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A B S T R A C T 

Time-delay cosmography can be used to infer the Hubble parameter H 0 by measuring the relative time delays between multiple 
images of gravitationally lensed quasars. A few of such systems have already been used to measure H 0 : Their time delays were 
determined from the light curves of the multiple images obtained by regular, years long, monitoring campaigns. Such campaigns 
can hardly be performed by any telescope: many facilities are often oversubscribed with a large amount of observational requests 
to fulfill. While the ideal systems for time-delay measurements are lensed quasars whose images are well resolved by the 
instruments, several lensed quasars have a small angular separation between the multiple images, and would appear as a single, 
unresolved, image to a large number of telescopes featuring poor angular resolutions or located in not privileged geographical 
sites. Methods allowing to infer the time delay also from unresolved light curves would boost the potential of such telescopes and 

greatly increase the available statistics for H 0 measurements. This work presents a study of unresolved lensed quasar systems 
to estimate the time delay using a deep learning-based approach that exploits the capabilities of one-dimensional convolutional 
neural networks. Experiments on state-of-the-art simulations of unresolved light curves show the potential of the proposed 

method and pave the way for future applications in time-delay cosmography. 

Key words: gravitational lensing: strong – methods: statistical – distance scale. 
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 I N T RO D U C T I O N  

he Hubble parameter H 0 , quantifying the current expansion rate of
he universe, is a major component of cosmological models, which 
an be tested by its determination. To date, measurements of H 0 from
if ferent observ ations have led to a tension on its estimated v alue.
n particular, early universe observations of the CMB anisotropies 
e.g. from the Planck satellite; Aghanim et al. 2020 ) have measured
 0 = 67.4 ± 0.5 km s −1 Mpc −1 , whereas late universe probes such

s the distance ladder (Riess et al. 2019 ) give H 0 = 74.03 ± 1.42 km
 

−1 Mpc −1 , resulting in a tension of about 4.4 σ (Verde, Treu &
iess 2019 ; Beenakker & Venhoek 2021 ; Di Valentino et al. 2021 ).
s first pointed out by Refsdal ( 1964 ), an additional method to
etermine H 0 is time-delay cosmography, which exploits the fact 
hat the time delay ( � T ) between multiple images of gravitationally
ensed quasars (GLQs) is directly related to the Hubble parameter. 
he most rele v ant results obtained via time-delay cosmography come 

rom the H0LiCOW collaboration (Wong et al. 2019 ), who has found
 0 = 73 . 3 + 1 . 7 

−1 . 8 km s −1 Mpc −1 from a sample of six GLQs monitored
y the COSMOGRAIL project (Millon et al. 2020 ). This result,
ombined with the other late uni verse observ ations (Riess et al. 2019 ),
nhances the H 0 tension up to 5.3 σ . Ho we ver, a more recent analysis
rom TDCOSMO + SLACS (Birrer et al. 2020 ), has found H 0 =
7 . 4 + 4 . 1 

−3 . 2 km s −1 Mpc −1 , relaxing the tension and demonstrating the
 E-mail: alba.domi@ge.infn.it 1
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mportance of a better understanding of the mass density profiles of
he lenses. In this context, further studies including more systems are
eeded for a more precise estimation of the H 0 parameter (Birrer &
reu 2020 ). In fact the fractional error on H 0 , for an ensemble of N
LQs, is related to the uncertainties in the time-delay measurement, 
� T , line-of-sight convergence, σ los , and lens surface density, σ [ k ] , 
s (Tie & Kochanek 2017 ): 

σ 2 
H 

H 

2 
0 

∼ σ 2 
�T /�T 2 + σ 2 

los + σ 2 
[ k] 

N 

, (1) 

here the first two terms are dominated by random uncertainties and
heir contributions scale as N 

−1/2 . There are therefore two ways of
educing the uncertainty on H 0 : 1) by reducing the contribution of
andom uncertainties, 2) by increasing the size N of the analysed
LQ sample. 
The main contribution to random uncertainties is given by the 
icrolensing effect (Tie & Kochanek 2017 ): massive objects (such 

s giant stars, black holes, etc.) present in the lensing system, can
artially absorb, deflect or magnify the light coming from the source.
his yields changes in the light curves that can mistakenly be
xploited to estimate � t . With respect to the size of the sample
 , to date, an ensemble of about 220 GLQs is available, 1 however,
nly a very small subset with well-separated multiple images has 
een used to measure H 0 . Indeed, larger-separation systems benefit 
 ht tps://research.ast .cam.ac.uk/lensedquasars/index.html . 
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M

