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ABSTRACT

Time-delay cosmography can be used to infer the Hubble parameter Hy by measuring the relative time delays between multiple
images of gravitationally lensed quasars. A few of such systems have already been used to measure Hy: Their time delays were
determined from the light curves of the multiple images obtained by regular, years long, monitoring campaigns. Such campaigns
can hardly be performed by any telescope: many facilities are often oversubscribed with a large amount of observational requests
to fulfill. While the ideal systems for time-delay measurements are lensed quasars whose images are well resolved by the
instruments, several lensed quasars have a small angular separation between the multiple images, and would appear as a single,
unresolved, image to a large number of telescopes featuring poor angular resolutions or located in not privileged geographical
sites. Methods allowing to infer the time delay also from unresolved light curves would boost the potential of such telescopes and
greatly increase the available statistics for Hy measurements. This work presents a study of unresolved lensed quasar systems
to estimate the time delay using a deep learning-based approach that exploits the capabilities of one-dimensional convolutional
neural networks. Experiments on state-of-the-art simulations of unresolved light curves show the potential of the proposed

method and pave the way for future applications in time-delay cosmography.

Key words: gravitational lensing: strong —methods: statistical —distance scale.

1 INTRODUCTION

The Hubble parameter Hy, quantifying the current expansion rate of
the universe, is a major component of cosmological models, which
can be tested by its determination. To date, measurements of Hj, from
different observations have led to a tension on its estimated value.
In particular, early universe observations of the CMB anisotropies
(e.g. from the Planck satellite; Aghanim et al. 2020) have measured
Hy = 67.4 £+ 0.5 km s~' Mpc~!, whereas late universe probes such
as the distance ladder (Riess et al. 2019) give Hy = 74.03 £ 1.42 km
s™! Mpc™!, resulting in a tension of about 4.40 (Verde, Treu &
Riess 2019; Beenakker & Venhoek 2021; Di Valentino et al. 2021).
As first pointed out by Refsdal (1964), an additional method to
determine H, is time-delay cosmography, which exploits the fact
that the time delay (AT) between multiple images of gravitationally
lensed quasars (GLQs) is directly related to the Hubble parameter.
The most relevant results obtained via time-delay cosmography come
from the HOLiCOW collaboration (Wong et al. 2019), who has found
Hy = 73.3" 4 kms~! Mpc~! from a sample of six GLQs monitored
by the COSMOGRAIL project (Millon et al. 2020). This result,
combined with the other late universe observations (Riess et al. 2019),
enhances the Hy tension up to 5.30. However, a more recent analysis
from TDCOSMO + SLACS (Birrer et al. 2020), has found Hy, =
67.4%3) km s~! Mpc~!, relaxing the tension and demonstrating the
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importance of a better understanding of the mass density profiles of
the lenses. In this context, further studies including more systems are
needed for a more precise estimation of the Hy parameter (Birrer &
Treu 2020). In fact the fractional error on H, for an ensemble of N
GLQs, is related to the uncertainties in the time-delay measurement,
o a7, line-of-sight convergence, o0, and lens surface density, o,
as (Tie & Kochanek 2017):

2 24,2 4 g2
i Oar/AT? + ojg + o
H} N

: ()]

where the first two terms are dominated by random uncertainties and
their contributions scale as N~/2. There are therefore two ways of
reducing the uncertainty on Hy: 1) by reducing the contribution of
random uncertainties, 2) by increasing the size N of the analysed
GLQ sample.

The main contribution to random uncertainties is given by the
microlensing effect (Tie & Kochanek 2017): massive objects (such
as giant stars, black holes, etc.) present in the lensing system, can
partially absorb, deflect or magnify the light coming from the source.
This yields changes in the light curves that can mistakenly be
exploited to estimate Az. With respect to the size of the sample
N, to date, an ensemble of about 220 GLQs is available,! however,
only a very small subset with well-separated multiple images has
been used to measure Hy. Indeed, larger-separation systems benefit

Thttps://research.ast.cam.ac.uk/lensedquasars/index.html.
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Figure 1. The number of images and image separation for the population
of known gravitationally lensed quasars. Top left-hand panel: distribution of
known GLQs as a function of the number of multiple images. Top right-hand
panel: distribution of known GLQs as a function of the maximum image
separation. Bottom panel: Gaia DR2 magnitudes of the multiple images
versus the maximum image separation for lensed systems with up to four
multiple images (left-hand panel); a zoom in the region 05 arcsec is shown
in the right-hand panel. The different colors of the dots identify each of the
multiple images, from 1 to 4. The grey region contains 70 per cent of the total
GLQ sample.

of better resolved space-based data, which, in turn, allow for better
constraints on the mass models; moreover, it is easier to monitor
brighter systems and to obtain their time delays. Therefore, it is easier
and safer to extract information from such well-resolved systems, and
consequently reduce the uncertainty on Hy. Fig. 1 (bottom panel)
shows the magnitude of the multiple images versus the maximum
image separation for the known GLQs: systems falling in the grey
region, which represents 70 per cent of the total sample, have a
maximum image separation below 2 arcsec. The image separation
peaks indeed at around 1 arcsec (Oguri & Marshall 2010; Collett
2015), making the smaller and harder to observe systems the most
numerous GLQs in future surveys.

