
2023Publication Year

2023-07-10T13:13:16ZAcceptance in OA@INAF

Identifying anomalous radio sources in the Evolutionary Map of the Universe Pilot 
Survey using a complexity-based approach

Title

Segal, Gary; Parkinson, David; Norris, Ray; Hopkins, Andrew M.; Andernach, 
Heinz; et al.

Authors

10.1093/mnras/stad537DOI

http://hdl.handle.net/20.500.12386/34269Handle

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETYJournal

521Number



MNRAS 000, 1–18 (2022) Preprint 6 March 2023 Compiled using MNRAS LATEX style file v3.0

Identifying anomalous radio sources in the EMU Pilot Survey using
a complexity-based approach

Gary Segal,1,2★ David Parkinson,3† Ray Norris,2,4 Andrew M. Hopkins,5 Heinz Andernach,6‡
Emma L. Alexander,7 Ettore Carretti,8 Bärbel S. Koribalski,2,4 Letjatji S. Legodi,9
Sarah Leslie,10 Yan Luo,11 Jonathon C. S. Pierce,12 Hongming Tang,13 Eleni Vardoulaki,14
Tessa Vernstrom15
1School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
2CSIRO Space and Astronomy, PO Box 76, Epping, 1710, NSW, Australia
3Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
4Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
5Australian Astronomical Optics, Macquarie University, 105 Delhi Rd, North Ryde, NSW 2113, Australia
6Thüringer Landessternwarte, Sternwarte 5, D-07778 Tautenburg, Germany
7Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, University of Manchester, Manchester, UK
8INAF, Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
9South African Radio Astronomy Observatory, 2 Fir Street, Black River Park, Observatory, Cape Town, 7925, South Africa
10Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands
11School of Physics and Astronomy, Sun Yat-sen University, 2 Daxue Road, Zhuhai 519082, China
12Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
13Department of Astronomy, Tsinghua University, Beĳing 100084, China
14Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany
15ICRAR, The University of Western Australia, 35 Stirling Hwy, 6009 Crawley, Australia

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The Evolutionary Map of the Universe (EMU) large-area radio continuum survey will
detect tens of millions of radio galaxies, giving an opportunity for the detection of previously
unknown classes of objects. To maximise the scientific value and make new discoveries, the
analysis of this data will need to go beyond simple visual inspection. We propose the coarse-
grained complexity, a simple scalar quantity relating to the minimum description length of
an image, that can be used to identify unusual structures. The complexity can be computed
without reference to the broader sample or existing catalogue data, making the computation
efficient on new surveys at very large scales (such as the full EMU survey). We apply our
coarse-grained complexity measure to data from the EMU Pilot Survey to detect and confirm
anomalous objects in this data set and produce an anomaly catalogue. Rather than work with
existing catalogue data using a specific source detection algorithm, we perform a blind scan
of the area, computing the complexity using a sliding square aperture. The effectiveness of the
complexity measure for identifying anomalous objects is evaluated using crowd-sourced labels
generated via the Zooniverse.org platform. We find that the complexity scan identifies unusual
sources, such as odd radio circles, by partitioning on complexity. We achieve partitions where
5% of the data is estimated to be 86% complete, and 0.5% is estimated to be 94% pure, with
respect to anomalies and use this to produce an anomaly catalogue.
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1 INTRODUCTION

The large-scale analysis of the extragalactic sky has, in the past,
delighted astronomers with new and unusual objects. We have no
doubt that it will continue to do so into the future, with new large-
scale surveys such as the Legacy Survey of Space and Time (Ivezić
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2 Gary Segal et al.

et al. 2019, LSST), Dark Energy Spectroscopic Instrument (DESI
Collaboration et al. 2016, DESI), Evolutionary Map of the Uni-
verse (Norris et al. 2011, EMU), LOFAR Two-metre Sky Survey
(Shimwell et al. 2022, 2017, LoTSS), MeerKAT International GHz
Tiered Extragalactic Exploration Survey (Jarvis et al. 2016, MIGH-
TEE), Spectro-Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explorer (Doré et al. 2014, SPHEREx), and
the Square Kilometre Array (Dewdney et al. 2009, SKA), either in
operation or starting very soon. The work of the astrophysicist is to
understand these objects, learn their nature, and identify if they fall
inside some already understood class, or constitute an entirely new
type of object. For objects that have features or attributes that are
completely unexpected, so called ‘unknown unknowns’, even de-
tecting these in the first place may be a challenge (Norris 2017). In
the present paper we define an anomaly, in broad terms, as an obser-
vation that is considered unexpected, based on consensus votes from
astrophysicists.1 While a human may easily notice something that
is unexpected, training a machine to do so may be more difficult.
The application of machine learning approaches to astrophysics,
such as outlier detection, has already seen some developments with
a number of different algorithms or approaches (e.g. Mostert et al.
(2021); Giles & Walkowicz (2020); Baron & Poznanski (2017)).
The complexity based approach offers a more computationally effi-
cient tool for anomaly detection based on the morphology of radio
sources.