Figure 1. The number of images and image separation for the population 
of known gravitationally lensed quasars. Top left-hand panel: distribution of 
known GLQs as a function of the number of multiple images. Top right-hand 
panel: distribution of known GLQs as a function of the maximum image 
separation. Bottom panel: Gaia DR2 magnitudes of the multiple images 
versus the maximum image separation for lensed systems with up to four 
multiple images (left-hand panel); a zoom in the region 0–5 arcsec is shown 
in the right-hand panel. The different colors of the dots identify each of the 
multiple images, from 1 to 4. The gre y re gion contains 70 per cent of the total 
GLQ sample. 
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f better resolved space-based data, which, in turn, allow for better
onstraints on the mass models; moreo v er, it is easier to monitor
righter systems and to obtain their time delays. Therefore, it is easier
nd safer to extract information from such well-resolved systems, and
onsequently reduce the uncertainty on H 0 . Fig. 1 (bottom panel)
hows the magnitude of the multiple images versus the maximum
mage separation for the known GLQs: systems falling in the grey
egion, which represents 70 per cent of the total sample, have a
aximum image separation below 2 arcsec. The image separation

eaks indeed at around 1 arcsec (Oguri & Marshall 2010 ; Collett
015 ), making the smaller and harder to observe systems the most
umerous GLQs in future surv e ys. 
The ideal instruments to perform lensed quasar monitoring have

igh sensitivity, an optimal geographical location (where the effects
f atmospheric turbulence are less prominent), and a high angular
esolution optimized with the usage of state-of-the-art adaptive
ptics systems. Ho we ver, because of the time-scales of the intrinsic
ariations of the sources, which can be of the order of years, such
bservation campaigns should last several observing seasons (Millon
t al. 2020 ). Consequently, due to the amount of observational
equests that the best performing telescopes have to fulfill, they
an hardly be employed for such monitoring purposes. On the
ther hand, small/medium sized telescopes ( ≈1–2 m or smaller) can
ften guarantee a better availability of observational time for this
urpose (Borgeest et al. 1996 ). Unfortunately, their already reduced
ensitivity can be further worsened by their often less privileged
eographical sites, in terms of clear nights and atmospheric seeing,
hich can reach up to 3 arcsec (Karttunen et al. 2017 ). While a few

ensed quasars can be fully resolved by such facilities, and indeed
NRAS 515, 5665–5672 (2022) 
ime-delay curves have been provided by them (e.g. the 1.2-m Euler
wiss telescope at ESO La Silla), still the majority of the already
nown GLQs, together with future disco v eries, will mainly appear
s a single image for these telescopes. 

The identification of more strongly lensed quasars from unresolved
ight curves can clearly boost the outcome of upcoming surveys but
t represents a challenging problem because of the limited angular
esolution of wide surv e ys: proposals hav e been made to identify
ensed systems even from not fully resolved light curves (see for
 xample Shu, Belokuro v & Evans 2021 ; Springer & Ofek 2021 ).
ight curves from resolved sources are then analysed using point
stimators to derive time delays (Tewes et al. 2012 ); a recent proposal
as advanced to deal with the unresolved cases, based on minimizing
uctuations in the reconstructed light curves (Bag et al. 2022 ). 
This work proposes a no v el approach to estimate the time delay

n unresolved GLQ light curves based on deep learning (DL) algo-
ithms. DL is an emerging field of machine learning that has reached
tate-of-the-art performance in several applications. Cosmology and
strophysics will also benefit from the application of DL techniques,
n particular in light of the need for more efficient data analysis
ools and the unprecedented amount of information expected from
he launch of several upcoming surv e ys, such as the Vera Rubin
bservatory (Abell et al. 2009 ). 
For simplicity, the usage of DL on GLQ light curves in this work

nly focuses on unresolved image pairs, which can come either from
oubly or quadruply lensed GLQs. This choice is further moti v ated
y the fact that about 85 per cent of the already known systems are
oubles (Oguri & Marshall 2010 ; Collett 2015 ), as shown in Fig. 1
top left-hand panel). 