The ideal instruments to perform lensed quasar monitoring have
high sensitivity, an optimal geographical location (where the effects
of atmospheric turbulence are less prominent), and a high angular
resolution optimized with the usage of state-of-the-art adaptive
optics systems. However, because of the time-scales of the intrinsic
variations of the sources, which can be of the order of years, such
observation campaigns should last several observing seasons (Millon
et al. 2020). Consequently, due to the amount of observational
requests that the best performing telescopes have to fulfill, they
can hardly be employed for such monitoring purposes. On the
other hand, small/medium sized telescopes (*1-2 m or smaller) can
often guarantee a better availability of observational time for this
purpose (Borgeest et al. 1996). Unfortunately, their already reduced
sensitivity can be further worsened by their often less privileged
geographical sites, in terms of clear nights and atmospheric seeing,
which can reach up to 3 arcsec (Karttunen et al. 2017). While a few
lensed quasars can be fully resolved by such facilities, and indeed
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time-delay curves have been provided by them (e.g. the 1.2-m Euler
Swiss telescope at ESO La Silla), still the majority of the already
known GLQs, together with future discoveries, will mainly appear
as a single image for these telescopes.

The identification of more strongly lensed quasars from unresolved
light curves can clearly boost the outcome of upcoming surveys but
it represents a challenging problem because of the limited angular
resolution of wide surveys: proposals have been made to identify
lensed systems even from not fully resolved light curves (see for
example Shu, Belokurov & Evans 2021; Springer & Ofek 2021).
Light curves from resolved sources are then analysed using point
estimators to derive time delays (Tewes et al. 2012); a recent proposal
was advanced to deal with the unresolved cases, based on minimizing
fluctuations in the reconstructed light curves (Bag et al. 2022).

This work proposes a novel approach to estimate the time delay
in unresolved GLQ light curves based on deep learning (DL) algo-
rithms. DL is an emerging field of machine learning that has reached
state-of-the-art performance in several applications. Cosmology and
astrophysics will also benefit from the application of DL techniques,
in particular in light of the need for more efficient data analysis
tools and the unprecedented amount of information expected from
the launch of several upcoming surveys, such as the Vera Rubin
Observatory (Abell et al. 2009).

For simplicity, the usage of DL on GLQ light curves in this work
only focuses on unresolved image pairs, which can come either from
doubly or quadruply lensed GLQs. This choice is further motivated
by the fact that about 85 per cent of the already known systems are
doubles (Oguri & Marshall 2010; Collett 2015), as shown in Fig. 1
(top left-hand panel).

The paper is structured as follows: Section 2 describes the DL-
based method used for evaluating the time delay between unresolved
multiple images, Section 3 describes generating the simulated light
curves needed for training the DL algorithm, and Section 4 shows
the results of the proposed method on a test data set.

2 TIME-DELAY ESTIMATION WITH DL

The method here adopted exploits the ability of modern convolu-
tional neural networks (CNNs; Bengio & Lecun 1997) to extract
informative features directly from raw data; they work in an end-to-
end fashion given a supervised-learning task of interest that uses
a pre-trained model. In this case, the task is the estimation of
the time-delay between two unresolved quasar light curves. The
approach is motivated by the surprisingly good performance of
Machine Learning and, in particular, DL methods in a wide range
of engineering fields, including astrophysics and cosmology: In
addition to automated tasks on the large data sets of wide survey
experiments (see e.g. Cabrera-Vives et al. 2016; George, Shen &
Huerta 2017; Kimura et al. 2017; Schawinski et al. 2017; Sedaghat &
Mabhabal 2018; Shallue & Vanderburg 2018), DL is also proposed
to analyse time series (e.g. Reimers & Requena-Mesa 2020; Wei &
Huerta 2021).

Most of these techniques are based on the supervised learning
paradigm, i.e. when labelled data are available and the algorithm
can rely on explicit supervision signals. In the case of most DL
algorithms, the extent of such supervision is often significant,
meaning that large labelled data sets are needed for effective learning.
This scenario often results in excellent performances when labelled
data are abundant and their collection is easy and not expensive.
However, these conditions are not always satisfied and, in absence
of aforementioned labelled data sets, one must resort to either
unsupervised or self-supervised learning strategies, for which only
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unlabelled data are used, or to synthetic data generation in order to
produce the desired labelled data sets in such a way that the artificial
data resemble the real ones as much as possible.

