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Cosmic strings are topological defects which can be formed in grand unified theory scale phase
transitions in the early universe. They are also predicted to form in the context of string theory. The main
mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops
and the subsequent emission of gravitational waves, thus offering an experimental signature for the
existence of cosmic strings. Here we report on the analysis conducted to specifically search for
gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing
run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the
cosmic string parameters for three recent loop distribution models. In this paper, we initially derive
constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis
performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis,
pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show
that these data sets are complementary in that they probe gravitational waves produced by cosmic string
loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter
space of the three loop distribution models we consider.
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I. INTRODUCTION

The recent observation of gravitational waves [1] (GWs)
has started a new era in astronomy [2,3]. In the coming
years Advanced LIGO [4] and Advanced Virgo [5] will be
targeting a wide variety of GW sources [6]. Some of these
potential sources could yield new physics and information
about the Universe at its earliest moments. This would be
the case for the observation of GWs from cosmic strings,
which are one-dimensional topological defects, formed
after a spontaneous symmetry phase transition character-
ized by a vacuum manifold with noncontractible loops.
Cosmic strings were first introduced by Kibble [7] (for a
review see for instance [8–10]). They can be generically
produced in the context of grand unified theories [11].
Linear-type topological defects of different forms should
leave a variety of observational signatures, opening up a
fascinating window to fundamental physics at very high
energy scales. In particular, they should lens distant
galaxies [12–14], produce high energy cosmic rays [15],
lead to anisotropies in the cosmic microwave background
[16,17], and produce GWs [18,19].
A network of cosmic strings is primarily characterized

by the string tension Gμ (c ¼ 1), where G is Newton’s
constant and μ the mass per unit length. The existence of
cosmic strings can be tested using the cosmic microwave

background (CMB) measurements. Confronting experi-
mental CMB data with numerical simulations of cosmic
string networks [20–23], the string tension is constrained to
be smaller than a few 10−7.
Cosmic superstrings are coherent macroscopic states of

fundamental superstrings (F-strings) and also D-branes
extended in one macroscopic direction (D-strings). They
are predicted in superstring inspired inflationary models
with spacetime-wrapping D-branes [24,25]. For cosmic
superstrings, one must introduce another parameter to
account for the fact that they interact probabilistically. In
[26], it is suggested that this intercommutation probability
p must take values between 10−1 and 1 for D-strings and
between 10−3 and 1 for F-strings. In this paper, we will
refer to both topological strings and superstrings as
“strings,” and parametrize them by p and Gμ.
Cosmic string parameters can also be accessed through

GWs. Indeed, the dynamics of the network is driven by the
formation of loops and the emission of GWs. In particular,
cusps and kinks propagating on string loops are expected to
produce powerful bursts of GWs. The superposition of
these bursts gives rise to a stochastic background which can
be probed over a large range of frequencies by different
observations. Historically, the big-bang nucleosynthesis
(BBN) data provided the first constraints on cosmic strings
[27]. It was then surpassed by CMB bounds [28] to then be
surpassed more recently by pulsar timing bounds [29]. In
this paper, we report on the search for GW burst signals*Full author list given at the end of the article.
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produced by cosmic string cusps and kinks using Advanced
LIGO data collected between September 12, 2015 06∶00
UTC and January 19, 2016 17∶00 UTC [30], offering a total
of Tobs ¼ 4 163 421 s (∼48.2 days) of coincident data
between the two LIGO detectors. Moreover, combining
the result from the stochastic GW background search
previously published in [31], we test and constrain cosmic
string models. While the LIGO O1 burst limit remains
weak, the stochastic bound now surpasses the BBN bound
for the first time and is competitive with the CMB bound
across much of the parameter space.
We will place constraints on the most up-to-date string

loop distributions. In particular, we select three analytic
cosmic string models (M ¼ f1; 2; 3g) [8,32–35] for the
number density of string loops, developed in part from
numerical simulations of Nambu-Goto string networks
(zero thickness strings with intercommutation probability
equal to unity), in a Friedman-Lemaître-Robertson-Walker
geometry. These models are more fully described in Sec. II
where their fundamental differences are also discussed.
Section III presents an overview of the experimental data
sets which are used to constrain the cosmic string param-
eters. Finally, the resulting limits are discussed in Sec. IV.