The effectiveness of other machine learning approaches, such
as Convolutional Neural Networks, have been demonstrated for
identifying and classifying observations in astronomical surveys
based on their features (Aniyan & Thorat 2017; Lukic et al. 2018,
2019; Karpenka et al. 2013; Kim & Bailer-Jones 2016; Kessler
et al. 2010; Dieleman et al. 2015; Huertas-Company et al. 2015;
Charnock & Moss 2017; Wu et al. 2019; Lochner et al. 2016). Un-
supervised learning approaches, such as self-organising maps, have
also been applied to clustering and segmentation problems includ-
ing PINK by Polsterer et al. (2015, 2019) and applications by Baron
& Poznanski (2017); Galvin et al. (2020); Mostert et al. (2021);
Gupta et al. (2022). Lochner & Bassett (2021) developed Astrono-
maly as a general anomaly detection framework based on an active
learning approach that provides personalised recommendations. As-
tronomaly (Lochner & Bassett 2021) was designed to work with a
broad range of astronomical data from images to spectra. Lochner &
Bassett (2021) used a Galaxy Zoo project to demonstrate the effec-
tiveness of the approach, where Astronomaly was found to double
the number of interesting objects found within the first 100 viewed
within the datasets.

In our original paper (Segal et al. (2019), hereafter S19), we
introduced the idea of the coarse-grained complexity measure as
a tool for identifying complex and anomalous objects. This quan-
tity was based on the notions of effective complexity defined by
Gell-Mann (1994); Gell-Mann & Lloyd (1996) and apparent com-
plexity defined and implemented in Aaronson et al. (2014), as the
information required to describe a system’s regularities, or more
specifically, the entropy approximated by an upper bound on the
Kolmogorov complexity after applying a smoothing function.2 In

1 Similar to the threshold suggested by the United States Supreme Court
Justice Potter Stewart
2 Random intensity fluctuations (noise) cannot be compressed and will
increase the description length required to represent possible states beyond
those generated by the source object. This noise does not describe the
complexity of the object of interest and is reduced through smoothing as
part of the measurement of the coarse-grained complexity.

S19 we used data from the Australia Telescope Large Area Sur-
vey (ATLAS), to measure the coarse-grained complexity of radio
continuum images using the gzip (Levine 2012) byte length, post
smoothing, to estimate the upper bound of the complexity value.
We found it to be useful (when combined with clustering methods
to automate the process) for segmenting complex or unusual im-
ages from simple images without requiring large training data and
without learning specific features from labelled data. The approach
generalised well when applied to new data after being calibrated on
a much smaller dataset, with implemented at worst-case linear time
complexity.3More recently complexity has been applied by Bartlett
et al. (2022) as a new approach for exoplanet characterization with
potential applications to biosignature detection.

In this paper we apply the coarse-grained complexity, as cali-
brated in S19 and without re-training, to a much larger data set from
the Pilot Survey of the Evolutionary Map of the Universe (EMU-
PS, Norris et al. (2021b)). While the primary goal of the EMU
Pilot Survey is to test and refine observing parameters and strat-
egy for the main survey, the EMU-PS in itself presents opportunity
for new discoveries. Recently self-organising maps have been used
successfully to detect unusual sources with reference to the broader
sample (ensemble) using a sub-set of components from complex
sources selected from EMU-PS catalogue data (Gupta et al. 2022).
The method used in the present paper is based on a complexity
measure that has the advantage of being efficient to compute as it
does not require computing pair-wise distances between observa-
tions within the broader sample and does not require, hence is not
confined to, traditional source extraction or existing catalogue data.
We partition the data using frames rather than identified sources,
computing the course-grained complexity within a sliding frame
(square aperture) across the image. An important feature of the scan
method used is that the frames are sampled from the EMU-PS data
in a blind manner (that is without using a source extraction tool
or existing catalogue data). This helps reduce the risk of produc-
ing a sample that is biased towards preconceived notions of what
is interesting, referred to as expectation bias by Norris (2017) and
Robinson (1987). The approach can also be used without the prior
identification of complex sources. This is intended to assist with the
identification of the unexpected in new and large data with the goal
of new scientific discoveries and surprise.