This work follows the latter approach: the training data are
manually constructed via a physics-based lens simulator described
in Section 3. The benefit of such an approach is that, depending
on the available computational resources, arbitrarily large data sets
can be generated. On the other hand, the obvious downside is that
the performance of the model at inference time, i.e. when tested on
real data, will be strongly dependent on the degree of fidelity of the
artificial data with respect to the real ones. This problem is also known
as sim2real gap (Heiden et al. 2020; Zhao, Queralta & Westerlund
2020) and it is a very important aspect in many disciplines, including
robotics and computer vision. This work shows that, given an as
accurate as possible simulator, a fully data-driven CNN is able
to retrieve the time delay from a single time series representing
the overlap between two unresolved light curves. The approach is
modular in the sense that, if a more precise simulator is available, it
can simply be replaced and used to generate new data to retrain the
CNN models with it.

Furthermore, available models in the literature have yielded
state-of-the-art results in the context of time-series classification
and regression. Here, such approaches are used with very little
variations compared to their original form; significant changes in the
architectures will not be needed in order to obtain the desired results,
even in presence of data generated from a different simulator. In the
following, the choice of CNNs as data-driven models is motivated
and the basic principles behind their architecture is discussed. Finally,
the design choices and the training procedure are described.

2.1 Convolutional neural networks

CNNs (Bengio & Lecun 1997) have been initially proposed in the
context of Computer Vision applications, such as image classification
(Krizhevsky, Sutskever & Hinton 2012) and segmentation (Sultana,
Sufian & Dutta 2020). They differ from standard fully connected
neural networks (where each node in a certain layer is linked to
any other node in the subsequent one) since they implement a
convolution operation conferring them two biologically inspired
properties, namely weight sharing and local connectivity. The first
results in the same weights being applied repeatedly to different areas
of the input data, whereas the second imposes that the action of such
weights is realized only locally, on small regions of the input space.
Modern CNNs consist of multiple stacked layers implementing the
aforementioned operation in a hierarchical fashion.

Besides Computer Vision, CNNs have been also fruitfully applied
to time-series regression and classification (He et al. 2015; Fawaz
et al. 2020). The main difference compared to the standard CNNs
applied to Computer Vision problems is that, in the case of time se-
ries, the filters used by the neural network are now one-dimensional.
The choice of such networks for time-series analyses is motivated
by the structural assumptions (or inductive biases) at the basis of the
design of CNN models. Indeed, deep CNNs implement a series of
convolutions at each level of the hierarchy along their depth. They
work by extracting local features from the input raw data, whose
representation assumes increasingly higher levels of complexity
as we move along the deeper layers of the network. Our basic
assumption is, therefore, that eventual traces of the magnitude of the
time delay between two curves manifest themselves at a local level,
motivating the choice of CNN as feature extractor. The application
of CNNss to the problem of time-delay estimation is described in the
following paragraph.
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Figure 2. Overview of the proposed methodology.

2.2 Time-delay estimation with CNNs

The input of the CNN models consists of a time series representing
an unresolved quasar light curve x = {x,}_,, where T is the length
of the sequence. The output of the model is a real number y € R
representing the time delay between the two superimposed curves
that went into creating the input time series.

Models are trained by a generated data set D = {x;, y,—}{V:l, where
N is the total number of training examples and y; is the ground-truth
time delay associated with the ith training instance. This initial data
set is splitinto three parts, namely a training data set, D, a validation
data set, Dy,, and a testing data set, D,,. The first is used to train
the weights of our model, the second to check the generalization
performance during training, and the last one to evaluate the model
once the training phase is terminated. Such a splitting is necessary to
monitor the occurrence of the so-called overfitting phenomenon, i.e.
when the neural network simply memorizes the training set and does
not generalize outside the training distribution. Fig. 2 summarizes
the used methodology. The artificial data, that will be detailed later,
are used to train the CNN model. Inference is then performed on the
original non-resolved light curves using the trained model.

The mean-squared error (MSE) is used as a loss function, i.e. to
measure the error the network is making in predicting y instead of

y:
1 N
— S v)2
L= N ;:l(yt i) (2)

During training, the weights of the network are varied so that the
value of this loss is minimized. This process is realized by the back-
propagation algorithm, which allows for the efficient calculation of
the gradients of the loss function with respect to the weights in the
network. The optimization algorithm used for minimizing the loss is
called stochastic gradient descent, and the popular Adam (Kingma &
Ba 2015) variant of this algorithm is used here with a learning rate
of 1073; a batch size of 50 is selected. The network is periodically
evaluated on the validation set during training and via checks on
its performance in terms of MSE. As commonly done in practice,
whenever the validation loss decreases, the weights of the network
at that step of training are saved.