The paper is structured as follows: Section 2 describes the DL-
ased method used for e v aluating the time delay between unresolved
ultiple images, Section 3 describes generating the simulated light

urves needed for training the DL algorithm, and Section 4 shows
he results of the proposed method on a test data set. 

 TIME-DELAY  ESTIMATION  WI TH  D L  

he method here adopted exploits the ability of modern convolu-
ional neural networks (CNNs; Bengio & Lecun 1997 ) to extract
nformative features directly from raw data; they work in an end-to-
nd fashion given a supervised-learning task of interest that uses
 pre-trained model. In this case, the task is the estimation of
he time-delay between two unresolved quasar light curves. The
pproach is moti v ated by the surprisingly good performance of
achine Learning and, in particular, DL methods in a wide range

f engineering fields, including astrophysics and cosmology: In
ddition to automated tasks on the large data sets of wide surv e y
xperiments (see e.g. Cabrera-Vives et al. 2016 ; George, Shen &
uerta 2017 ; Kimura et al. 2017 ; Schawinski et al. 2017 ; Sedaghat &
ahabal 2018 ; Shallue & Vanderburg 2018 ), DL is also proposed

o analyse time series (e.g. Reimers & Requena-Mesa 2020 ; Wei &
uerta 2021 ). 
Most of these techniques are based on the supervised learning

aradigm, i.e. when labelled data are available and the algorithm
an rely on explicit supervision signals. In the case of most DL
lgorithms, the extent of such supervision is often significant,
eaning that large labelled data sets are needed for ef fecti ve learning.
his scenario often results in excellent performances when labelled
ata are abundant and their collection is easy and not e xpensiv e.
o we ver, these conditions are not al w ays satisfied and, in absence
f aforementioned labelled data sets, one must resort to either
nsupervised or self-supervised learning strategies, for which only

art/stac2034_f1.eps
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nlabelled data are used, or to synthetic data generation in order to
roduce the desired labelled data sets in such a way that the artificial
ata resemble the real ones as much as possible. 
This work follows the latter approach: the training data are 
anually constructed via a physics-based lens simulator described 

n Section 3 . The benefit of such an approach is that, depending
n the available computational resources, arbitrarily large data sets 
an be generated. On the other hand, the obvious downside is that
he performance of the model at inference time, i.e. when tested on
eal data, will be strongly dependent on the degree of fidelity of the
rtificial data with respect to the real ones. This problem is also known
s sim2real gap (Heiden et al. 2020 ; Zhao, Queralta & Westerlund
020 ) and it is a very important aspect in many disciplines, including
obotics and computer vision. This work shows that, given an as
ccurate as possible simulator, a fully data-driven CNN is able 
o retrieve the time delay from a single time series representing 
he o v erlap between two unresolved light curves. The approach is
odular in the sense that, if a more precise simulator is available, it

an simply be replaced and used to generate new data to retrain the
NN models with it. 
Furthermore, available models in the literature have yielded 

tate-of-the-art results in the context of time-series classification 
nd regression. Here, such approaches are used with very little 
ariations compared to their original form; significant changes in the 
rchitectures will not be needed in order to obtain the desired results,
ven in presence of data generated from a different simulator. In the
ollowing, the choice of CNNs as data-driven models is moti v ated
nd the basic principles behind their architecture is discussed. Finally, 
he design choices and the training procedure are described. 

.1 Convolutional neural networks 

NNs (Bengio & Lecun 1997 ) have been initially proposed in the
ontext of Computer Vision applications, such as image classification 
Krizhe vsky, Sutske ver & Hinton 2012 ) and segmentation (Sultana, 
ufian & Dutta 2020 ). They differ from standard fully connected 
eural networks (where each node in a certain layer is linked to
ny other node in the subsequent one) since they implement a 
onvolution operation conferring them two biologically inspired 
roperties, namely weight sharing and local connectivity. The first 
esults in the same weights being applied repeatedly to different areas 
f the input data, whereas the second imposes that the action of such
eights is realized only locally, on small regions of the input space.
odern CNNs consist of multiple stacked layers implementing the 

