoeff’ found in all the lines of the maplist will be used:

0: all the coefficients are fixed.
1: all the coefficients are fixed if positive, variable if negative (the absolute value is the
initial value). This is the default behaviour.
2: all the coefficients are variable, regardless of their sign.
3: all the coefficients are proportionally variable, that is the relative weight of their
absolute value is kept.

Section: ‘mle’

The maximum likelihood estimation analysis is configured by the following options:

Option Description Type Default RequiredOption Description Type Default Required

ranal Radius of analysis float 10 No

ulcl Upper limit confidence level, expressed
as sqrt(TS) float 2 No

loccl
Source location contour confidence level
(default 95 (%)confidence level). Possible
values: [99, 95, 98, 50]

int 95 No

fluxcorrection
Correction of the flux taking into account
the spectral model. Possible values: [0
(no correction), 1 (enable correction)].

int 0 No

Exp-ratio evaluation options

See details in this link.

Option Type Default Required Description

expratioevaluation bool yes none

expratio_minthr float 0 none

expratio_maxthr float 15 none

expratio_size float 10 none

Section: ‘ap’

This section describes the configuration parameters for the Aperture Photometry analysis.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/products.html#expratio

Option Description Type Required DefaultOption Description Type Required Default

radius The radius of analysis float no 3

timeslot The size of the temporal bin int no 3600

Section: ‘plot’

This section defines the plotting configuration.

Option Description Type Required Default

twocolumns The plot is adjusted to the size of a two
column journal publication boolean False no

Sources file
The sources can be defined using one of two different formats: xml
document and text file.

The flux parameter estimates are relevant in the fitting process, as the
sources are considered one by one, starting with the one with the brightest
initial flux value, regardless of the order they are given in the source file.

Spectral models

A full energy band spectral fit of the data is performed with different
spectral model. The spectral representations used in the BUILD25 are PL,
exponential cut-off PL, super-exponential cut-off PL, and log parabola
(LP). More details are reported in https://arxiv.org/abs/1903.06957

The PL spectral model is used for all sources that are not significantly
curved and have low exposure,

where N0 is the prefactor and alpha is the index explicitly evaluated by the
MLE method. Our MLE spectral fitting does not explicitly output the
prefactor value, which is internally calculated by the numerical procedure.
The majority of the AGILE sources are described by a PL.

The exponential cut-off PL spectral model (PC) is

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/mleinput.html#agile-format-text-file
https://arxiv.org/abs/1903.06957

where N0 is the prefactor, α is the index, and Ec is the cut-off energy. The
values Ec and α are explicitly provided by the MLE method.

The super exponential cut-off PL spectral model (PS) is

where N0 is the prefactor, α is the first index, β the second index, and Ec is
the cut-off energy. The parameters α, Ec, and β are explicitly provided by
the MLE method.

The LP spectral model is

where N0 is the prefactor, Ec is the pivot energy, α is the first index, β the
curvature. The parameters α, Ec, and β are explicitly provided by the MLE
method.

The selection of curved spectra followed the acceptance criteria described
in bulgarelli19. Briefly, a source is considered significantly curved if T
Scurved > 16, where T Scurved = 2 × (log L(curved spectrum)−log
L(power law), where L is the likelihood function obtained changing only
the spectral representation of that source and refitting all free parameters.

Source library format (xml document)
<?xml version="1.0" ?>
<source_library title="source library">

 <!-- Point Sources -->
 <source name="2AGLJ2202+4214" type="PointSource">
 <spectrum type="PowerLaw">
 <parameter name="flux" free="1" value="7.45398e-08"/>
 <parameter name="index" free="1" scale="-1.0" value="1.969
 </spectrum>
 <spatialModel type="PointSource" location_limit="0">
 <parameter name="pos" value="(92.4102, -10.3946)" free="0"
 </spatialModel>
 </source>

 <source name="2AGLJ0007+7308" type="PointSource">
 <spectrum type="PLExpCutoff">
 <parameter name="flux" free="1" value="41.6072e-08"/>
 <parameter name="index" free="1" scale="-1.0" value="1.29
 <parameter name="cutoffEnergy" free="1" scale="-1.0" valu
 </spectrum>
 <spatialModel type="PointSource" location_limit="0">
 <parameter name="pos" value="(119.677, 10.544)" free="0"
 </spatialModel>
 </source>

 <source name="2AGLJ0835-4514" type="PointSource">
 <spectrum type="PLSuperExpCutoff">
 <parameter name="flux" free="1" value="969.539e-08"/>
 <parameter name="index1" free="1" scale="-1.0" value="1.71
 <parameter name="cutoffEnergy" free="1" value="3913.06" mi
 <parameter name="index2" free="1" value="1.3477" min="0"
 </spectrum>
 <spatialModel type="PointSource" location_limit="0">
 <parameter name="pos" value="(263.585, -2.84083)" free="0"
 </spatialModel>
 </source>

 <source name="2AGLJ1801-2334" type="PointSource">
 <spectrum type="LogParabola">
 <parameter name="flux" free="1" value="35.79e-08"/>

 <parameter name="index" free="1" scale="-1.0" value="3.379
 <parameter name="pivotEnergy" free="1" scale="-1.0" value=
 <parameter name="curvature" free="1" scale="-1.0" value="0
 </spectrum>
 <spatialModel type="PointSource" location_limit="0">
 <parameter name="pos" value="(6.16978, -0.0676943)" free="
 </spatialModel>
 </source>

</source_library>

Working with sources
The Source abstraction

The main abstraction of Agilepy is the Source class. It is described by
several parameters, some of which can be free to vary, and they are changed
by the mle() analysis.

The set of the parameters describing the source can vary, depending on the
spectrum and spatial model types of the source.

The different types of sources are described here.

How to load or add new sources

In order to perform a scientific analysis with Agilpy, at least one Source
model must be loaded. There are several ways to do that.

The loadSourcesFromCatalog(catalogName, rangeDist=0, inf, show=False)
allows to load a source catalog, while filtering the sources by their distance
(degree) from the l,b position provided within the configuration file.

sources = ag.loadSourcesFromCatalog('2AGL', rangeDist=(0, 10))

The loadSourcesFromFile(sourcesFilepath, rangeDist=0, inf, show=False)
loads the sources, reading their model from a file.

The addSource(sourceName, sourceDict) method allows the user to define
on the fly a source model with a python dictionary. Check the tutorial
notebooks for an example.