We evaluate the effectiveness of the approach at finding new
and unusual objects by using a Zooinverse project to produce crowd-
sourced (from amongst astrophysicists) labels for frames produced
by the scan. These labels can be used to generate a partition bound-
ary for anomalies which can be used to create an anomaly cata-
logue. An effective anomaly partition is an intended product from
this work, providing: a concentrated search space, rich in unusual or
anomalous objects, intended to provide an efficient tool for assisting
with scientific analysis and new discoveries. While not every object
in the partitioned space (or anomaly catalogue) will necessarily be
truly ‘anomalous’, the aim is to define a partitioned space (anomaly

3 The “worst-case time complexity“ refers to an upper bound on the time
to run an algorithm by counting elementary operations for all permissible
inputs. The efficiency of the algorithm is evaluated based on the order
of growth (e.g. logarithmic, linear, quadratic, etc) of the worst-case time
complexity with respect to the increasing size of the input. The worst-case
running time of a linear time complexity algorithmwill increase linearlywith
the sample size. Often algorithms that rely on ‘between member’ operations
within the sample (such as a classic Self-organising Map Algorithm) will
have running times that scale quadratically with increasing sample size or
worse.

MNRAS 000, 1–18 (2022)
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catalogue) where almost all contained frames will be interesting in
some fashion (i.e. complex).

This paper proceeds as follows: in section 2 we introduce the
EMU-PS data as a test case for using the coarse-grained complexity
measure to identify anomalous objects in future large-scale sur-
veys. The EMU-PS data is likely to contain many rare, unusual and
anomalous objects, providing a better representation of the com-
plexity tail of still much larger future surveys (compared to the S19
analysis).

In section 3 we describe the theoretical foundations for the
coarse-grain complexity measure and show how it can be practically
computed. This section also outlines the implemented methods,
including the scanning method applied to the EMU-PS, and details
the use of a Zooniverse project to crowd-source labels for EMU-PS
frames. The labels are used to evaluate the effectiveness of coarse-
grained complexity partitions for identifying complex and unusual
objects.

Section 4 commences by showcasing a variety of frames cap-
tured in the complexity tail containing complex structures and
unusual objects (with additional examples and a discussion of
their characteristics provided in Appendix C). We then provide an
overview of zoo results used to produce consensus truth labels for
EMU-PS frames. We conclude this section by providing an evalua-
tion of the effectiveness of alternative partition boundaries.

Section 5 details the application of these boundaries in con-
structing anomaly catalogues and provides a discussion of potential
classification errors and considerations. Section 6 concludes with
a summary of the key outcomes and conclusions drawn from this
work. InAppendixCwe provide detailed descriptions of 36 example
objects found in high complexity frames.

2 EMU PILOT SURVEY DATA

The Pilot Survey of the Evolutionary Map of the Universe (EMU-
PS)was observed at 944MHz using theAustralian SquareKilometre
Array Pathfinder (ASKAP) telescope. The ASKAP telescope con-
sists of 36 12-metre antennas spread over a region 6-km in diameter
at the Murchison Radio Astronomy Observatory in Western Aus-
tralia. EMU-PS covers 270 square degrees of an area covered by
the Dark Energy Survey at a spatial resolution of ∼ 11–13 arcsec
(Norris et al. 2021b).

While the primary goal of the EMU Pilot Survey is to test and
refine observing parameters and the strategy for the main survey, the
pilot in itself presents opportunity for new discoveries. Experience
has shown (Norris 2017) that whenever we observe the sky to a sig-
nificantly greater sensitivity, or explore a significantly new volume
of observational phase space, we make new discoveries. This goal
has already been demonstrated through the successful identification
of a new class of radio object, odd radio circles (ORCs, Norris et al.
(2021a); Koribalski et al. (2021); Norris et al. (2022), Figure 5 and
6).

The observations and data reduction for EMU-PS are fully
described by Norris et al. (2021b) so here we restrict our description
to the data product used in the present paper. The data were taken
in 10 overlapping tiles, each covering an area of 30 square degrees.
These were then merged while correcting for the primary beam
response, to produce a single image covering 270 square degrees.
Here we use the “native” resolution product (i.e. not convolved
to a common beamsize), giving a synthesised beam of about 11
× 13 arcsec with an rms sensitivity of about 25 `Jy/beam. Source
extraction using the Selavy tool (Whiting et al. 2017) found a total of

220,102 radio components, of which 178,821 are “simple sources”,
which are either unresolved point sources or can be fitted by a
single Gaussian. The remaining 41,181 “complex” sources range
from small extended sources to giant radio galaxies, and include a
number of objects with complex morphology which are the sources
of primary interest in the present paper. However it is important to
note that, to avoid bias, the Selavy extractions are not used at all in
this paper, which instead works directly with the image data.