forementioned operation in a hierarchical fashion. 
Besides Computer Vision, CNNs have been also fruitfully applied 

o time-series regression and classification (He et al. 2015 ; F a waz
t al. 2020 ). The main difference compared to the standard CNNs
pplied to Computer Vision problems is that, in the case of time se-
ies, the filters used by the neural network are now one-dimensional. 
he choice of such networks for time-series analyses is moti v ated
y the structural assumptions (or inductive biases) at the basis of the
esign of CNN models. Indeed, deep CNNs implement a series of
onvolutions at each level of the hierarchy along their depth. They 
ork by extracting local features from the input raw data, whose 

epresentation assumes increasingly higher levels of complexity 
s we mo v e along the deeper layers of the network. Our basic
ssumption is, therefore, that eventual traces of the magnitude of the 
ime delay between two curves manifest themselves at a local level, 
oti v ating the choice of CNN as feature extractor. The application

f CNNs to the problem of time-delay estimation is described in the
ollowing paragraph. 
.2 Time-delay estimation with CNNs 

he input of the CNN models consists of a time series representing
n unresolved quasar light curve x = { x t } T t= 1 , where T is the length
f the sequence. The output of the model is a real number ˆ y ∈ R
epresenting the time delay between the two superimposed curves 
hat went into creating the input time series. 

Models are trained by a generated data set D = { x i , y i } N i= 1 , where
 is the total number of training examples and y i is the ground-truth

ime delay associated with the i th training instance. This initial data
et is split into three parts, namely a training data set, D tr , a validation
ata set, D val , and a testing data set, D ts . The first is used to train
he weights of our model, the second to check the generalization 
erformance during training, and the last one to e v aluate the model
nce the training phase is terminated. Such a splitting is necessary to
onitor the occurrence of the so-called o v erfitting phenomenon, i.e.
hen the neural network simply memorizes the training set and does
ot generalize outside the training distribution. Fig. 2 summarizes 
he used methodology. The artificial data, that will be detailed later,
re used to train the CNN model. Inference is then performed on the
riginal non-resolved light curves using the trained model. 
The mean-squared error (MSE) is used as a loss function, i.e. to
easure the error the network is making in predicting ˆ y instead of
 : 

 = 

1 

N 

N ∑ 

i= 1 

( ̂  y i − y i ) 
2 . (2) 

uring training, the weights of the network are varied so that the
alue of this loss is minimized. This process is realized by the back-
ropagation algorithm , which allows for the efficient calculation of 
he gradients of the loss function with respect to the weights in the
etwork. The optimization algorithm used for minimizing the loss is 
alled stochastic gradient descent, and the popular Adam (Kingma & 

a 2015 ) variant of this algorithm is used here with a learning rate
f 10 −3 ; a batch size of 50 is selected. The network is periodically
 v aluated on the validation set during training and via checks on
ts performance in terms of MSE. As commonly done in practice,
hene ver the v alidation loss decreases, the weights of the network

t that step of training are saved. 

.3 Models 

hree different CNN models are tested to perform the time-delay 
stimation task. The first two, namely ResNet (He et al. 2015 )
nd InceptionTime (F a waz et al. 2020 ), are the results of recent
esearch efforts in the area of time-series classification and are 
dapted to our scope with minimal changes compared to their original 
mplementation. 

The choice of the first two models is moti v ated by the fact that
ne of the goals of this work is to show that state-of-the-art neural
etworks for time-series analysis can be efficiently applied with 
inor modifications to a challenging cosmological problem. The 
ain innovation introduced by these two models stands in their use
MNRAS 515, 5665–5672 (2022) 

art/stac2034_f2.eps


5668 L. Biggio et al. 

M

o  

e  

v  

b  

t
 

p  

c  

M  

c
 

r  

t  

R  

t  

b
 

i  

r  

o  

w  

C  

1  

i  

a  

c

3
D

M  

s  

p  

m  

t  

p  

fl  

c  

i  

p  

a
 

s  

k  

A  

i  

1  

f
 

W  

o  

t  

w  

m  

m  

r  

q  

b  

2

Figure 3. Assumed intrinsic variability of the quasar point source of system 

A (top panel) and RXJ 1131 −1231 (bottom panel). 
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f the residual connections that facilitate the propagation of gradients
 ven in relati vely deep networks, without incurring in the so-called
anishing/exploding gradient problems, by introducing elements like
ottleneck layers and allowing for multiple filters of different lengths
o be applied simultaneously to the same input time series. 