2.3 Models

Three different CNN models are tested to perform the time-delay
estimation task. The first two, namely ResNet (He et al. 2015)
and InceptionTime (Fawaz et al. 2020), are the results of recent
research efforts in the area of time-series classification and are
adapted to our scope with minimal changes compared to their original
implementation.

The choice of the first two models is motivated by the fact that
one of the goals of this work is to show that state-of-the-art neural
networks for time-series analysis can be efficiently applied with
minor modifications to a challenging cosmological problem. The
main innovation introduced by these two models stands in their use

MNRAS 515, 5665-5672 (2022)
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of the residual connections that facilitate the propagation of gradients
even in relatively deep networks, without incurring in the so-called
vanishing/exploding gradient problems, by introducing elements like
bottleneck layers and allowing for multiple filters of different lengths
to be applied simultaneously to the same input time series.

Inception modules have a slightly more complex structure com-
pared to Resnet modules that are mainly made of simple fully
convolutional layers (McNeely-White, Beveridge & Draper 2020).
More details on the specifics of the architectures of these two models
can be found in Ref. He et al. (2015) and Fawaz et al. (2020).

The original implementations of these models are adapted to the
regression setting by changing the dimension of the output layer
to one. To the best of the authors’ knowledge, this is the first time
ResNet and InceptionTime have been applied to a problem involving
time-series in the context of cosmology and we hope our work can
be inspirational for future applications of such models.

The third model, simply labelled generically ‘CNN’ in the follow-
ing, is a relatively standard deep fully convolutional network without
residual connections and it is fine-tuned to maximize the performance
on the validation set: In this way we can compare the results obtained
with a fine-tuned network with those from not-fine-tuned ones. This
CNN consists of 13 convolutional layers, each with 14 filters of size
17 and 3 linear layers mapping the output of the convolutional blocks
into the final output. Batch-Normalization (Ioffe & Szegedy 2015)
and ReLU (Agarap 2019) activations functions are used after each
convolutional layer.

3 GENERATION OF MOCK LIGHT CURVE
DATASETS

Mock data of the lensed systems are used to generate the training
set required by the DL algorithm. Specifically, the MOLET? software
package (Vernardos 2022) is used to generate light curves of GLQs
multiple images. MOLET allows to include the microlensing effect
that affects the time-delay estimates and is thought to be constantly
present (Millon et al. 2020). Fig. 1 in Vernardos (2022) illustrates the
flow chart of MOLET: It receives in input different information such as
cosmological and astrophysical parameters of the lensed system, the
intrinsic light curves of the source, magnification maps, the telescope
parameters, and a realistic observational plan accounting for daily
and seasonal gaps.

In this work, two systems with different features have been
simulated. Such systems are broadly representative of the various
known lensed quasars. The first one, hereafter denoted as system
A, is a basic test-system for an AGN point source with a simple
intrinsic variability and with microlensing. The second system is RXJ
11311231 (Claeskens et al. 2006), hereafter denoted as system B
for brevity.

For the intrinsic variability of the quasars, the Damped Random
Walk (DRW) provides a sufficient and widely accepted description
of AGN variability (MacLeod et al. 2010). Assigning a value to its
two main parameters — the characteristic time-scale and variance,
which are eventually correlated with the supermassive black hole
mass and the absolute quasar magnitude — allows one to generate
many realizations of statistically equivalent AGN variability. Such
realizations are shown in Fig. 3 for two gravitational lenses with
quite different intrinsic variability, QJ0158 and RXJ1131, obtained
by fitting the DRW model to the observed light curve. The values of

Zhttps://github.com/gvernard/molet.

MNRAS 515, 5665-5672 (2022)

System A - Mag

e e m e e
o o o o [}
- [N] w » wn

=
o
=)

0 1000 2000 3000 4000 5000 6000 7000

ag
—
*®
S

-
e
[N}

RXJ 1131-1231-M
= I~
~ ©
© =]

0 1000 2000 3000 4000 5000 6000
t [days]

Figure 3. Assumed intrinsic variability of the quasar point source of system
A (top panel) and RXJ 1131—1231 (bottom panel).

the characteristic time-scale and the variance are 817 d and 20 (Paic
et al. 2022) and 80 d and 13, respectively.

The microlensing light curves of System A are generated from
magnification maps using the ‘moving disc’ model (Cornachione
et al. 2020) as it is the most commonly used quasar microlensing
variability model: It consists of a fixed accretion disc brightness
profile that is crossing the magnification map at a given velocity. The
intrinsic variability is assumed to take place simultaneously across
the entire disc, scaling its brightness up or down.

For System B, the intrinsic variability of the quasar is obtained
as a realization of a Damped Random Walk with the characteristic
time-scale and variance parameters derived from the observed light
curve of RXJ 1131—1231 (Vernardos 2022).

Both system A and B consist of four multiple images: here they
will be combined in pairs to mimic an unresolved doubly imaged
quasar.