II. COSMIC STRING MODELS

We constrain three different models of cosmic strings
indexed by M. Common to all these models is the
assumption that the width of the strings is negligible
compared to the size of the horizon, so that the string
dynamics is given by the Nambu-Goto action. A further
input is the strings intercommutation probability p. For
field theory strings, and in particular Uð1Þ Abelian-Higgs
strings in the Bogomol’nyi–Prasad–Sommerfield limit [8],
intercommutation occurs with effective unit probability
[36,37], p ¼ 1. That is, when two superhorizon (infinite)
strings intersect, they always swap partners; and if a string
intersects itself, it therefore chops off a (subhorizon) loop.
The latter can also result from string-string intersections at
two points, leading to the formation of two new infinite
strings and a loop.
Cosmic string loops oscillate periodically in time, emit-

ting GWs.1 A loop of invariant length l has period T ¼ l=2
and corresponding fundamental frequency ω ¼ 4π=l. As a
result it radiates GWs with frequencies which are multiples
of ω, and decays in a lifetime τ ¼ l=γd where [18,40,41]

γd ≡ ΓGμ with Γ ≃ 50: ð1Þ

If a loop contains kinks [41–43] (discontinuities on the
tangent vector of a string) and cusps (points where the
string instantaneously reaches the speed of light), these
source bursts of beamed GWs [44–46]. The incoherent

superposition of these bursts give rise to a stationary and
nearly Gaussian stochastic GW background. Occasionally,
sharp and high-amplitude bursts of GWs stand above this
stochastic GW background.
The three models considered here differ in the loop

distribution nðl; tÞdl, namely the number density of
cosmic string loops of invariant length between l and
lþ dl at cosmic time t. To determine the consequences of
these differences on their GW signal, we work in units of
cosmic time t and introduce the dimensionless variables

γ ≡ l=t and F ðγ; tÞ≡ nðl; tÞ × t4: ð2Þ

Wewill often refer to γ as the relative size of loops andF as
simply the loop distribution. All GWs observed today are
formed when the string network is in its scaling regime,
namely a self-similar, attractor solution in which all the
typical length scales in the problem are proportional to
cosmic time.2

The models considered here were developed (in part)
using numerical simulations of Nambu-Goto strings, for
which p ¼ 1. As mentioned above, cosmic superstrings
intercommute with probability p < 1. The effect of a
reduced intercommutation probability on the loop distri-
bution has been studied in [47]. Following this reference
we take3 Fp<1 ¼ F=p, leading to an increased density of
strings [48] and to an enhancement of various observational
signatures.

A. Model M = 1: Original large loop distribution

The first model we consider is the oldest, developed in
[8,32]. It assumes that, in the scaling regime, all loops
chopped off the infinite string network are formed with the
same relative size, which we denote by α. At time t, the
distribution of loops of length l to lþ dl contains loops
chopped off the infinite string network at earlier times, and
diluted by the expansion of the Universe and by the
emission of GWs. Assuming that loops do not self-intersect
once formed, and taking into account that the length of
a loop decays at the rate dl=dt ¼ −γd, the scaling loop
distribution (for γ ≤ α) in the radiation era is given by [8]

F ð1Þ
radðγÞ ¼

Crad

ðγ þ γdÞ5=2
Θðα − γÞ; ð3Þ

where Θ is the Heaviside function, and the superscript
(1) stands for modelM ¼ 1. Some of these loops formed in
the radiation era can survive into the matter era, meaning

1Superhorizon cosmic strings also emit GWs, due to their
small-scale structure [19,38,39].

2Scaling breaks down for a short time in the transition between
the radiation and matter eras, and similarly in the transition to
dark energy domination.

3In [47] the exponent of the power-law behavior was found
to be slightly different, namely 0.6. Since our goal here is to
highlight the effect of p < 1, we used a simple dependence of
1=p as many others in the literature have done.
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that in the matter era the loop distribution has two
components. Those loops surviving from the radiation
era have distribution

F ð1Þ;a
mat ðγ; tÞ ¼

Crad

ðγ þ γdÞ5=2

!
teq
t

"
1=2

Θð−γ þ βðtÞÞ; ð4Þ

with teq the time of the radiation to matter transition, and
where the lower bound, βðtÞ, is the length in scaling units,
of the last loops formed in the radiation era at time teq:

βðtÞ ¼ α
teq
t
− γd

!
1 −

teq
t

"
: ð5Þ

The loops formed in the matter era itself have a distribution

F ð1Þ;b
mat ðγ; tÞ ¼

Cmat

ðγ þ γdÞ2
Θðα − γÞΘðγ − βðtÞÞ: ð6Þ

The normalization constants Crad and Cmat cannot be
determined from analytical arguments, but rather are fixed
by matching with numerical simulations of Nambu-Goto
strings. Following [8,32], we set them to

Crad ≃ 1.6; Cmat ≃ 0.48: ð7Þ

Furthermore we shall assume that α ≃ 0.1. The loop
distribution in the matter era is thus given by the sum of
distributions in Eqs. (4) and (6).
The loop distribution F ð1Þ is plotted in Fig. 1 for different

redshift values and fixing Gμ at 10−8. A discontinuity,
visible for low redshift values, results from the radiation-
matter transition which is modeled by Heaviside functions.
For t < teq, the loop distribution is entirely determined by
Eq. (3) and is time independent.

B. Model M = 2: Large loop Nambu-Goto
distribution of Blanco-Pillado et al.

Rather than postulating that all loops are formed with a
given size αt at time t as in model 1, the loop production
function can be determined from numerical simulations.
This approach was taken in [33], determining the rate of

production of loops of size l and momentum p⃗ at time t.
Armed with this information, nðl; tÞ is determined ana-
lytically as in model 1 with the additional assumption that
the momentum dependence of the loop production function
is weak so that it can be integrated out.
In the radiation era, the scaling distribution reads

F ð2Þ
radðγÞ ¼

0.18
ðγ þ γdÞ5=2

Θð0.1 − γÞ; ð8Þ

where the superscript (2) stands for model 2. In the matter
era, analogously to above, there are two contributions.
The loops left over from the radiation era can be deduced
from above, whereas loops formed in the matter era have
distribution

F ð2Þ;b
mat ðγ;tÞ¼

0.27−0.45γ0.31

ðγþγdÞ2
Θð0.18−γÞΘðγ−βðtÞÞ; ð9Þ

where βðtÞ is given in Eq. (5) with α ¼ 0.1.
The loop distribution of model 2 is plotted in Fig. 1.

Notice that in the radiation era, the distributions in models 1
and 2 take the same functional form, though their nor-
malization differs by a factor of order 10. In the matter era,
the functional form is slightly different and the normali-
zation is smaller by a factor of order 2. The authors of [33]
attribute this reduction in the number of loops to two
effects: (i) only about 10% of the power is radiated into
large loops—indeed, most of it is lost directly into smaller
loops which radiate away very quickly; (ii) most of the
energy leaving the network goes into loop kinetic energy
which is lost to redshifting.

C. Model M = 3: Large loop Nambu-Goto
distribution of Ringeval et al.

This analytical model was presented in [34], and is based
in part on the numerical simulations of [35].
As opposed to model 2, here the (different) numerical

simulation is not used to determine the loop production
function at time t, but rather the distribution of non-self-
intersecting loops at time t. The analytical modeling also
differs from that of model 2 in that an extra ingredient is
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FIG. 1. Loop size distributions predicted by three models:M ¼ 1, 2, 3. For each model, the loop distribution, F ðγ; tðzÞÞ, is plotted for
different redshift values and fixing Gμ at 10−8.
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added: not only do loops emit GWs—which decreases their
length l—but this GW emission backreacts on the loops.
Backreaction smooths out the loops on the smallest scales
(in particular any kinks), thus hindering the formation of
smaller loops [43,49]. Hence, the distributions of models 2
and 3 differ for the smallest loops.
Physically, therefore, the model of [34] contains a further

length scale γc, the so-called “gravitational backreaction
scale,” with

γc < γd;

where γd is the gravitational decay scale introduced above.
Following the numerical simulation of [35],

γc ¼ ϒðGμÞ1þ2χ where ϒ ∼ 10 and χ ¼ 1 − P=2;

ð10Þ

with

P ¼ 1.41þ0.08
−0.07 jmat; P ¼ 1.60þ0.21

−0.15 jrad: ð11Þ

The resulting distribution of loops is given in [34]. In this
paper, we work with the asymptotic expressions given in
Sec. II. 4 of [34], valid in the scaling regime (t ≫ tini).
Hence the contribution of those loops formed in the
radiation era, but which persist into the matter era, are
neglected. The loop distribution has three distinct regimes
with different power-law behaviors, depending on whether
the loops are smaller than γc (γ ≤ γc), of intermediate
length (γc ≤ γ ≤ γd), or larger than γd (that is
γd ≤ γ ≤ γmax). Here γmax ¼ 1=ð1 − νÞ is the largest
allowed (horizon-sized) loop, in units of cosmic time,
where the power-law time evolution of the scale factor
of the universe, a ∼ tν, is