Inception modules have a slightly more complex structure com-
ared to Resnet modules that are mainly made of simple fully
onvolutional layers (McNeely-White, Beveridge & Draper 2020 ).
ore details on the specifics of the architectures of these two models

an be found in Ref. He et al. ( 2015 ) and F a waz et al. ( 2020 ). 
The original implementations of these models are adapted to the

egression setting by changing the dimension of the output layer
o one. To the best of the authors’ knowledge, this is the first time
esNet and InceptionTime have been applied to a problem involving

ime-series in the context of cosmology and we hope our work can
e inspirational for future applications of such models. 
The third model, simply labelled generically ‘CNN’ in the follow-

ng, is a relatively standard deep fully convolutional network without
esidual connections and it is fine-tuned to maximize the performance
n the validation set: In this way we can compare the results obtained
ith a fine-tuned network with those from not-fine-tuned ones. This
NN consists of 13 convolutional layers, each with 14 filters of size
7 and 3 linear layers mapping the output of the convolutional blocks
nto the final output. Batch-Normalization (Ioffe & Szegedy 2015 )
nd ReLU (Agarap 2019 ) acti v ations functions are used after each
onvolutional layer. 

 G E N E R AT I O N  O F  M O C K  L I G H T  C U RV E  

ATA SETS  

ock data of the lensed systems are used to generate the training
et required by the DL algorithm. Specifically, the MOLET 2 software
ackage (Vernardos 2022 ) is used to generate light curves of GLQs
ultiple images. MOLET allows to include the microlensing effect

hat affects the time-delay estimates and is thought to be constantly
resent (Millon et al. 2020 ). Fig. 1 in Vernardos ( 2022 ) illustrates the
ow chart of MOLET : It receives in input different information such as
osmological and astrophysical parameters of the lensed system, the
ntrinsic light curves of the source, magnification maps, the telescope
arameters, and a realistic observational plan accounting for daily
nd seasonal gaps. 

In this w ork, tw o systems with different features have been
imulated. Such systems are broadly representative of the various
nown lensed quasars. The first one, hereafter denoted as system
 , is a basic test-system for an AGN point source with a simple

ntrinsic variability and with microlensing. The second system is RXJ
131 −1231 (Claeskens et al. 2006 ), hereafter denoted as system B
or brevity. 

For the intrinsic variability of the quasars, the Damped Random
alk (DRW) provides a sufficient and widely accepted description

f AGN variability (MacLeod et al. 2010 ). Assigning a value to its
wo main parameters – the characteristic time-scale and variance,
hich are eventually correlated with the supermassive black hole
ass and the absolute quasar magnitude – allows one to generate
any realizations of statistically equi v alent AGN v ariability. Such

ealizations are shown in Fig. 3 for two gravitational lenses with
uite different intrinsic variability, QJ0158 and RXJ1131, obtained
y fitting the DRW model to the observed light curve. The values of
NRAS 515, 5665–5672 (2022) 

 https:// github.com/gvernard/ molet. 

a  

3

he characteristic time-scale and the variance are 817 d and 20 (Paic
t al. 2022 ) and 80 d and 13, 3 respectively. 

The microlensing light curves of System A are generated from
agnification maps using the ‘moving disc’ model (Cornachione

t al. 2020 ) as it is the most commonly used quasar microlensing
ariability model: It consists of a fixed accretion disc brightness
rofile that is crossing the magnification map at a given velocity. The
ntrinsic variability is assumed to take place simultaneously across
he entire disc, scaling its brightness up or down. 

For System B , the intrinsic variability of the quasar is obtained
s a realization of a Damped Random Walk with the characteristic
ime-scale and variance parameters derived from the observed light
urve of RXJ 1131 −1231 (Vernardos 2022 ). 