To properly simulate the observed light curves, MOLET needs the
intrinsic variability of the quasar sources. The two simulated systems
feature distinct intrinsic variabilities, as shown in Fig. 3, represen-
tative of two typical regimes for lensed quasars. The magnification
maps needed by the second step of the MOLET simulation are available
for both systems from the GERLUMPH resource (Vernardos et al.
2014). Finally, the last step of the MOLET run accounts also for the
assumed instrumental gaps (daily or seasonal) to simulate a realistic
campaign from an optical telescope. More details on the simulation
of system B can be found in Vernardos (2022).

MOLET has been used to build the mock up data for each system
by fixing the time delay for each simulation to a random value in
the range [0—40] d: In this way, 2000 simulations of system A, and
8000 simulations of system B have been obtained. Each simulation
produced four resolved light curves, one for each multiple image. The
original output of the mock simulation is continuous light curves:
these must then be made discrete and noise must be added to them
as well. Since the goal of our work is to measure the time delay in

3D. Sluse private communication. See also Sluse & Tewes (2014).
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unresolved doubly imaged systems, the separate continuous mock
data curves have to be added up in pairs to obtain a single light curve
that mimics an unresolved doubly imaged GLQ. In this way, a total of
six realizations of a single unresolved light curve of a doubly imaged
quasar are obtained from the individual light curves of the four images
of the original GLQ. Each of these six light curves is characterized
by a different time delay, which is given by the absolute difference
of the time delays of the underlying light curves. The combination
of the light curves is performed adopting the following definition of
the magnitude of a generic source X:

magy = —2.5log;, Fx + K, 3)

where Fy is the flux of the source X, i.e. the energy per unit time
per unit area incident on the detector, and the constant K defines
the zero-point of the magnitude scale. When two images A and B
of a GLQ cannot be resolved, a single image O will appear on the
detector, with a flux given to a first approximation by the sum Fyp =
F4 + Fp of the fluxes of the two overlapping images. According to
equation (3), the corresponding magnitude is

mag, (1) = —2.5log,, (Fa(t) + Fp(t + At)). )

If B is delayed by Ar with respect to A, the information about the
time-delay At is still present in the features of the light curve of the
image sum O. Such information needs to be properly extracted as it
is hidden by the microlensing effect.

It is important to emphasize here that obtaining an unresolved
doubly lensed curve with this procedure from a quadruply lensed
system is a simplification of the reality: Indeed, the resulting
distribution of magnification ratios can be different from the expected
distribution of magnification ratios for double lenses. If all the pairs
of multiple images are used, in some case magnification ratios deviate
significantly from one such that one of the images are much fainter
than that of the other image. However, the scope of this work is to
test for the first time the ability of ML methods to retrieve the time
delay from a single time series represented by the overlap between
two unresolved light curves. Therefore, the simple assumption made
in this paper is consistent with the goal of the work. A more realistic
realization of an unresolved doubly lensed quasar is a topic that
deserves to be separately investigated with a deeper training involving
both doubly and quadruply imaged quasars.

Using all the various possible combinations in pairs of the multiple
images has allowed to get 6 x 2000 = 12 000 unresolved light curves
for system A and 6 x 8000 = 48000 unresolved light curves for
system B. Fig. 4 shows 10 light curves for each system, randomly
chosen from the whole simulation sets, for illustrative purposes. The
total duration of the simulated campaign is 3086.68 d, which is
approximately 8.46 yr with a sampling of 599 data points in time.
The average sampling interval is 5 d: It is important to emphasize
that the DL algorithms used in this work need a regularly sampled
data set. For this reason, the realistic sampling intervals typical of a
real observational campaign, which contain daily and seasonal gaps,
have not been included in this analysis. It is however possible to
eventually fill realistic gaps with interpolating algorithms such as
Gaussian Processes. The disadvantage is that, for seasonal gaps, the
interpolated shape of the curves may be highly different than the real
one, since the gap can last weeks, if not months. The goal of this
work is to show the potential of DL without introducing biases from
interpolations and this has motivated the choice of the used sampling
points.
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Figure 4. Continuous sample light curves for system A (top panel) and
system B (bottom panel). The light curves have been randomly chosen from
the whole simulation sets for illustrative purposes. Therefore, the observed
differences are due to the fact that each of them comes from a different
simulation, with different microlensing effects. The simulation period covers
about 8.5 yr of data taking.

4 RESULTS

The results on the performance of the three proposed CNN architec-
tures on the fest data, i.e. light curves that our models have never
seen during their training phase, are here reported. The goal is to
verify their level of generalization on new test curves extracted from
the same distribution as the training data. Note that, since the test
data are generated with the same simulation engine used to produce
the training set, here the out-of-distribution generalization ability of
our algorithm is not tested, i.e. we do not test its robustness with
respect to the sim2real gap phenomenon.