The EMU-PS data is likely to contain examples of anomalous
and unexpected objects, providing a better representation of the
complexity tail of still much larger future surveys such as EMU
(compared to previous experiments using ATLAS data in S19). It
is in this tail that future discoveries are likely to be made.

3 METHODS

In this sectionwe describe the theoretical foundations for the coarse-
grained complexity measure and show how it can be practically
computed. We also outline the practical implementation of this
approach and the method used to scan the EMU Pilot Survey data.

We describe howwe used a Zooniverse project to crowd-source
labels of EMU-PS frames to evaluate the coarse-grain complexity as
a tool for partitioning, and hence identifying, anomalous objects.We
then discuss the methods and challenges involved in sub-sampling
for the zoo from the very large number of frames produced by the
EMU-PS scan and conclude with details about how complexity
partitions will be evaluated using the labelled data.

3.1 Coarse-grained complexity

The coarse-grained complexity as defined in S19 is based on the
notions of effective complexity (Gell-Mann 1994; Gell-Mann &
Lloyd 1996) and apparent complexity (Aaronson et al. 2014). The
apparent complexity is a measure of the entropy 𝐻 of an object
𝑥 computed after applying a smoothing function 𝑓 , expressed as
𝐻 ( 𝑓 (𝑥)). The Shannon entropy of a probability distribution P can
be defined as the expected number of random bits that are required
to produce a sample from that distribution:

𝐻 (𝑃) = −
∑︁
𝑥∈𝑋

𝑃(𝑥) log 𝑃(𝑥) . (1)

By Shannon’s Noiseless Coding Theorem the minimum aver-
age description length 𝐿 of a sample is close to the Shannon entropy:

𝐻 (𝑃) ≤ 𝐿 ≤ 𝐻 (𝑃) + 1 . (2)

The Kolmogorov complexity 𝐾 ( 𝑓 (𝑥)) can be used as a proxy for
the entropy of the smoothed function 𝐻 ( 𝑓 (𝑥)), as proposed by
Aaronson et al. (2014). The analogy between the concept of entropy
and program size has been previously recognised (Chaitin 1975).
The Kolmogorov complexity of 𝑥 is the length of the shortest binary
program 𝑙 (𝑝), for the reference universal prefix Turing machine𝑈,
that outputs 𝑥; it is denoted as 𝐾 (𝑥):

𝐾 (𝑥) = min𝑝{𝑙 (𝑝) : 𝑈 (𝑝) = 𝑥} . (3)

A thorough treatment is provided by Li & Vitanyi (2008). The
Kolmogorov complexity has the advantage of being well-defined
for a particular description of a system such as an image of a galaxy.
This is not the case for the Shannon entropy which is defined in
terms of the possible states of the system. While the Kolmogorov
complexity is uncomputable, its upper bound can be reasonably

MNRAS 000, 1–18 (2022)
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approximated by the compressed file size 𝐶 ( 𝑓 (𝑥)) using a standard
compression program (Aaronson et al. 2014), such as gzip.

The issue with using the approximated Kolmogorov complex-
ity directly as a measure of complexity is that it is maximised by
random information. Intuitively a complexity measure should pro-
vide lowvalues for randomdata that does not contain structure that is
of interest to the observer (Zenil et al. 2012). Aaronson et al. (2014)
have shown that the apparent complexity measure is able to achieve
this by applying a smoothing function 𝑓 to the input 𝑥 (which re-
moves fine-grained noise while preserving the coarse-grained struc-
ture of the image). While the Kolmogorov complexity of a random
sequence is large, the apparent complexity of the same sequence
becomes small with smoothing, as fluctuations are removed where
the average or median information content becomes homogeneous
at the coarse-grained resolution. Accordingly we define the coarse-
grained complexity, like the apparent complexity, as the compressed
description length of regularities and structure after discarding all
that is incidental. The coarse-grained complexity will be small for
both simple and random sequences. The coarse-grained complexity
measure extends the idea of the apparent complexity by incorpo-
rating calibration of the measurement resolution in alignment with
expert distinctions between meaningful structure and noise. This
is achieved by adjusting the the measurement resolution through
a smoothing function so that complexity values correctly partition
data that has been expertly labelled (i.e. by human astronomers).