How to select Source objects

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/source_file.html#source-library-format-xml-document
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-loadSourcesFromCatalog
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-loadSourcesFromFile
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-addSource

The sources can be selected via the the selectSources(selection,
show=False) method. The “selection” argument supports either lambda
functions and boolean expression strings. The user can call selectSources
(with show=True) to show the source description

Other examples:

sources = ag.selectSources('name == "PKS1510-089"', show=False)

sources = ag.selectSources('flux > 0', show=False)

How to let the source’s parameters to vary

In order to free or fix a sources’ parameter, the user can rely on the
freeSources(selection, parameterName, free, show=False) method. The
“selection” argument is used like in selectSources, so you can free a
parameter of multiple sources at once.

Check the api documentation or the tutorial notebooks for additional
examples.

source = ag.selectSources('name == "2AGLJ2254+1609"', show=Fals
print(source)

Source name: 2AGLJ2254+1609 (PointSource)
 * Free parameters: flux
 * Initial source parameters: (PowerLaw)
 - flux(ph/cm2s): 7.50937e-07
 - index: 2.20942
 - Source position: (86.1236, -38.1824) (l,b)
 - Distance from map center: 0.011 deg

sources = ag.selectSources(lambda name, sqrtTS: name == "2AGLJ20

aganalysis.freeSources(lambda name, dist, flux : Name == "2AGLJ2

ag.freeSources('name == "2AGLJ1513-0905"', "index", True, show=T

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-selectSources
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-freeSources

How to check which source’s parameters are free
to vary

The user can obtain this information by printing the Source object or calling
the getFreeParams() method of the Source object.

print(source.getFreeParams())
['flux']

The “multi” description of a Source object

If the user performs an mle analysis, the Source object will contain also the
analysis results.

print(source)

Source name: 2AGLJ2254+1609 (PointSource) => sqrt(ts): 10.2226
 * Free parameters: flux index
 * Initial source parameters: (PowerLaw)
 - flux(ph/cm2s): 7.50937e-07
 - index: 2.20942
 - Source position: (86.1236, -38.1824) (l,b)
 - Distance from map center: 0.011 deg
 * Last MLE analysis:
 - flux(ph/cm2s): 8.68363e-06 +/- 1.62474e-06
 - index: 2.51001 +/- 0.173795
 - upper limit(ph/cm2s): 1.13967e-05
 - ergLog(erg/cm2s): 1.39217e-09 +/- 2.6048e-10
 - galCoeff: [0.7, 0.7, 0.7, 0.7, 0.7]
 - isoCoeff: [5.24757, 3.14662, 0.953512, 1.59944e-10, 0.557554
 - exposure(cm2s): 13672200.0
 - exp-ratio: 0.0
 - L_peak: 86.1236
 - B_peak: -38.1824
 - Distance from start pos: 0.0
 - position:
 - L: -1.0
 - B: -1.0
 - Distance from start pos: -1.0
 - radius of circle: -1.0

The values L_peak and B_peak set to the initial values in the source
location is fixed. If it is allowed to vary then they are set to the position for
which the TS is maximized. If a confidence contour was found, the
parameters of the “ellipse” section describe the best-fit ellipse of the
contour, described in detail below. The counts and fluxes are provided, as
well as their symmetric, positive, and negative errors if the flux is allowed
to vary. For convenience, the exposure of the source, used to calculate the
source counts from the flux, is also provided. Finally, the spectral index and
its error, or the other spectral parameters, if applicable, are provided.

How to manually inspect source’s attributes

The user can rely on a getter method get(sourceAttribute) method.

print(source.get("cutoffEnergy"))
print(source.get("index"))
print(source.get("pos"))
print(source.get("dist"))
print(source.get("locationLimit"))
print(source.get("multiFlux"))

How to manually change a source’s attributes

The user can rely on a setter method set(sourceAttribute) method.

source.set("index2", 1.34774)

The setAttributes() method allows to change the following attributes: value,
free, scale, min, max, locationLimit. Example:

source.spectrum.cutoffEnergy.setAttributes(min=3000, max=5000)

 - ellipse:
 - a: -1.0
 - b: -1.0
 - phi: -1.0

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/core/source_api.html#core-SourceModel-Source-get
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/core/source_api.html#core-SourceModel-Source-set

In order to change the position of a source, the user can rely on the
updateSourcePosition(sourceName, glon, glat) method.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/api/analysis_api.html#api-AGAnalysis-AGAnalysis-updateSourcePosition

Products
Sky maps

‘.cts.gz’ file

Counts maps are generated by the procedure AG_ctsmapgen embedded into
Agilpy.

AG_ctsmapgen reads the event files listed in the event file index (see
“AGILE data” section), bins the counts between tmin and tmax, and outputs
a FITS image file. The image is a two-dimensional array in the ARC or AIT
projection. The projection, size and resolution, the center and rotation of the
map in Galactic coordinates, tmin, tmax, emin, and emax, along with
various integration parameters (fovrad, fovradmin, albrad, phasecode) are
managed by Agilepy.

The parameters are described in the “Configuration file” section.

‘.exp.gz’ file

Exposure maps are generated by the procedure AG_expmapgen embedded
into Agilpy.

The task AG_expmapgen reads the log files listed in the LOG index (see
“AGILE data” section), integrates the exposure between tmin and tmax, and
outputs a FITS exposure image file. The image is a two-dimensional array
in either the ARC or AIT projection. The projection, size and resolution,

and center and rotation of the map in Galactic coordinates, tmin, tmax,
emin, emax, and index file are managed by Agilepy, along with various
integration parameters (fovrad, albrad, y tol, roll tol, earth tol, phasecode),
and an interpolation step size (binstep). The interpolation procedure is a
linear interpolation method in which only one bin each N is calculated
(where N is the step size parameter). For a bin size of 0.5 deg or 0.25 deg
with a step size of N = 4 it is possible to get a good approximation of the
exposure map.

The parameters are described in the “Configuration file” section.

‘.gas.gz’ file

Diffuse emission maps are generated by the procedure AG_gasmapgen
embedded into Agilpy. AG_gasmapgen reads an exposure map produced by
AG_expmapgen and the master diffuse emission map and outputs a FITS
image file, in the same format as the exposure map, in which each pixel
contains the diffuse emission in that pixel. The image is a square array in
the ARC projection. The diffuse emission map contain models of the
diffuse emission convolved with the energy-dependent point spread
function and combined into predefined observed energy ranges according to
the appropriate energy dispersion function for G events using the FM3.119
background filter. The diffuse emission map automatically selected by
Agilepy based on the energy range of the analysis; e.g. if the analysis is
performed between 100 MeV and 50 GeV, Agilepy select the file
100_50000.0.1.SFMG_H0025.conv.sky.gz. The first number in the file
name is the minimum energy and the second number is the maximum
energy, followed by the resolution of the maps (0.1), the background event
rejection filter (FM3.119) and the instrument response functions (IRFs).