ν ¼ 2

3

####
mat

; ν ¼ 1

2

####
rad
: ð12Þ

Hence, γmax ¼ 2, or γmax ¼ 3, depending on whether we
are in the radiation-dominated or matter-dominated era,
respectively. More explicitly,

(i) for loops with length scale large compared to γd

F ð3Þðγd ≪ γ < γmaxÞ ≃
C

ðγ þ γdÞPþ1
; ð13Þ

(ii) for loops with length scale in the range γc < γ ≪ γd:

F ð3Þðγc < γ ≪ γdÞ ≃
Cð3ν − 2χ − 1Þ

2 − 2χ
1

γd

1

γP
; ð14Þ

(iii) for loops with length scale smaller than γc the
distribution is γ independent:

F ð3Þðγ ≪ γc ≪ γdÞ ≃
Cð3ν − 2χ − 1Þ

2 − 2χ
1

γPc

1

γd
: ð15Þ

Here, C is given by

C ¼ C0ð1 − νÞ3−P ð16Þ

where

C0 ¼ 0.09−0.03þ0.03jmat; C0 ¼ 0.21−0.12þ0.13jrad: ð17Þ

In the case of large loops [Eq. (13)], C normalizes the
distribution. In the radiation era where ν ¼ 1=2,

C ∼ 0.08 ðradiationÞ

(a factor of about 20 smaller than model 1), and in the
matter era where ν ¼ 2=3,

C ∼ 0.016 ðmatterÞ

(a factor of about 30 smaller than model 1).
The three loop regimes are well visible when plotting the

loop distribution: see Fig. 1. Regarding the GW signal, the
most significant difference between model 3 and the two
previous models is in the very small loop regime (γ ≪ γc).
Comparing Eq. (15) with Eqs. (4) and (8), for models 3, 1,
and 2 respectively, in the radiation era, we find

F ð3Þ

F ð1;2Þ

####
γ≪γc

∝ ðGμÞ−0.74; ð18Þ

where the proportionality constant is 2.5 × 10−2 for
model 1 and approximately ten times larger for model
2. For a typical value of Gμ ¼ 10−8, and relative to model
1, there are ∼2 × 104 more very small loops in the
radiation era in model 3. As we will see in Sec. III, such
a high number of small loops in model 3 will have
important consequences in the rate of GW events we can
detect and on the amplitude of the stochastic gravitational
wave background.

III. CONSTRAINING COSMIC STRINGS
MODELS WITH GW DATA

A. Gravitational waves from cosmic strings

GW bursts are emitted by both cusps and kinks on
cosmic string loops, the frequency-domain waveform of
which was calculated in [44,45,50]:

hðl; z; fÞ ¼ Aqðl; zÞf−qΘðfh − fÞΘðf − flÞ; ð19Þ

where q ¼ 4=3 for cusps, q ¼ 5=3 for kinks, and Aqðl; zÞ
is the signal amplitude produced by a cusp/kink
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propagating on a loop of size l at redshift z. This waveform
is linearly polarized and is only valid if the beaming angle

θmðl; z; fÞ≡ ðg2fð1þ zÞlÞ−1=3 < 1: ð20Þ

Here g2 is an ignorance factor assumed to be 1 in this work
(see [32]). In order to detect the GW, the angle subtended
by the line of sight and the cusp/kink on a loop of typical
invariant length l at redshift z must be smaller than θm.
This condition then determines the high-frequency cutoff
fh in Eq. (19). The low-frequency cutoff fl—though in
principle determined by the kink amplitude, or by the size
of the feature that produces the cusp—is in practice given
by the lower end of the GW detector’s sensitive band. The
amplitude Aqðl; zÞ is given by [44]