The objective of applying the smoothing function 𝑓 when de-
riving𝐶 ( 𝑓 (𝑥)) is to remove incidental or random information, such
as instrumental noise, that have no regularities comprehensible to
the observer even though it may have a physical basis. Comprehensi-
bility here is defined with respect to the observer of the information,
in this case scientists with specific interests. Comprehensible infor-
mation has a structure within a feature space, which in the case of
images refers to the spatial distribution of bits of information across
available channels.

Importantly, the coarse-grained complexity measure of an im-
age does not rely on the presence of any particular structures or
structural elements and desirably does not demonstrate sensitivity
under affine transformations based on the implementation in S19.
The calibration of the measure makes only explicit assumptions re-
garding the choice of the coarse-graining level and the scale of the
image. Previous data are used only to calibrate the coarse-graining
level (i.e. the appropriate measurement resolution) and only a small
sample of the relevant data type is required.

Coarse-grained complexity runs into obstacles as a well-
defined measure of complexity. Firstly, the uncomputability of the
Kolmogorov complexity prohibits the concept from being defined
in terms of an optimal compression. It has been proven by Chaitin
et al. (1995) that there can be no procedure for finding all theorems
that would allow for further compression. Furthermore the prob-
lem of distinguishing between meaningful structure and incidental
information, especially in finite data, may fail to be well-defined.
Different smoothing functions and different coarse-graining levels
will retain different distinct regularities in the data.

These theoretical challenges in objectively defining the coarse-
grained complexity can be circumvented when the approach is ap-
plied to the segmentation of observations by complexity. Here the
coarse-grained complexity can be calibrated to coincide with no-
tions of complexity adopted by the observer (i.e. expert astronomers)
and evaluated using expertly labelled data.

Figure 1. The definition of frame size (side length of solid black square),
stride length (offset between position of solid black square and dashed black
squares) and smoothing kernel size (grey shaded rectangle). The size of the
complexity frame is chosen such that most (but not all) extended sources
will be fully contained. The stride length is chosen to be one quarter of the
side length of the frame, however the illustration above depicts one half for
illustrative purposes only. These are the only free parameters used in this
scanning method.

3.2 Scanning the EMU Pilot Survey

We perform a scan of the EMU Pilot Survey data. When performing
the scan we estimate the coarse-grained complexity within a sliding
frame of fixed size, rather than working with pre-selected sources.
The coarse-grained complexity is computed within each frame us-
ing the approach implemented in S19 without re-calibration. The
approach is based on gzip compression using Lempel-Ziv (LZ77)
and Huffman coding. Each frame is a blind sample from the EMU-
PS data, with a high likelihood of many containing no sources, or
only part of the structure of a large complex source. After com-
puting the complexity in a frame, it is shifted based on a defined
stride length to the right and computed again, progressing in this
manner until it overlaps with the edge of the image. Once the frame
overlaps with edge of the image it returns to the starting column
and is shifted down by the defined stride length, progressing in this
manner until the frame overlaps with the lower edge of the image.
Figure 1 illustrates the sliding frame and the associated parameters.
The choice of frame size, stride length and smoothing kernel size
are the only free parameters used in this method. For the EMU-PS
image, a frame is defined to be a 256 × 256 pixel region (equivalent
to a span of approximately ∼ 12 arcmin) that we slide based on a
stride length of 64 pixels. This frame size exceeds the angular size of
most known radio sources in the EMU-PS field, with the exception
of a few Giant Radio Galaxies such as those shown in Figures 16
and 28 of Norris et al. (2021b).

An important feature of the scan method is that the frames are
blind samples from the EMU-PS data. This helps reduce the risk of
biasing the sample to preconceived notions of what is complex and
interesting. It also avoids restricting the sampling to only regions
of an image that are already represented in existing catalogue data.
As a consequence of this method, many frames will not contain any
detectable sources or objects of interest. Conversely, some frames
may contain a part of a source but not the entire object. To help
minimise this risk, a stride length of one quarter the span of the
frame size was selected. The overlapping frames provide better
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coverage of the EMU-PS data for computing complexity, as they
improve the probability of capturing entire complex structures, or
interesting parts of structures in a single frame.