‘.int.gz’ file

Intensity maps are generated by the procedure AG_intmapgen embedded
into Agilepy. AG_intmapgen reads an exposure map produced by
AG_expmapgen and a counts map produced by AG_ctsmapgen and outputs
a FITS image file, in the same format as the counts map, in which each
pixel contains the intensity in that pixel. The image is a square array in the
ARC projection. The two input maps should have been produced using the

same set of parameters. The intensity map is not used in scientific analysis;
it is useful solely as a visualization tool.

Result of the Maximum Likelihood Estimator

Agilepy shows a high-level view of the results of the maximum likelihood
estimator. See this link for more details.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/work_with_sources.html#the-multi-description-of-a-source-object

The details of the output of the science tool AG_multi that performs the
likelihood procedure is still accessible. This section describe the output of
the AG_multi science tool, that performs a Maximum Likelyhood Estimator
analysis to find the best position, flux and spectral parameters of a list of
sources given set of count maps.

Confidence Contour files

If a confidence contour was found, the parameters on the following line
describe the best-fit ellipse of the contour, described in detail below.

If source location was requested for a given source and a source location
contour was found, then three additional files are generated for that source.
These files are written using galactic coordinates in degrees and can be
loaded by applications such as ds9 and overlaid on the maps provided as
input to AG_multi to visualize the source location contours. One of the
three files, with extension .con, contains the source contour as found by the
ROOT functions, expressed as a list of galactic coordinates, one point per
line, where the last line is a repetition of the first. It may depict any shape.
The other two files describe the ellipse that best fits the contour. One has
extension .ellipse.con and represents the ellipse as a contour in a format
analogous to that of the .con file. The other has extension .reg and describes
same ellipse by its axes and orientation.

Determination of the ellipse. If AG_multi was able to find a source contour,
an ellipse is fit to the contour. The source contour is a list of points which
defines a polygon by connecting each point sequentially. The value of
Radius found in the HTML output is the radius in degrees of a circle with
the same area as the polygon. AG_multi determines the ellipse which best
fits the contour. This ellipse will have the same area as the polygon, and the
distance between each contour point and the intersection between the
ellipse and the line connecting that point to the centre will be minimized.
The ellipse is completely described by three parameters: the two axes and
the rotation (in degrees) of the first axis around the centre, as expected by
the ds9 application. If the ellipse is a circle, its axes will both be equal to
the Radius found in the HTML output. The ellipse is described by two files
that are readable by ds9: one is a .reg file which contains the centre, the

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/mle.html

axes and the rotation of the ellipse, while the other describes the same
ellipse as a list of points in galactic coordinates, thus using the same syntax
of a contour file, and has extension .ellipse.con. This is an example of
ellipse .reg file:

ExpRatio

Owing to the non-homogeneous sky coverage of the AGILE observations, it
is possible that sources lie near the borders of certain pointings. In order to
have an unbiased estimate of the coeffcients of the Galactic diffuse
emission and isotropic background that could lead to to an incorrect
evaluation of the flux and position of the source, exposure uniformity
within the region of the analysis is required. We applied a specific check to
verify the uniformity of the exposure within the 10-degree radius of the
AGILE MLE analysis centred at each source candidate position, over the
considered timescale. The fraction of pixels of the exposure map within the
region of analysis having a value below a pre-defined threshold was
calculated, and if it was more than 10% the region was considered
unreliable and the candidate was discarded. The exposure threshold value is
evaluated by calculating the mean exposure of the observation over the full
FoV area and comparing this exposure with the values of some reference
good exposures.

The parameters expratioevaluation, expratio_minthr, expratio_maxthr,
expratio_size described here.

Light curves

AGILE-GRID light curves can be created in two different ways:

using a maximum likelihood estimator analysis
using aperture photometry.

The likelihood analysis reach better sensitivity, more accurate flux
measurement, better evaluation of the backgrounds and can work with a
detailed source models where more sources can be considered at the same
time.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/manual/configuration_file.html

Aperture photometry provides a raw measure of the flux of a sigle source
and is less computing demanding.

The likelihood light curve file contains the results of the generation of a
light curve. The columns described are the following sections.

Time of the analysis in MJD:

time_start_mjd: time start (MJD)
time_end_mjd: time end (MJD)

Result of the analysis of the single source:

sqrt(ts): the square root of the Test Statistic value of the results of the
maximum likelihood estimator (mle)
flux (ph/cm2/s/sr)
flux_err (ph/cm2/s/sr)
flux_ul (ph/cm2/s/sr)
gal: the value of the galactic diffuse emission (gal) parameter
gal_error: the error of the galactic diffuse emission (gal) parameter
iso: the value of the isotropic emission (iso) parameter
iso_error: the error of the isotropic emission (iso) parameter
(l_peak, b_peak): position in Galactic coordinate (l_peak, b_peak):
peak coordinates. If it is allowed to vary then they are set to the
position for which the TS is maximized.
dist_peak: distance between current l_peak, b_peak and previous
position
(l, b): position in Galactic coordinate evaluated by mle with the
determination of the 95% confidence level elliptical confidence region
r: radius of 95% c.l. circular confidence region, deg. Statistical error
only
ell_dist: the distance between (l,b) and the initial position
a: the semimajer axis of the elliptical confidence region
b: the semiminor axis of the elliptical confidence region
phi: rotation of the elliptical confidence region
exposure
ExpRatio: see above section
counts

counts_err
Index
Index_Err
Par2
Par2_Err
Par3
Par3_Err
Erglog
Erglog_Err
Erglog_UL

Time of the analysis in UTC and TT:

time_start_utc
time_end_utc
time_start_tt
time_end_tt

The following are the initial parameters of the analysis of the source:

Fix: initial fixflag
index: initial spectral index
ULConfidenceLevel
SrcLocConfLevel
start_l: initial Galactic coordinate l
start_b: initial Galactic coordinate b
start_flux: inital flux for the MLKE
typefun: type of spectral model
par2: initial value of par2
par3: initial value of par3

The following are the parameters of the MLE analysis:

galmode2
galmode2fit
isomode2
isomode2fit
edpcor

fluxcor
integratortype
expratioEval
expratio_minthr
expratio_maxthr
expratio_size

Parameters of the maps:

Emin
emax
fovmin
fovmax
albedo
binsize
expstep
phasecode

Technical results of the fitting:

fit_cts
fit_fitstatus0
fit_fcn0
fit_edm0
fit_nvpar0
fit_nparx0
fit_iter0
fit_fitstatus1
fit_fcn1
fit_edm1
fit_nvpar1
fit_nparx1
fit_iter1
fit_Likelihood1

time_start_mjd time_end_mjd sqrt(ts) flux flux_err flux_ul gal g
58026.49921296296 58027.49921296296 7.3538 944.812e-08 213.193e-
58027.49921296296 58028.49921296296 8.87831 1055.24e-08 211.709e

58028.49921296296 58029.49921296296 7.31495 820.826e-08 198.261e
58029.49921296296 58030.49921296296 6.78978 840.67e-08 208.19e-0
58030.49921296296 58031.49921296296 7.63221 820.4e-08 190.928e-0

Advanced configuration
Selection

Option Type Default Required Description

lonpole int 180 no

lpointing float TBD no
l in Galactic coordinates of
the center of the pointing
during the ‘pointing period’

bpointing float TBD no
b in Galactic coordinates of
the center of the pointing
during the ‘pointing period’

maplistgen string TBD no

filename of a file for
expmapgen with
mapspec.fovradmin >>
mapspec.fovradmax >>
mapspec.emin >>
mapspec.emax >>
mapspec.index

Maps

Option Type Default Required Description

Option Type Default Required Description

offaxisangle float 30 No

Off axis pointing for mle
analysis. Values are
between 0 and 60 deg.
Agilepy into .maplist

Model

Option Type Default Required Description

galmode2 int 0 No

Fix the gal parameters using
the internal analysis of the
MLE.
0) gal0 and gal1 are kept free
1) set gal0 for L0 and gal1 for
L1
2) set gal0 for L0 and L1
3) set gal1 for L0 and L1
4) set gal1 - gal1err for L0 and
L1
5) set gal1 + gal1err for L0 and
L1

Option Type Default Required Description

galmode2fit int 0 No

Fix the gal parameters for
different energy bins
performing a linear fit of gal
values evaluated using the
internal analysis of the MLE.
0) do not fit
1) pol0 fit
2) powerlaw fit

isomode2 int 0 No

Fix the iso parameters using
the internal analysis of the
MLE.
0) none
1) set iso0 for L0 and gal1 for
L1
2) set iso0 for L0 and L1
3) set iso1 for L0 and L1
4) set iso1 - iso1err for L0 and
L1
5) set iso1 + iso1err for L0 and
L1

isomode2fit int 0 No

Fix the iso parameters for
different energy bins
performing a linear fit of iso
values evaluated using the
internal analysis of the MLE.
0) do not fit
1) pol0 fit
2) powerlaw fit

mle

Advanced options for optimizer

Option Type Default Required Description

minimizertype string Minuit No

Use Minuit if
position is free.
For other values
see below.

minimizeralg string Migrad No For other values
see below.

minimizerdefstrategy int 2 No
Default 2 for
Minuit. For other
values see below.

mindefaulttolerance float 0.01 No See below.

integratortype int 1 No

1 gauss
2 gaussht
3 gausslefevre
4 gausslefevreht

contourpoints int 40 No
Number of points
to determine the
contour (0-400).

minimizertype = Minuit (library libMinuit). Old version of Minuit,
based on the TMinuit class. The list of possible algorithms
(minimizeralg) are:

1) Migrad (default one)
2) Simplex
3) Minimize (it is a combination of Migrad and Simplex)
4) MigradImproved
5) Scan
6) Seek

minimizertype = Minuit2 (library libMinuit2). New C++ version of
Minuit. The list of the possible algorithms (minimizeralg) :

1) Migrad (default)
2) Simplex
3) Minimize
4) Scan

minimizertype = Fumili . This is the same algorithm of TFumili, but
implemented in the Minuit2 library.

minimizertype = GSLMultiMin (library libMathMore). Minimizer
based on the Multidimensional Minimization routines of the Gnu
Scientific Library (GSL). The list of available algorithms
(minimizeralg) is | 1) BFGS2 (default) : second version of the vector
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm; | 2) BFGS : old
version of the vector Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm; | 3) ConjugateFR : Fletcher-Reeves conjugate gradient
algorithm; | 4) ConjugatePR : Polak-Ribiere conjugate gradient
algorithm; | 5) SteepestDescent: steepest descent algorithm;

#*** * GSLMultiFit (library libMathMore). Minimizer based on the
Non-Linear Least-Square routines of GSL. This minimizer can be used
only for least-square fits.
#*** * GSLSimAn (library libMathMore). Minimizer based on
simulated annealing.
#*** * Genetic (library libGenetic). Genetic minimizer based on an
algorithm implemented in the TMVA package.

Each minimizer can be configured using the
ROOT::Math::MinimizerOptions class. The list of possible option that
can be set are:

minimizertype:
Minimizer type (MinimizerOptions::SetMinimizerType(const char *))
.

* Print Level (MinimizerOptions::SetPrintLevel(int)) to set the
verbose printing level (default is 0).

mindefaulttolerance:
* Tolerance (MinimizerOptions::SetTolerance(double)) tolerance used
to control the iterations.
* Precision (MinimizerOptions::SetTolerance(double)). Precision
value in the evaluation of the minimization function. Default is
numerical double precision.

Maximum number of function calls
(MinimizerOptions::SetMaxFunctionCalls(int)).
Maximum number of iterations
(MinimizerOptions::SetMaxIterations(int)). Note that this is not
used by Minuit. FCN Upper value for Error Definition
(MinimizerOptions::SetMaxIterations(int)). Value in the
minimization function used to compute the parameter errors. The
default is to get the uncertainties at the 68% CL is a value of 1 for
a chi-squared function minimization and 0.5 for a log-likelihood
function.

minimizerdefstrategy:
* Strategy (MinimizerOptions::SetStrategy(int)), minimization
strategy used. For each minimization strategy Minuit uses different
configuration parameters (e.g. different requirements in computing
derivatives, computing full Hessian (strategy = 2) or an approximate
version. The default is a value of 1. In this case the full Hessian matrix
is computed only after the minimization.