The performance of the models on both systems A and B is
analysed at different levels. The first evaluation studies the error
distribution fpegicied — firue between the predicted time delay and the
ground truth, i.e. the time delay used to construct the training set.
Given that the optimizer we use has a stochastic component in its
operation, the outcome of the training can be slightly different from
one run to another, so several training runs are performed for each
model and, for this experiment, the best performing one for each
architecture is selected. The kernel density estimation (Silverman
1986; Scott 1992) is used to approximate the error distributions
for each model and each system. The results are shown in Fig. 5.
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Figure 5. Kernel density estimation of the error distributions on the test set
provided by our CNN model (blue), InceptionTime (red), and ResNet (green),
for the system A (top panel) and system B (bottom panel).

For both systems, the distribution provided by the CNN model is
much narrower and symmetric around zero, that is the predicted time
delay is closer to the input time delay. ResNet seems to outperform
InceptionTime, even though both provide broader and more skewed
curves.

As a second evaluation, the distribution of the r? coefficient
of determination (Silverman 1986; Scott 1992) is investigated to
establish to what extent prediction and ground truth are aligned. The
r? score represents the fraction of the variance of a dependent variable
that can be predicted from the independent variables and is then a
metric used to evaluate the goodness of fit of a regression model, a
value of 1 being the ideal case. For each system, each model is trained
20 times and the performance of each trained model is assessed on the
test set in terms of the r? score. Fig. 6 shows the resulting probability
density of the data at different values, the so-called ‘violin plots’: In
both cases, our CNN yields ? scores closer to 1. However, in the
case of system A, the > distribution of our CNN is characterized by
a slightly larger variance, resulting in an overlap with the ResNet 12
distribution. Inception is outperformed by the other two baselines in
both systems and, in the case of system B, it produces a high variance
distribution with realizations ranging between a minimum of 0.6 and
a maximum of 0.8 7% scores.
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CNN incebtion resnet

CNN incebtion resnet
Figure 6. 12 score distributions provided by the three considered models, for
system A (top panel) and system B (bottom panel).

In summary, the analysis in terms of error distribution and 7
score highlights that all models provide very good performances
on both systems. It is important to emphasize that InceptionTime
and ResNet were not fine-tuned, in order to keep them the same
as the original implementations from the literature. This was done
on purpose to showcase the flexibility of these models to work
on very heterogeneous types of data. We therefore expect their
performance to further improve with more careful architectural and
hyperparameter design choices.

After having verified that the proposed methods generalize well
on the test set, their robustness is assessed when noise is injected
in the data. To this extent, we perturb the original time series with
a zero-mean Gaussian noise with standard deviation o € {0.00001,
0.0001, 0.001, 0.002, 0.004, 0.006, 0.008, 0.009}. These values
have been selected so that the main structural properties of the
resulting light curves are not altered too much by the injection of
noise and their macroscopic visual appearance is roughly preserved.
This operation effectively introduces a bias between training and
testing distributions, whose severity depends on the intensity of the
perturbation. Fig. 7 shows how the r? score of each model decreases
as the standard deviation of the Gaussian noise increases. Again,
generally the CNN outperforms the other models. However, in system
A, its curve tends to align with the InceptionTime one as the noise
level increases. Interestingly, the CNN model seems to be more
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Figure 7. 1 scores for the three models as injected noise standard deviation
increases, for system A (top panel) and system B (bottom panel).

robust on system B, providing satisfactory values of the 7 score
even for relatively large noise standard deviations. In general, the
performance of the three models on system A seems to be much
more sensitive to noise perturbation than that obtained by the models
on system B. We do not have a satisfactory explanation for that yet:
One likely possibility is that it depends on the difference in the size of
the data sets associated with the two systems, but more investigations
are needed to draw a firm conclusion.

As a last experiment, we study how the previous analysis changes
if we train our best performing CNN on data perturbed by noise at
variable standard deviations. To do so, at training time for each batch
of data, we randomly sample a value for the noise standard deviation
from a uniform distribution between 107> and 10~ and we feed the
corrupted data into the network. Once training is over, we repeat the
previous experiments. The results for system A and system B are
shown in Fig. 8.

The result of injecting noise at training time is a model that is
more robust to perturbations in the test data. On the other hand,
this positive effect is obtained at the price of a slight degradation in
performance when the noise level is low. This experiment suggests
that randomly injecting noise in the data at training time in this case
represents an effective strategy to obtain more robust models.

In light of the presented experiments, the proposed CNN archi-
tectures appear to guarantee satisfactory performance on the task
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Figure 8. /2 scores for our CNN model trained with random noise injection
as noise standard deviation increases, for system A (top panel) and system B
(bottom panel).

of predicting the time delay from unresolved quasar light curves.
Overall, the CNN model proposed here seems to outperform the
others even though more fine-tuning and more carefully designed
choices might eventually close this gap.