The smoothing kernel size defines the measurement resolution
for the coarse-grained complexity scan. Smoothing is implemented
using a median filter 𝑓 applied to frames from the EMU-PS image
𝑥. The smoothing kernel size ℎ, is in this case calibrated to 10
pixels, consistent with the learned smoothing kernel size from S19.
This allows the generalisability of the calibration adopted in S19
to be evaluated using new data from the EMU-PS. The kernel size
was calibrated in S19 using ATLAS DR1 data using sources that
had been manually classified as simple and complex. The kernel
size was chosen by maximising the difference between the average
coarse-grained complexity of observations labelled complex and
simple thus coinciding with notions of complexity of interest to
the observer (in this case expert astronomers). A median filter was
chosen as the filter type because it completely removes noise and
incidental values in regions that are predominately without flux
measurement (i.e. where no sources are detected) and retains the
strength of signals in regions dominated by actual measurements.
The median filter is also effective at preserving edges (compared
to, for example, a Gaussian filter), given the expected noise in each
frame.

This approach does not control for the distance of objects
contained within each frame and accordingly the measurement res-
olution does not vary depending on the observed scale of sources
contained within each frame. Rather this approach provides a con-
sistent evaluation of complexity for each section of sky covered by
the sliding window, irrespective of the sources it contains.

The approach is implemented in accordance with the proce-
dure followed in S19 to calculate the coarse-grained complexity
within each frame 4. The same parameters were applied consis-
tently across the entire EMU-PS radio mosaic. Consistent with S19,
a pixel intensity threshold is set at the 90th percentile whereby
all values below the threshold are set to zero. S19 explores the
sensitivity of the method to the threshold value, showing the ef-
fectiveness of the threshold selected compared to alternatives. To
estimate 𝐶 ( 𝑓 (𝑥)) as an upper bound on the Kolmogorov complex-
ity 𝐾 ( 𝑓 (𝑥)) we calculate the size in bytes of the gzip compressed
image. The signal-to-noise ratio (SNR) was calculated using the re-
ciprocal of the coefficient of variation for the smoothed array as was
implemented in S19. Our analysis in S19 found that a noise measure
complemented the complexity measures and that the the noise and
complexity plane improved results when identifying complex and
unusual sources.

3.3 Crowd-sourced evaluation of frames

To identify anomalous observations the sample can be a partitioned
by determining an appropriate threshold, that is a complexity value
in the tail of the complexity distribution, above which defines an
anomaly. A threshold drawn at a low complexity value will produce
a very large sample of potential anomalies. If the goal is to identify
complex and unusual objects while minimising the search space for
new discoveries (to improve efficiency), then the objective becomes
to partition at the largest complexity value that is still exceeded by
as many of the most interesting objects as possible.

In S19 the sample was segmented based on the coarse-grained

4 Unlike the procedure followed in S19, frames are not cropped. Instead the
complexity is computed for the entire 256 × 256 pixel frame.

complexity and the signal-to-noise using unsupervised clustering
methods (GaussianMixtureModels), and the results were evaluated
using truth labels based on expert classification of the ATLAS data.
In the case of the EMU-PS scan we have a much larger sample size
of blindly sampled frames, not necessarily containing sources, for
which truth labels do not exist.

Truth labels are required to evaluate the effectiveness of alter-
native complexity thresholds for partitioning anomalous sources. To
provide truth labels for the frames produced by the complexity scan
we ran a project on the Zooniverse.org platform, titled “Anomaly
in the EMU Zoo” (hereafter zoo), requesting expert astronomers to
evaluate an unbiased sample of frames sub-sampled from the EMU-
PS scan. Consensus from the zoo labels was then used to evaluate
the Recall, Informedness and Precision associated with prospec-
tive partition boundaries. Recall, Informedness and Precision are
explained in detail in appendix B.

Expert volunteers were approached from within the Evolu-
tionary Map of the Universe Survey Project and at the SPARCS
2021 conference. A sub-sample of 1627 frames from the EMU-PS
scan (𝑛total=365,000) were presented to volunteers for classifica-
tion through the Zooniverse project. 44 volunteers participated in
the project, with 10 of these classifying more than 500 frames.

The zoo asked the expert volunteers to evaluate frames sub-
sampled from the EMU-PS Scan and to select an option that best
describes the most interesting radio sources in each frame before
moving on to the next. Sub-sampling is discussed in section 3.4.
An example of this workflow is shown in figure 2. The four options
presented for selection were:

• No sources/just noise
• One or more simple sources/unrelated simple sources
• At least one complex source/sources withmultiple components
• Contains something unexpected/Anomaly

The zoo distinguished between complex and extended sources
with multiple components, and sources that were deemed by the
volunteers to be truly unexpected or anomalous. This distinction
between complex and anomalous sources enabled the evaluation of a
complexity threshold that could be used to partition a smaller sample
of interesting frames that had high Recall and Informedness with
respect to anomalies. Ensuring that the partitioned data has high
Recall and Informedness with respect to anomalies only supports
science objectives for studying and identifying interesting objects
that may result in new discoveries and minimises the search space
for such objects. Retainingmore typical complex objects tomaintain
a high Recall was not seen as an issue, given the potential overlap
in the complexity values of more typical complex objects and truly
anomalous objects, so long as the search space remained small as
measured by the false positive rate. This also helps account for
the subjective nature of assigning truth labels, where only some
volunteers may assign labels based on unexpected or subtle unusual
features belonging to what otherwise would appear a more typical
complex object.