Advanced options for internal corrections

Option Type Default Required Description

edpcorrection float 0.75 No

Perform a flux correction
based on EDP evaluation for
highest energy channels.
Default 0.75, otherwise any
value between 0 and 1. EDP
correction is enabled only for
E>1000 MeV and if
fluxcorrection=1, and only
for point sources. flux = flux
* edpcorrection

fluxcorrection int 0 No

Perform a flux correction of
the flux using the source
spectral model and
considering that the exposure
is calculated with a Power
Law with spectral index of
2.1.
0) no correction
1) Flux calculation correction
for spectral shape in output
2) correction in input and
output

Analysis API
AGBaseAnalysis

AGAnalysis

AGAnalysisWavelet

Engineering API
AGEngAgileOffaxisVisibility

AGEngAgileFermiOffAxisVisibilityComparison

Parameters:

Returns:

Parameters:

Returns:

AstroUtils API
class utils.AstroUtils.AstroUtils

static distance(l1, b1, l2, b2)
Computes the angular distance between two galatic coordinates.

l1 (float) – longitude of first coordinate
b1 (float) – latitude of first coordinate
l2 (float) – longitude of second coordinate
b2 (float) – latitude of second coordinate

the angular distance between (l1, b1) and (l2,
b2)

static AP_filter(filename, threshold, tstart, tstop, outpath)
This function filters an aperture photometry file using a threshold
value for exposure, it discards the rows lower than threshold and
returns a new file merging the continous rows.

filename (str) – path of the aperture
photometry file
threshold (float) – exposure threshold
tstart (float) – time start in UTC
tstop (float) – time stop in UTC

A filtered file result.txt

Source API
Source

Point Source

Science Tools

Name Short description Documents

AG_add_diff

AG_checkMapValue

AG_ctsmapgen

Generates a counts
map from the
Agile satellite
events list, given a
list of time
intervals, an
energy range and a
field of view
interval.

AG_ctsmapgenT

Performs the same
selection as
AG_ctsmapgen,
writing its output
to text files for
futher automatic
usage.

AG_diff_conv

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_add_diff.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_checkMapValue.html

Name Short description Documents

AG_expmapgen

Generates an
exposure map
from the Agile
satellite log files
related to a given a
list of time
intervals.

ExpmapgenDoc.pdf

AG_expmapgenT

Performs the same
selection as
AG_expmapgen,
writing its output
to text files for
futher automatic
usage.

AG_gasmapgen
Generates the
Galactic diffuse
emission maps

AG_intmapgen Generates the
intensity maps

AG_iterativeGenSrcList

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/pdf/ExpmapgenDoc.pdf

Name Short description Documents

AG_multi

Performs a
Maximum
Likelyhood
Analysis to find
the best position,
flux and spectral
index of a list of
sources to explain
the given set of
count maps.

AG_multiUserManual.html
(outdated) CalcoloTS.html
PSF_generation.pdf

AG_multiext

It does the same
job as AG_multi
also considering a
set of extended
sources.

AG_multiExtUM.html

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multi.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/pdf/PSF_generation.pdf
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multiext.html

Name Short description Documents

AG_multisim

Given a list of
sources and a set
of exposure maps
it generates the
corresponding
counts map by
means of a Monte
Carlo simulation.
It optionally
performs on these
maps the same
analysis of
AG_multi. The
entire process can
be iterated. The
generated maps
can be saved to
disk or just
analyzed on the
fly.

AG_multisimUM.html

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multisim.html

Name Short description Documents

AG_multiterative

This application
iteratively
performs the same
analysis of
AG_multi,
tentatively adding
more sources, one
at a time, from a
second sources
list. It produces
the best sources
list explaining the
data.

AG_pasteMap

This utility
program joins two
sky maps together
adapting their
resolution.

AG_spotfinder

AG_thetamapgen

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multiterative.html

Input files of the MLE
This page provides detailed description of the input files of the science tool AG_multi.

Map list input files

‘.maplist4’ file

The map list is a text file listing containing at least one line of text. Each line of text describes one set of maps and
it is possible to include empty lines or comment lines. The comment lines begin with an exclamation mark.

Each line contains a set of maps:

<countsMap> <exposureMap> <gasMap> <offaxisangle> <galcoeff> <isocoeff>

where:

countsMap, exposureMap and gasMap are file system paths pointing to the corresponding sky maps (see
`Sky Maps section<../manual/products.html>`_)
offaxisangle is in degrees;
galcoeff and isocoeff are the coefficients for the galactic and isotropic diffuse components. If positive
they will be considered fixed (but see `galmode and isomode<manual/configuration_file.html#section-
model>`_ section).

AGILE format (text file)

The source list is a text file listing at least one source. Each line of text describes one source, and it is possible to
include empty lines or comment lines. The comment lines begin with an exclamation mark.

Each source is described by a line containing space-separated values, in the following order:

The ‘flux’ parameter is expressed in cm^-2 s^-1, and galactic longitude ‘l ‘and latitude ‘b’ are expressed in
degrees.

minSqrt(TS) is the minimum acceptable value for the square root of TS: if the optimized significance of a source
lies below this value, the source is considered undetected and will be ignored (set to flux = 0) when considering the
other sources.

After the source’s name (which should not contain a space), an optional value for the location limitation
(’locationlimit’) in degrees may be provided. If this value is present and not zero, the longitude and latitude of the
source will not be allowed to vary by more than this value from its initial position.

According to the fixflag, some or all values will be optimized by being allowed to vary.

The ‘funtype’ specify the spectral model. PL indicates power-law fit to the energy spectrum; PC indicates power-
law with exponential cut-off fit to the energy spectrum; PS indicates power-law with super-exponential cut-off fit
to the energy spectrum; LP indicates log-parabola fit to the energy spectrum.

The ‘index’ of each source represents the initial estimates of the values for that source (a positive number) and
could represent the spectral index of the source (see the following table). The other spectral parameters depend on

'flux' 'l' 'b' 'index' 'fixflag' 'minSqrt(TS)' 'name' 'locationlimit' 'funtype' 'par2' 'par3' 'i

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multi.html

the spectral shape of the source. ‘index limit min’ and ‘index limit max’ specifies the minimum and maximum
range where the ‘index’ is searched.

The ‘par2’ and ‘par3’ parameters represent additional spectral parameters in the following table. ‘par2 limit min’,
‘par2 limit max’, ‘par3 limit min’, and ‘par3 limit max’ specify the minimum and maximum range of the ‘par2’
and ‘par3’ respectively.

funtype spectral
model index par2 par3

0 PL PowerLaw x^(-[index]) α

1 PC PLExpCutoff
x^(-[index]) *
e^(- x /
[par2])

α Ec

2 PS PLSuperExpCutoff

x^(-[index]) *
e^(- pow(x /
[par2],
[par3]))

α Ec β

3 LP LogParabola

(x / [par2]) ^
(-([index] +
[par3] * log (
x / [par2])))

α Ec β

The match of the parameteres is:

index = α: Spectral index for PL, PC, and PS spectral models, first index for LP spectral model; Could be
Index or Index1 in the XML format
par2 = Ec (MeV): cut-off energy for PC and PS spectral models, pivot energy for LP spectral model;
par3 = β: Second index for PS spectral models, curvature for LP spectral model;

The usual energy range used to calculate these parameters is 100 MeV – 10 GeV. The MLE procedure calculates
also the 1σ uncertainty of the spectral parameters:

∆α: Statistical 1σ uncertainty of α;
∆Ec (MeV): Statistical 1σ uncertainty of Ec;
∆β: Statistical 1σ uncertainty of β.