5 CONCLUSIONS

In this work, a new class of DL-based methods has been used to
extract the time delay between GLQs unresolved light curves. The
method is motivated by the existing tension on the estimated values
of Hy, which can only be resolved by reducing the uncertainty on
H,. In this respect, there is the necessity to increase the number
of analysed GLQs by processing and extracting information from
unresolved quasar light curves, which can be typically provided
by small/medium telescopes. The obtained results show that the
proposed approach performs nicely on mock data describing two
different lensed quasar systems. Moreover, it has several advantages
compared to classical approaches: First, it is designed to process
unresolved light curves that represent the majority of the data that
small/medium sized telescopes are expected to provide. Secondly,
the method is fully data-driven: Its performances scale easily with
the data set size and it makes little to no assumptions on the nature
of the time-delay estimation problem.
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On the other hand, the current implementation is still affected
by some limitations that open new interesting research questions.
Most importantly, the method is highly reliant on the quality of the
simulated data and on their level of fidelity with respect to real quasar
light curves. It follows that, when applying the proposed approach
to real data, a degradation in performance shows up. This problem
is a manifestation of the sim2real gap phenomenon described in
Section 4. In order to alleviate it, the gap between simulated and real
data must be reduced as much as possible. One popular strategy to
cope with this problem is the technique of domain randomization
(Tobin et al. 2017; Peng et al. 2018; Chebotar et al. 2019; Prakash
et al. 2020), where large and very diverse data sets are generated
by randomizing the parameters of the simulator with the hope that,
when the model is deployed on real data, the new observations will
somewhat close to the randomized simulations the model has been
trained on.

On the other hand, the sim2real gap phenomenon, and in particular
the size of the discrepancies, can be exploited to assess the quality
of the simulated data: the better the performance of the network,
the closer the simulator grasps the details of the data it is trying to
emulate.

A further improvement to the method that will be investigated
in future works is to enable it to process also irregularly sampled
time series that are indeed commonly encountered in the context of
cosmological and astrophysical applications, because of unavailabil-
ities or outages of the instruments, for example. Finally, a future
extension of this work will deal with systems having N > 2 images:
In fact, a large amount of quadruply imaged GLQs is expected to be
detected in the future (Shu et al. 2021). We aim to investigate these
new research directions in future works.

ACKNOWLEDGEMENTS

Part of this work was supported by the German Deutsche Forschungs-
gemeinschaft, DFG project number Ts 17/2—1. GV has received
funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodovska-Curie grant
agreement No. 897124. The authors acknowledge support from
the ‘Departments of Excellence 2018-2022" Grant (L. 232/2016)
awarded by the Italian Ministry of University and Research (MUR).

DATA AVAILABILITY

The data underlying this paper will be shared on reasonable request
to the corresponding author.

REFERENCES

Agarap A. ., 2019, preprint (arXiv:1803.08375)

Aghanim N. et al., 2020, A&A, 641, A6

Bag S., Shafieloo A., Liao K., Treu T., 2022, Astrophys.J., 927, 2

Beenakker W., Venhoek D., 2021, preprint (arXiv:2101.01372)

Bengio Y., Lecun Y., 1997, Conference: The Handbook of Brain Theory and
Neural Networks. A Bradford Book, 978-0262011976

Birrer S. et al., 2020, A&A, 643, A165

Birrer S., Treu T., 2020, A&A, 649, A61

Borgeest U. et al., 1996, Examining Big Bang Diffuse Background Radia-
tions. Springer

Cabrera-Vives G. et al., 2016, International Joint Conference on Neural
Networks (IJICNN), p. 251

Chebotar Y., Handa A., Makoviychuk V., Macklin M., Issac J., Ratliff N.,
Fox D., 2019, preprint (arXiv:1810.05687)

MNRAS 515, 5665-5672 (2022)

Claeskens J. F., Sluse D., Riaud P., Surdej J., 2006, A&A, 451, 865

Collett T. E., 2015, ApJ, 811, 20

Cornachione M. et al., 2020, ApJ, 895, 125

Di Valentino E. et al., 2021, Class. Quantum Gravity, 38, 153001

Fawaz 1., Lucas B., Forestier G. et al., 2020, Data Min. Knowl. Disc., 34,
1936

George D., Shen H., Huerta E. A., 2017, Phys. Rev. D, 97, 10

He K., Zhang X., Ren S., Sun J., 2015, preprint (arXiv:1512.03385)

Heiden E., Millard D., Coumans E., Sukhatme G. S., 2020, preprint
(arXiv:2007.06045v1)

Toffe S., Szegedy C., 2015, preprint (arXiv:1502.03167)

Karttunen H., Kroger P., Oja H., Poutanen M., Donner K. J., 2017, Funda-
mental Astronomy. Springer-Verlag, Berlin and Heidelberg