Only frames converging on a label through majority consen-
sus were used to evaluate the effectiveness of the complexity for
identifying anomalous sources. Those frames from the zoo sample
where majority consensus was not reached were excluded from the
evaluation.

3.4 Sub-sampling of EMU-PS frames

The EMU-PS data covers an area containing approximately 220,000
catalogue sources (Norris et al. 2021b) and can be used to generate
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Figure 2. Example workflow from Anomaly in the EMU Zoo. In this example we pick a frame containing 2MASX J21291901-5053040, bent tail radio galaxy
near ABELL 3771 cluster.

approximately 365,000 sampled frames based on the scan parame-
ters selected. This makes evaluating potential partitions more chal-
lenging, as it is not feasible to have experts inspect and classify the
hundreds of thousands of frames produced by the scan.

Sub-sampling can be used to make the evaluation of alternative
complexity partitions in the EMU-PS data more feasible. Here the
data size is reduced by selecting a subset from the original sample.
Expert evaluation of this subset is more feasible on shorter time
scales.

Selecting sample frames from the EMU-PS scan to be evalu-
ated by the zoo was done in two phases. The first phase involved
blind unbiased sub-sampling (n=1528) by sampling proportionally
across the distribution of complexity values. Sampling was per-
formed on non-overlapping frames (using the first occurrence) with-
out replacement. The second phase involved enrichment sampling
(n=99) from a EMU-PS scan done at a stride length of 32 pixels,
half the original stride length. The reduced stride length samples
from the EMU-PS more thoroughly, and so can capture frames of
higher complexity than the scan done at a stride length of 64 pix-
els, extending the tail of high-complexity values. Due to the much
larger number of frames produced (n = 1.4 million) when using
the smaller stride length, only frames above the 99.5th percentile
complexity value were retained (n = 7,000) and sub-sampling was
performed uniformly across these values to produce the enrich-
ment sample (n=99). Sub-sampling was performed inward from the
tails of the complexity distribution of samples produced from the
complete scan, leaving out frames close to the median complexity
value. Sub-sampling from within the this range was not deemed as
necessary as discussed in detail in Appendix A.

The purpose of the enrichment sample was to supplement the
tail of the 64 pixel stride sub-sample distribution with frames of
complexity above the 99.5th percentile. The sample size for the zoo
was limited (n=1627) to ensure every frame could be evaluated with
sufficient multiplicity to achieve consensus, however this results in
poor sub-sampling from the far right (high complexity) tail. The
enrichment sample was intended to provide better representation
of the type of observations found within frames beyond the 99.5th
percentile.

3.5 Measuring the effectiveness of partitions

The truth labels derived from the zoowere used to evaluate the effec-
tiveness of alternative partition boundaries for identifying anoma-
lous sources. We evaluated alternative partition boundaries using
a binary classification approach, evaluating both the Recall, In-
formedness and Precision as discussed further in Appendix B, and
illustrated in Table B1.

The objects in the zoo that were selected in the first phase of
sampling (without the enrichment sample added) allow the Recall
to be assessed at a given complexity threshold. The enrichment
sample creates a bias for the purpose of calculating Recall by over-
representing high complexity objects in the total zoo sample and
accordinglywas not included in the non-bias sample used to evaluate
prospective partitions. The second phase, where the enrichment
sample is added, was performed to increase the sample size of
unusual observations and provide further analysis of the Precision
within the complexity tail.

When evaluating Recall and Precision we consider the posi-
tive class to include only frames containing something unexpected
or anomalous and the negative class to include all other frames.
Limiting the positive class to only frames containing unexpected
or anomalous sources provides a measurement framework that will
assist in defining an anomaly catalogue with the objective of sup-
porting new and novel scientific discoveries in an efficient manner.
A catalogue containing all extended sources would be much larger
and would increase the search space for novel and anomalous ob-
jects, making the discovery process less efficient.