According to the ‘fixflag’ some or all of those values will be optimized by being allowed to vary. The fixflag is a
bit mask, each bit indicating whether the corresponding value is to be allowed to vary:

fixflag = 0 everything is fixed (free=”0”)
fixflag = 1 indicates the flux (free=”1” in <parameter name=”Flux”>)
fixflag = 2 the position is free (free=”1” in <spatialModel type=”PointSource”>)
fixflag = 4 the Index or Index1 is free (free=”1” in <parameter name=”index”> or <parameter name=”index1”>)
fixflag = 8 the par2 is free (free=”1” in <parameter name=”cutoffEnergy”> or <parameter name=”pivotEnergy”>)
fixflag = 16 the par3 is free (free=”1” in <parameter name=”index2”> or <parameter name=”curvature”>)
fixflag = 32 force position to be variable only in Loop2 (free=”2” in <spatialModel type=”PointSource”>)

The user may combine these values, but the flux will always be allowed to vary if at least one of the other values
are.

flux pos(free=1) index/index1 par2=cutoffEnergy/pivotEnergy par3=index2/curvature pos(free=

fixflag 1 2 4 8 16 32

Examples:
fixflag = 0: everything is fixed. This is for known sources which must be included in order to search for other
nearby sources.
fixflag = 1: flux variable, position fixed
fixflag = 2: only the position is variable, but MLE will let the flux vary too, so this is equivalent to 3.
fixflag = 3: flux and position variable, index fixed
fixflag = 4: index variable (and flux variable)
fixflag = 5: flux and index variable, position fixed
fixflag = 7: flux, position and index variable and also
fixflag = 28: index, par2 and par3 variable (and flux variable)
fixflag = 30: position, index, par2 and par3 variable (and flux variable)
fixflag = 32: position=2, the rest is fixed

Output files of the MLE
This page provides detailed description of the output files of the science
tool AG_multi.

The details of the output of the science tool AG_multi that performs the
likelihood procedure is still accessible from agilepy. This section describes
the “low level” results of the AG_multi procedure. The results are available
in the $HOME/agilepy_analysis/<sourcename>_<username>_<date>-
<time>/mle directory, where <sourcename> and <username> are defined in
the yaml configuration file, <date> and <time> are defined by the system
when the analysis starts.

At the end of the fitting process AG_multi generates two main files,
describing the most relevant results for all the sources, and a set of source-
specific files containing more detailed data about that source.

One of the two main files is in HTML format, and it includes both the input
and output data grouped in tables. Having a look at this file the user should
quickly understand the outcome of the fitting process and its main results.
The next section describes the HTML output in more detail.

The second of the two main files contains the same data printed in text
format. This file is divided in two sections. The first contains one line for
each diffuse component and the second one line for each source. The first
line of each section begins with an exclamation mark (a comment line for
many applications) labeling the values printed beneath. In each line the
values are separated by a space. This is an example of the text output of the
analysis of the 2AGLJ2254+1609 (3C454.3) with the test dataset provided.
For this analysis, only one set of maps and one source is used. The iotropic
emission components coefficients are kep free and symmetric errors are
provided. The flux and position of the source are allowed to vary, while the
spectral index is fixed. The name, significance of the source detection,
position, source counts with error, source flux with error, and spectral index
with error are provided.

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/AG_multi.html

index, par2, par3 and related errors depend by the spectral mode used.

The counts and fluxes are provided, as well as their errors if the flux is
allowed to vary. Finally, the spectral index and its error, if applicable, are
provided.

Note

If a source is outside the Galactic plane, fix the diffuse emission
coefficient parameter (gal) to 0.7 with ag.setOptions(galcoeff=[0.7])

‘.source’ file

The .source file is an internal technical file produced by the maximum
likelihood estimator mle() procedure for each source. It contains all the
analysis results for each source that is part of the ensemble of models.
Agilepy extract from this .source file the most important parameters useful
for the final user.

When possible, two additional files describing the source contour (possibile
only if position is kept free).

The text file contains some comment-like lines (first character is an
exclamation mark) labeling the values printed beneath. This is an example
of text output, consistent with the example given above:

! DiffName, Flux, Err, +Err, -Err
Galactic 0.7 0 0 0
Isotropic 8.79898 0.969867 0.984804 -0.955381
! SrcName, sqrt(TS), L_peak, B_peak, Counts, Err, Flux, Err, Ind
2AGLJ2254+1609 35.5482 86.0638 -38.1753 719.369 35.2059 2.63371e

! Label Fix index ULConfidenceLevel SrcLocConfLevel start_l star
! sqrt(TS)
! L_peak B_peak Dist_from_start_position
! L B Dist_from_start_position r a b phi
! Counts Err +Err -Err UL

The counts and fluxes are provided, as well as their symmetric, positive,
and negative errors if the flux is allowed to vary. For convenience, the
exposure of the source, used to calculate the source counts from the flux, is
also provided. Finally, the spectral index and its error, if applicable, are
provided.

‘.source’ Attributes

! Flux(ph/cm2s) [0 , 1e+07] Err +Err -Err UL(ph/cm2s) ULbayes(ph
! Index [0.5 , 5] Index_Err Par2 [20 , 10000] Par2_Err Par3 [0 ,
! cts fitstatus0 fcn0 edm0 nvpar0 nparx0 iter0 fitstatus1 fcn1 e
! Gal coeffs [0 , 100] and errs
! Gal zero coeffs and errs
! Iso coeffs [0 , 100] and errs
! Iso zero coeffs and errs
! Start_date(UTC) End_date(UTC) Start_date(TT) End_date(TT) Star
! Emin..emax(MeV) fovmin..fovmax(deg) albedo(deg) binsize(deg) e
! Fit status of steps ext1, step1, ext2, step2, contour, index,
! Number of counts for each step (to evaluate hypothesis)
! skytypeL.filter_irf skytypeH.filter_irf
2AGLJ2254+1609 1 2.20942 2 5.99147 86.1236 -38.1824 2.64387e-05
47.8468
86.1236 -38.1824 0
-1 -1 -1 -1 -1 -1 -1
718.633 31.0247 31.4119 -30.6392 782.234
2.64387e-05 1.14141e-06 1.15565e-06 -1.12722e-06 2.87787e-05 2.0
2.20942 0 0 0 0 0
909 -1 2456.44 0.5 0 8 3 0 1311.78 7.28513e-16 1 8 3 1828.16
0.7 0
0.7 0
8.83231 0
8.83231 0
2010-11-13T00:01:06 2010-11-21T00:01:06 216691200.0000000 217382
100..10000 0..60 80 0.25 0 6 0
-1 -1 -1 0 -1 -1 0
-1 2124 -1 2124 -1 -1 2124
SKY002.SFMG_H0025 SKY002.SFMG_H0025