Both system A and B consist of four multiple images: here they
ill be combined in pairs to mimic an unresolved doubly imaged
uasar. 
To properly simulate the observed light curves, MOLET needs the

ntrinsic variability of the quasar sources. The two simulated systems
eature distinct intrinsic v ariabilities, as sho wn in Fig. 3 , represen-
ative of two typical regimes for lensed quasars. The magnification
aps needed by the second step of the MOLET simulation are available

or both systems from the GERLUMPH resource (Vernardos et al.
014 ). Finally, the last step of the MOLET run accounts also for the
ssumed instrumental gaps (daily or seasonal) to simulate a realistic
ampaign from an optical telescope. More details on the simulation
f system B can be found in Vernardos ( 2022 ). 

MOLET has been used to build the mock up data for each system
y fixing the time delay for each simulation to a random value in
he range [0–40] d: In this way, 2000 simulations of system A , and
000 simulations of system B have been obtained. Each simulation
roduced four resolved light curves, one for each multiple image. The
riginal output of the mock simulation is continuous light curves:
hese must then be made discrete and noise must be added to them
s well. Since the goal of our work is to measure the time delay in
 D. Sluse pri v ate communication. See also Sluse & Tewes ( 2014 ). 

https://github.com/gvernard/molet
art/stac2034_f3.eps
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Figure 4. Continuous sample light curves for system A (top panel) and 
system B (bottom panel). The light curves have been randomly chosen from 

the whole simulation sets for illustrative purposes. Therefore, the observed 
differences are due to the fact that each of them comes from a different 
simulation, with different microlensing effects. The simulation period co v ers 
about 8.5 yr of data taking. 
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nresolved doubly imaged systems, the separate continuous mock 
ata curv es hav e to be added up in pairs to obtain a single light curve
hat mimics an unresolved doubly imaged GLQ. In this way, a total of
ix realizations of a single unresolved light curve of a doubly imaged
uasar are obtained from the individual light curves of the four images 
f the original GLQ. Each of these six light curves is characterized
y a different time delay, which is given by the absolute difference
f the time delays of the underlying light curves. The combination 
f the light curves is performed adopting the following definition of
he magnitude of a generic source X : 

ag X = −2 . 5 log 10 F X + K, (3) 

here F X is the flux of the source X , i.e. the energy per unit time
er unit area incident on the detector, and the constant K defines
he zero-point of the magnitude scale. When two images A and B
f a GLQ cannot be resolved, a single image O will appear on the
etector, with a flux given to a first approximation by the sum F O =
 A + F B of the flux es of the two o v erlapping images. According to
quation ( 3 ), the corresponding magnitude is 

ag O 

( t) = −2 . 5 log 10 ( F A ( t) + F B ( t + �t) ) . (4) 

f B is delayed by � t with respect to A , the information about the
ime-delay � t is still present in the features of the light curve of the
mage sum O . Such information needs to be properly extracted as it
s hidden by the microlensing effect. 

It is important to emphasize here that obtaining an unresolved 
oubly lensed curve with this procedure from a quadruply lensed 
ystem is a simplification of the reality: Indeed, the resulting 
istribution of magnification ratios can be different from the expected 
istribution of magnification ratios for double lenses. If all the pairs
f multiple images are used, in some case magnification ratios deviate 
ignificantly from one such that one of the images are much fainter
han that of the other image. Ho we ver, the scope of this work is to
est for the first time the ability of ML methods to retrieve the time
elay from a single time series represented by the o v erlap between
wo unresolved light curves. Therefore, the simple assumption made 
n this paper is consistent with the goal of the work. A more realistic
ealization of an unresolved doubly lensed quasar is a topic that 
eserves to be separately investigated with a deeper training involving 
oth doubly and quadruply imaged quasars. 
Using all the various possible combinations in pairs of the multiple 

mages has allowed to get 6 × 2000 = 12 000 unresolved light curves
or system A and 6 × 8000 = 48 000 unresolved light curves for
ystem B . Fig. 4 shows 10 light curves for each system, randomly
hosen from the whole simulation sets, for illustrative purposes. The 
otal duration of the simulated campaign is 3086.68 d, which is
pproximately 8.46 yr with a sampling of 599 data points in time.
he average sampling interval is 5 d: It is important to emphasize

hat the DL algorithms used in this work need a regularly sampled
ata set. For this reason, the realistic sampling intervals typical of a
eal observational campaign, which contain daily and seasonal gaps, 
ave not been included in this analysis. It is ho we ver possible to
ventually fill realistic gaps with interpolating algorithms such as 
aussian Processes. The disadvantage is that, for seasonal gaps, the 