Aqðl; zÞ ¼ g1
Gμl2−q

ð1þ zÞq−1rðzÞ
; ð21Þ

where the proper distance to the source is given by
rðzÞ ¼ H−1

0 φrðzÞ. Here, H0 is the Hubble parameter today
and φrðzÞ is determined in terms of the cosmological
parameters and expressed in Appendix A. Finally g1
gathers together a certain number of uncertainties which
enter into the calculation of the cusp and kink waveform
(including the amplitude of the cusp/kink, as well as
numerical factors of order 1; see [32,44]). We will set
g1 ¼ 1. In the following, we will use Eq. (21) to conven-
iently choose two variables out of l, z, and Aq. Similarly,
we will use Eq. (19) to substitute Aq for the strain
amplitude h.
For a given loop distribution model M, in the following

we use the GW burst rate derived in [32] and recalled in
Appendix B

d2RðMÞ
q

dzdh
ðh; z; fÞ ¼

2NqH−3
0 φVðzÞ

ð2 − qÞð1þ zÞht4ðzÞ

× F ðMÞ
!
lðhfq; zÞ

tðzÞ
; tðzÞ

"

× Δqðhfq; z; fÞ: ð22Þ

The first two lines on the right-hand side give the number of
cusp/kink features per unit space-time volume on loops
of size l, where Nq is the number of cusps/kinks per
oscillation period T ¼ l=2 of the loop. In this paper, the
number of cusps/kinks per loop oscillation is set to 1
although some models [51] suggest that this number can
be much larger than one. Cosmic time is given by tðzÞ ¼
φtðzÞ=H0 and the proper volume element is dVðzÞ ¼
H−3

0 φVðzÞdz where φtðzÞ and φVðzÞ are given in
Appendix A. Finally Δq, which is fully derived in
Appendix B, is the fraction of GW events of amplitude
Aq that are observable at frequency f and redshift z.

B. Gravitational-wave bursts

We searched the Advanced LIGO O1 data (2015–2016)
[30] for individual bursts of GWs from cusps and kinks.
The search for cusp signals was previously conducted
using initial LIGO and Virgo data and no signal was
found [52].
For this paper, we use the same analysis pipeline to

search for both cusp and kink signals. We perform a
Wiener-filter analysis to identify events matching the
waveform predicted by the theory [44,45,50] and given
in Eq. (19). GWevents are detected by matching the data to
a bank of waveforms parametrized by the high-frequency
cutoff fh, with 30 Hz < fh < 4096 Hz. Then resulting
events detected at LIGO-Hanford and at LIGO-Livingston
are set in time coincidence to reject detector noise artifacts
mimicking cosmic string signals. Finally, a multivariate
likelihood ratio [53] is computed to rank coincident events
and infer probability to be signal or noise. The analysis
method is described in [52]. In this paper we only report
on the results obtained from the analysis of new O1
LIGO data.
The upper plots in Fig. 2 present the final event rate as a

function of the likelihood ratio Λ for the cusp and kink
search. The rate of accidental coincident events between the
two detectors (background) is estimated by performing
the analysis over 6000 time-shifted LIGO-Livingston data
sets. This background data set virtually offers 2.5 × 1010 s
(∼790.7 years) of double-coincidence time. For both cusps
and kinks, the candidate ranking values are compatible with
the expected background distribution, so no signal was
found. The highest-ranked event is measured with Λh ≃
232 for cusps and Λh ≃ 611 for kinks. These events were
scrutinized and were found to belong to a known category
of noise transients called “blips” described in [54], match-
ing very well the waveform of cusp and kink signals.
The sensitivity to cusp and kink GW events is estimated

experimentally by injecting simulated signals of known
amplitude Aq in the data. We measure the detection
efficiency eqðAqÞ as the fraction of simulated signals
recovered with Λ > Λh, which is associated to a false
alarm rate of 1=Tobs ¼ 2.40 × 10−7 Hz. The detection
efficiencies are displayed in the bottom plots in Fig. 2.
The sensitivity curve of the 2005–2010 LIGO-Virgo cusp
search is also plotted, and should be compared with the O1
LIGO sensitivity measured for an equivalent false-alarm
rate of 1.85 × 10−8 Hz [52]. The sensitivity to cosmic
string signals is improved by a factor 10. This gain is
explained by the significant sensitivity improvement at low
frequencies of Advanced detectors [30].
Since no signal from cosmic string was found in LIGO

O1 data, it is possible to constrain cosmic string parameters
using models 1, 2 and 3. To generate statistical statements
about our ability to detect true GW signals, we adopt the
loudest event statistic [55]. We compute an effective
detection rate for a given loop distribution model M:
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