Parameter name UM Description default rangeParameter name UM Description default range

Label

Fix Value of the
fixflag

index
Initial value of
the index
parameter

ULConfidenceLevel

Upper limit
confidence level
espressed as
sqrt(TS)

2

SrcLocConfLevel

Source location
contour
confidence level
%

95 99
95 68
50

95

start_l

start_b

start_flux (ph/cm2s)

Parameter name UM Description default range

[lmin lmax]

[bmin bmax]

typefun

par2

par3

galmode2

galmode2fit

isomode2

isomode2fit

edpcor

fluxcor

integratortype

Parameter name UM Description default range

expratioEval

expratio_minthr

expratio_maxthr

expratio_size

[index_min index_max
]

[par2_min par2_max]

[par3_min par3_max]

contourpoints

minimizertype

minimizeralg

minimizerdefstrategy

Parameter name UM Description default range

minimizerdeftol

sqrt(TS)

L_peak

B_peak

Dist_from_start_position

L

B

Dist_from_start_position

r

a

b

phi

Parameter name UM Description default range

Counts

Err

+Err

-Err

UL

Flux (ph/cm2s)

Err

+Err

-Err

UL (ph/cm2s)

ULbayes (ph/cm2s)

Exp (cm2s)

Parameter name UM Description default range

ExpSpectraCorFactor

Erglog (erg/cm2s)

Erglog_Err

Erglog_UL (erg/cm2s)

Sensitivity

FluxPerChannel (ph/cm2s)

Index

Index_Err

Par2

Par2_Err

Par3

Par3_Err

Parameter name UM Description default range

cts

fitstatus0

fcn0

edm0

nvpar0

nparx0

iter0

fitstatus1

fcn1

edm1

nvpar1

nparx1

Parameter name UM Description default range

iter1

Likelihood1

Gal coeffs

errs

Gal zero coeffs

errs

Iso coeffs

errs

Iso zero coeffs

errs

Start_date(UTC)

End_date(UTC)

Parameter name UM Description default range

Start_date(TT)

End_date(TT)

Start_date(MJD)

End_date(MJD)

Emin..emax MeV

fovmin..fovmax deg

albedo deg

binsize deg

expstep

phasecode

ExpRatio

Fit status of steps ext1

Parameter name UM Description default range

Fit status of steps step1

Fit status of steps ext2

Fit status of steps step2

Fit status of steps
contour

Fit status of steps index

Fit status of steps ul

Number of counts for
ext1

Number of counts for
step1

Number of counts for
ext2

Number of counts for
step2

Parameter name UM Description default range

Number of counts for
contour

Number of counts for
index

Number of counts for ul

skytypeL.filter_irf

skytypeH.filter_irf

‘.source.con’ file

outfile.source.con: source contour (if found).

‘.source.reg’ file

outfile.source.reg: ellipse best fitting the source contour (if found).

‘.log’ file

Log file with a line for each step of the fitting process.

HTML output

AG_multi provides an HTML output of the results. The HTML output file
is divided into two sections, input and output. The input section contains
three subsections: the command line options, the map list and the source list
contents. The command line options are listed in two tables, one with the
names of the IRFs (PSD, SAR and EDP) files, the other with the rest of the
command line. The maplist subsection also contains two tables. The first
lists the mapfile contents and the second contains the data from the map
files themselves. This table contains one map per row, and each column
contains one value only if it is the same for all the maps. The last table of
the input section contains the source list contents. The output section is also
divided into three subsections. The first is a table showing the Galactic and
isotropic coefficients and their errors. Also in this table some cells may be
grouped together when the values are all the same. The second is a table
showing the fit results for the sources and their errors. One of the listed
values is the contour equivalent radius, explained in the next section. The
last table shows the source flux per energy channel, and it is present only
when different energy channels are considered. This table has one row for
each source and one column for each energy channel.

Need Help
If you have troubles please email to:

leonardo.baroncelli[at]inaf.it
antonio.addis[at]inaf.it
andrea.bulgarelli[at]inaf.it

or open an issue of GitHub:
https://github.com/AGILESCIENCE/Agilepy/issues

Known issues

The unit test “test_aperture_photometry” fails on macos,
therefore the aperturePhotometry() method is not available on this
OS.
Each notebook should instantiate only one AGAnalysis object,
otherwise the logger will be duplicated.
In certain situations %matplotlib widget has a weird behaviour. If
you have problems with map sizes or interactions, comment the
line %matplotlib widget

https://github.com/AGILESCIENCE/Agilepy/issues

Development
Install the development environment

If you want to try agilepy’s new features that are not officially released yet,
a develpoment environment called agilepy-environment is available into
Anaconda cloud. It contains all the dependencies unless agilepy, which
must be installed by hand cloning the repository.

Anaconda

Docker

conda config --add channels conda-forge
conda config --add channels plotly
conda create -n agilepydev -c agilescience agiletools agilepy-da
conda activate agilepydev
git clone https://github.com/AGILESCIENCE/Agilepy.git
cd Agilepy && git checkout develop
conda env update -f environment.yml
python setup.py develop

docker pull agilescience/agilepy-recipe:latest
mkdir shared_dir && cd shared_dir && git clone https://github.co
&& cd Agilepy && git checkout develop

docker run --rm -it -p 8888:8888 \
-e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix:rw \
-v $SHARED_DIR_PATH:/shared_dir \
agilescience/agilepy-recipe:latest

-- Inside the container --
conda activate agilepydev
cd /shared_dir/Agilepy python setup.py develop

Now you have the agilepy’s latest version installed in your environment.

Git flow

Branches

Two main branches:

master: contains only production releases.
develop: contains commits that will be included in the next production
release.