nterpolated shape of the curves may be highly different than the real
ne, since the gap can last weeks, if not months. The goal of this
ork is to show the potential of DL without introducing biases from

nterpolations and this has moti v ated the choice of the used sampling
oints. 
 RESULTS  

he results on the performance of the three proposed CNN architec-
ures on the test data , i.e. light curves that our models have never
een during their training phase, are here reported. The goal is to
 erify their lev el of generalization on ne w test curv es e xtracted from
he same distribution as the training data. Note that, since the test
ata are generated with the same simulation engine used to produce
he training set, here the out-of-distribution generalization ability of 
ur algorithm is not tested, i.e. we do not test its robustness with
espect to the sim2real gap phenomenon. 

The performance of the models on both systems A and B is
nalysed at different levels. The first evaluation studies the error 
istribution t predicted − t true between the predicted time delay and the 
round truth, i.e. the time delay used to construct the training set.
iven that the optimizer we use has a stochastic component in its
peration, the outcome of the training can be slightly different from
ne run to another, so several training runs are performed for each
odel and, for this experiment, the best performing one for each

rchitecture is selected. The kernel density estimation (Silverman 
986 ; Scott 1992 ) is used to approximate the error distributions
or each model and each system. The results are shown in Fig. 5 .
MNRAS 515, 5665–5672 (2022) 
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Figure 5. Kernel density estimation of the error distributions on the test set 
provided by our CNN model (blue), InceptionTime (red), and ResNet (green), 
for the system A (top panel) and system B (bottom panel). 
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Figure 6. r 2 score distributions provided by the three considered models, for 
system A (top panel) and system B (bottom panel). 
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or both systems, the distribution provided by the CNN model is
uch narrower and symmetric around zero, that is the predicted time

elay is closer to the input time delay. ResNet seems to outperform
nceptionTime, even though both provide broader and more skewed
urves. 

As a second e v aluation, the distribution of the r 2 coefficient
f determination (Silverman 1986 ; Scott 1992 ) is investigated to
stablish to what extent prediction and ground truth are aligned. The
 

2 score represents the fraction of the variance of a dependent variable
hat can be predicted from the independent variables and is then a

etric used to e v aluate the goodness of fit of a regression model, a
alue of 1 being the ideal case. For each system, each model is trained
0 times and the performance of each trained model is assessed on the
est set in terms of the r 2 score. Fig. 6 shows the resulting probability
ensity of the data at different values, the so-called ‘violin plots’: In
oth cases, our CNN yields r 2 scores closer to 1. Ho we ver, in the
ase of system A , the r 2 distribution of our CNN is characterized by
 slightly larger variance, resulting in an o v erlap with the ResNet r 2 

istribution. Inception is outperformed by the other two baselines in
oth systems and, in the case of system B , it produces a high variance
istribution with realizations ranging between a minimum of 0.6 and
 maximum of 0.8 r 2 scores. 
NRAS 515, 5665–5672 (2022) 
In summary, the analysis in terms of error distribution and r 2 

core highlights that all models provide very good performances
n both systems. It is important to emphasize that InceptionTime
nd ResNet were not fine-tuned, in order to keep them the same
s the original implementations from the literature. This was done
n purpose to showcase the flexibility of these models to work
n very heterogeneous types of data. We therefore expect their
erformance to further impro v e with more careful architectural and
yperparameter design choices. 

After having verified that the proposed methods generalize well
n the test set, their robustness is assessed when noise is injected
n the data. To this extent, we perturb the original time series with
 zero-mean Gaussian noise with standard deviation σ ∈ { 0.000 01,
.0001, 0.001, 0.002, 0.004, 0.006, 0.008, 0.009 } . These values
ave been selected so that the main structural properties of the
esulting light curves are not altered too much by the injection of
oise and their macroscopic visual appearance is roughly preserved.
his operation ef fecti vely introduces a bias between training and

esting distributions, whose severity depends on the intensity of the
erturbation. Fig. 7 shows how the r 2 score of each model decreases
s the standard deviation of the Gaussian noise increases. Again,
enerally the CNN outperforms the other models. Ho we ver, in system
 , its curve tends to align with the InceptionTime one as the noise

evel increases. Interestingly, the CNN model seems to be more
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Figure 7. r 2 scores for the three models as injected noise standard deviation 
increases, for system A (top panel) and system B (bottom panel). 
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Figure 8. r 2 scores for our CNN model trained with random noise injection 
as noise standard deviation increases, for system A (top panel) and system B 