Kimura A. et al., 2017, IEEE 37th International Conference on Distributed
Computing Systems Workshops (ICDCSW)

Kingma D. P, Ba J., 2015, preprint (arXiv:1412.6980)

Krizhevsky A., Sutskever 1., Hinton G. E., 2012, Proceedings of the 25th
International Conference on Neural Information Processing Systems —
Volume 1, NIPS’12, Curran Associates Inc., Red Hook, NY, p. 1097

LSST Science Collaborations: Abell P. et al., 2009, preprint
(arXiv:0912.0201)

MacLeod C. L. et al., 2010, ApJ, 721

McNeely-White D. G., Beveridge J. R., Draper B. A., 2020, Biologically
Inspired Cognitive Architectures 2019. Springer International Publishing,
Cham

Millon M. et al., 2020, A&A, 624, https://doi.org/10.1051/0004-6361/2020
38698

Oguri M., Marshall P. J., 2010, MNRAS, 405, 2579

Paic E., Vernardos G., Sluse D., Millon M., Courbin F., Chan J. H., Bonvin
V., 2022, A&A, 659, A21

Peng X. B., Andrychowicz M., Zaremba W., Abbeel P., 2018, 2018 IEEE
International Conference on Robotics and Automation (ICRA)

Prakash A., Boochoon S., Brophy M., Acuna D., Cameracci E., State G.,
Shapira O., Birchfield S., 2020, preprint (arXiv:1810.10093)

Refsdal S., 1964, MNRAS, 128, 307

Reimers C., Requena-Mesa C., 2020, Knowledge Discovery in Big Data from
Astronomy and Earth Observation. Elsevier, Amsterdam

Riess A. G. et al., 2019, ApJ, 876, 85

Schawinski K. et al., 2017, MNRAS, 467, 110

Scott D. W., 1992, Multivariate Density Estimation. Wiley, Hoboken, New
Jersey

Sedaghat N., Mahabal A., 2018, MNRAS, 476

Shallue C. J., Vanderburg A., 2018, AJ, 155

Shu Y., Belokurov V., Evans N. W., 2021, MNRAS, 502, 2912

Silverman B. W., 1986, Density Estimation for Statistics and Data Analysis.
Chapman and Hall/CRC, Boca Raton, Florida

Sluse, Tewes M., 2014, A&A, 571, A60

Springer O. M., Ofek E. O., 2021, MNRAS, 508, 3

Sultana F.,, Sufian A., Dutta P., 2020, DOI: https://doi.org/10.1016/j.knosys.2
020.106062

Tewes M. et al., 2012, A&A, 553

Tie S. S., Kochanek C. S., 2017, MNRAS, 473, 80

Tobin J., Fong R., Ray A., Schneider J., Zaremba W., Abbeel P., 2017, preprint
(arXiv:1703.06907)

Verde L., Treu T., Riess A., 2019, Nat. Astron., 3, 891

Vernardos G. et al., 2014, ApJS, 211, 16

Vernardos G., 2022, MNRAS, 511, 3

Wei W., Huerta E. A., 2021, Phys. Lett. B, 816, 136185

Wong K. C. et al., 2019, MNRAS, 498, 1420

Zhao W., Queralta J. P., Westerlund T., 2020, 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), p. 737

This paper has been typeset from a TEX/IZTEX file prepared by the author.

€202 YoJBN Z0 UO Jasn Jeur Aq ££88599/5996/1/S L §/BI0IHE/SEIUL/WO0"dNOOILBPEdE//:SAlY WOJj POPEOJUMOQ


http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/2101.01372
http://dx.doi.org/10.1051/0004-6361/202038861
http://dx.doi.org/10.1051/0004-6361/202039179
http://arxiv.org/abs/1810.05687
http://dx.doi.org/10.1051/0004-6361:20054352
http://dx.doi.org/10.3847/1538-4357/ab557a
http://dx.doi.org/10.1088/1361-6382/ac086d
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/2007.06045v1
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/0912.0201
https://doi.org/10.1051/0004-6361/202038698
http://dx.doi.org/10.1111/j.1365-2966.2010.16639.x
http://arxiv.org/abs/1810.10093
http://dx.doi.org/10.1093/mnras/128.4.307
http://dx.doi.org/10.3847/1538-4357/ab1422
http://dx.doi.org/10.1093/mnras/stab241
http://dx.doi.org/10.1051/0004-6361/201424776
https://doi.org/10.1016/j.knosys.2020.106062
http://dx.doi.org/10.1093/mnras/stx2348
http://arxiv.org/abs/1703.06907
http://dx.doi.org/10.1038/s41550-019-0902-0
http://dx.doi.org/10.1088/0067-0049/211/1/16
http://dx.doi.org/10.1093/mnras/stz3094