Two support branches:

feature branch: each new feature (Trello’s card) should be developed
in its own feature branch, branching from develop and merged back
into it. The feature branch are not pushed into the remote.
hotfix branch: if an hotfix is needed it should be develop in its own
branch, branching from master and merged back to it.

jupyter notebook --port 8889 --ip 0.0.0.0 --allow-root

Versioning

The master branch contains only production releases: when the develop
branch (or hotfix branch) is merged to master a new release tag must be
created. Its name follows the semantic versioning [https://semver.org/].

x.y.z

Incrementing:

x version when you make incompatible API changes,
y version when you add functionality in a backwards compatible
manner, and
z version when you make backwards compatible bug fixes.

Branches names

The master and the develop branch have an infinite lifetime, hence their
name is fixed.

https://semver.org/

The feature branch takes the following format:

feature-#<card-number>-<short-description>

e.g. feature-#61-new-cool-feature

The hotfix branch name takes the following format:

hotfix-#<card-number>-<release-number>

e.g. hotfix-#57-1.0.0

The release number is the one of the production release from which it
originates from.

Getting started

Development of a new feature

Create a new feature branch:

git checkout develop
git pull origin develop
git checkout -b feature-#61-new-cool-feature develop

Development and testing of the new feature.

When you have finished, update the CHANGELOG.md and commit your
changes.

vim CHANGELOG
git commit -m "feature-#61-new-cool-feature done"

In the meantime it is possible that someone else have pushed his work into
the develop branch. In this case you have to merge the changes in your
feature branch.

git pull **origin** develop

Finally you can merge your feature branch back to develop branch.

git merge --no-ff feature-#61-new-cool-feature
git branch -d feature-#61-new-cool-feature
git push origin develop

Add configuration parameters

Let’s say we want to add the following configuration section to the
AGAnalysis’ configuration file.

ap:
 radius: 0.25
 timeslot: 3600

Add the new section to the AGAnalysis.getConfiguration() method.
Add the type of the configuration parameters within the
AGAnalysisConfig.checkOptionsType() method (in the corresponding
lists).
If the parameters need some kind of validation (this is not the case),
add a new method in ValidationStrategies and call it within the
AGAnalysisConfig.validateConfiguration() (check examples).
If the parameters need some kind of transformation (this is not the
case), add a new method in CompletionStrategies and call it within the
AGAnalysisConfig.completeConfiguration() (check examples).
Add the new configuration section to all the unit test configuration
files.
Document the new configuration parameters within the
manual/configuration_file.rst file.

Add a new science tool

Let’s say we want to add a new (c++) science tool: AG_ap.

Add a new class within the api/ScienceTools.py script. You need to
implement some abstract methods.
You can use the new class as follows:

Release of a new version

Change the version of the software in setup.py. The version increment must
be take in account all the commits of the develop branch. You can check the
CHANGELOG.md to facilitate this process. Please, add the new tag within
the CHANGELOG.md file.

git checkout master
git merge --no-ff develop
git tag -a <new-tag>
git push origin <new-tag>

DevOps

A high level description of agilepy’s devops is in the image below:

apTool = AP("AG_ap", self.logger)
apTool.configureTool(self.config)
if not apTool.allRequiredOptionsSet(self.config):
 raise ScienceToolInputArgMissing("Some options have not been
products = apTool.call()

This scheme workflow produces three images:

base_image: It’s an image with all the dependencies except Agilepy
python library, it’s used for developing purposes only by developers.
Base image is built after a new commit in agilepy-recipe repository.
latest code image: It’s the base_image with Agilepy’s develop branch
at latest commit, useful for using or testing agilepy’s updates not
officially released. This image is not supported nor stable and is built
by dockerhub after github’s testing pipelines are successful.
released image: The base_image with Agilepy’s release tag. By
default the community shall be download this image. It’s built when a
new tag is created.

Index
A | D

A

AP_filter()
(utils.AstroUtils.AstroUtils static
method)

AstroUtils (class in
utils.AstroUtils)

D

distance() (utils.AstroUtils.AstroUtils static method)

AG_add_diff

AG_checkMapValue

AG_multi
AG_multi is a command line application running under Linux 64 bits, or
Mac OS X. The aim of this application is to find the best values for the flux,
the position and/or the spectral index of a list of gamma ray sources to
explain a set of experimental data. The user will provide a list of maps
containing maps of photons detected by the AGILE satellite during one or a
series of observations, together with maps of the instrument exposure
during those observations and the corresponding Galactic diffuse emission
models. The user will also provide a list of sources that may explain the
photons detected, giving a guess for the flux, position and spectral index of
those sources. AG_multi will find the best values for the sources to fit the
data using the method of maximum likelihood, estimating the improved
likelihood due to the presence of each source in the list. The user has a
variety of options to influence the process as explained in the following.

The Command Line

The command line is internally managed by the parameter interface library
(PIL) developed by the INTEGRAL Science Data Centre (ISDC). Each
command line option is described by a .par file, AG_multi.par in this case, a
sample of which comes with the distribution. The environment variable
PFILES should be defined in your account, pointing to the directory where
the file AG_multi.par resides. The user has two ways to specify the option
values in the command line. One is to specify the option name and its value
(in any order), the other is to give just the option values in the order they
appear in the .par file. For example

AG_multi option1=value1 option2=value2 option3=value3...

or

AG_multi4 value1 value2 value3...

If any of the command line options are missing, AG_multi will prompt the
user to either confirm the previously used value or to provide a new one.
The values used in the current session will be stored and used in the next
session. This behaviour depends on the .par file that comes with the
distribution, which the user may change. Refer to the PIL library online
documentation for all the details.

List of parameters:

Name Type Description

maplist String
Name of a text file
containing the list of
the maps

sarfile String SAR file name

edpfile String EDP file name

psdfile String PSD file name

ranal Real Radius of analysis
(degrees)

galmode Integer Galactic parameter
mode

isomode Integer Isotropic parameter
mode

Name Type Description

srclist String

The name of a text file
containing the the list
of the gamma ray
sources to fit to the list
of maps above.

outfile String

The name of the main
text output file - the
title of the HTML
output - the prefix of
the other output file
names.

ulcl Real Upper limit confidence
level

loccl Real Location contour
confidence level

Input files

A detailed description of the input files of the MLE is provided here .

Output files

A detailed description of the output files of the MLE is provided here .

Technical Documents

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/mleinput.html
file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/sciencetools/mleoutput.html

PSF_generation.pdf

file:///tmp/calibre_4.99.4_tmp_9etk7rfu/n78o4x81_pdf_out/_static/pdf/PSF_generation.pdf

AG_multiext

AG_multisim

AG_multiterative