(bottom panel). 
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obust on system B , providing satisfactory values of the r 2 score
 ven for relati vely large noise standard deviations. In general, the
erformance of the three models on system A seems to be much
ore sensitive to noise perturbation than that obtained by the models 

n system B. We do not have a satisfactory explanation for that yet:
ne likely possibility is that it depends on the difference in the size of

he data sets associated with the two systems, but more investigations 
re needed to draw a firm conclusion. 

As a last experiment, we study how the previous analysis changes 
f we train our best performing CNN on data perturbed by noise at
 ariable standard de viations. To do so, at training time for each batch
f data, we randomly sample a value for the noise standard deviation
rom a uniform distribution between 10 −5 and 10 −2 and we feed the
orrupted data into the network. Once training is o v er, we repeat the
revious experiments. The results for system A and system B are 
hown in Fig. 8 . 

The result of injecting noise at training time is a model that is
ore robust to perturbations in the test data. On the other hand,

his positive effect is obtained at the price of a slight degradation in
erformance when the noise level is low. This experiment suggests 
hat randomly injecting noise in the data at training time in this case
epresents an ef fecti v e strate gy to obtain more robust models. 

In light of the presented experiments, the proposed CNN archi- 
ectures appear to guarantee satisfactory performance on the task 
f predicting the time delay from unresolved quasar light curves. 
verall, the CNN model proposed here seems to outperform the 
thers even though more fine-tuning and more carefully designed 
hoices might eventually close this gap. 

 C O N C L U S I O N S  

n this work, a new class of DL-based methods has been used to
xtract the time delay between GLQs unresolved light curves. The 
ethod is moti v ated by the existing tension on the estimated values

f H 0 , which can only be resolved by reducing the uncertainty on
 0 . In this respect, there is the necessity to increase the number
f analysed GLQs by processing and extracting information from 

nresolved quasar light curves, which can be typically provided 
y small/medium telescopes. The obtained results show that the 
roposed approach performs nicely on mock data describing two 
ifferent lensed quasar systems. Moreo v er, it has sev eral advantages
ompared to classical approaches: First, it is designed to process 
nresolv ed light curv es that represent the majority of the data that
mall/medium sized telescopes are expected to provide. Secondly, 
he method is fully data-driven: Its performances scale easily with 
he data set size and it makes little to no assumptions on the nature
f the time-delay estimation problem. 
MNRAS 515, 5665–5672 (2022) 
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On the other hand, the current implementation is still affected
y some limitations that open new interesting research questions.
ost importantly, the method is highly reliant on the quality of the

imulated data and on their level of fidelity with respect to real quasar
ight curves. It follows that, when applying the proposed approach
o real data, a degradation in performance shows up. This problem
s a manifestation of the sim2real gap phenomenon described in
ection 4 . In order to alleviate it, the gap between simulated and real
ata must be reduced as much as possible. One popular strategy to
ope with this problem is the technique of domain randomization
Tobin et al. 2017 ; Peng et al. 2018 ; Chebotar et al. 2019 ; Prakash
t al. 2020 ), where large and v ery div erse data sets are generated
y randomizing the parameters of the simulator with the hope that,
hen the model is deployed on real data, the new observations will

omewhat close to the randomized simulations the model has been
rained on. 

On the other hand, the sim2real gap phenomenon, and in particular
he size of the discrepancies, can be exploited to assess the quality
f the simulated data: the better the performance of the network,
he closer the simulator grasps the details of the data it is trying to
mulate. 

A further impro v ement to the method that will be inv estigated
n future works is to enable it to process also irregularly sampled
ime series that are indeed commonly encountered in the context of
osmological and astrophysical applications, because of unavailabil-
ties or outages of the instruments, for example. Finally, a future
xtension of this work will deal with systems having N > 2 images:
n fact, a large amount of quadruply imaged GLQs is expected to be
etected in the future (Shu et al. 2021 ). We aim to investigate these
ew research directions in future works. 
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