We note that many objects with complex and interesting mor-
phology will have familiar features and accordingly not be consid-
ered anomalies. As science progresses and new discoveries become
familiar the frequency of finding such familiar objects at high com-
plexity will increase. Misclassification of such complex sources as
anomalies is not deemed an issue so long as the overall search space
(or catalogue size) defined by the complexitymeasure remains small
enough to support an efficient search for novel discoveries. This can
be achieved by evaluating the trade-off between a high Recall and a
high false positive rate through maximising the Informedness (see
Appendix B).
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Figure 3. Complexity distribution for EMU-PS data data after removal
of low complexity background data (frames with the minimum complex-
ity value). The left tail contains frames without sources or point sources,
predominately point sources toward the centre.

A high Informedness value can still be accompanied by low
Precision, as we expect in this case, due to the the low frequency
of sources deemed by consensus as being anomalous compared to
those being deemed complex (see Table 1) and the potential overlap
in complexity values of familiar complex objects and anomalous
complex objects. To determine if low Precision is explained by
the misclassification of familiar complex objects we also evaluate
the Precision associated with prospective complexity partitions by
defining the positive class to include both anomalies as well as
frames containing at least one complex source or a source with
multiple components. These sources will still be interesting to some
observers and should not hinder the search for novel discoveries so
long as the false positive rate and overall search space remains small.

4 RESULTS

4.1 EMU-PS scan results

We now apply our method to analyse radio images. We scan the
EMU-PS data, examine the distribution of complexity values for
each frame, and showcase a variety of complex and unusual objects
captured in the complexity tail.

We performed a complexity scan of the EMU-PS data using
the method described above. The distribution of complexity values
from each sampled frame is shown in figure 3. Complexity values
are shown in figure 4 as a heat map over the EMU-PS field.

Visual inspection of a sub-sample of frames shows that the
high-complexity value tail of the distribution comprises unusual,
complex and extended objects. Extended sources featured heavily
in the tail above the 95th percentile (∼ 15, 000 bytes), with wide
angle tail galaxies and objects of a more anomalous appearance
apparent from above the 99th percentile (∼ 16, 500 bytes). Findings
demonstrate the effectiveness of this approach in recovering known
extended and complex structures. Examples of these objects, sam-
pled above the 99th percentile, are shown in figure 5. These ex-
amples illustrate the breadth of objects found within frames in the
high-complexity value tail, including, (a) the unusual source PKS
2130-538 (Otrupcek &Wright 1991) known as the Dancing Ghosts
(Norris et al. 2021b) (b) a bright wide angle tail source on 2MASX
J21291901-5053040 in cluster Abell 3771, (c) the large X-shaped
radio source PKS 2014-55 (2MASX J20180125-5539312), (d) two
odd radio circles, EMU PD J205842.8–573658 (ORC2) and EMU

PD J205856.0-573655 (ORC3), (e) a face-on spiral galaxy NGC
7125, (f) 2MASX J20483764-4911157 an FR-II remnant, (g) DES
J202818.12-492408.4 an FR-I potential double-double radio galaxy
and (h) an FR-I extended radio source with host galaxy 2MASX
J21512991-5520124.5

The EMU-PS has already produced valuable scientific discov-
eries, including the identification of a new class of radio object
called Odd Radio Circles (ORCs, Norris et al. (2021a); Koribal-
ski et al. (2021); Norris et al. (2022)). Examples, labelled ORC 2
and ORC 3, are shown in the high complexity frames presented
in Appendix C, figure 5 (d) and figure 6. ORCs provide exam-
ples of recent discoveries coming from EMU-PS that are found in
the far right tail of the complexity distribution. The ability of the
course-grained complexity measure to segment these sources above
a high complexity value in the distribution tail, in this case above
the 99.5th percentile, supports the effectiveness of this approach
at identifying scientifically interesting observations in large data in
an efficient manner. Being able to capture and segment complex
structures and unusual observations in the far right tail provides
a smaller and more concentrated search space that can potentially
improve the speed and efficiency of making new discoveries. As dis-
cussed in S19, the worst-case linear time complexity of the method
also makes it computationally efficient to implement.

4.2 Zoo results

We use truth labels determined from the zoo to evaluate the effec-
tiveness of alternative partitions for identifying anomalous objects.
As an immediate benefit, an effective partition can be used to iden-
tify frames containing complex structures and unusual objects from
the EMU-PS data and build an anomaly catalogue. An effective
boundary can also be used when analysing new, and even larger
surveys, for interesting objects and new discoveries. As an example,
the thresholds determined from the EMU-PS data can be used to
identify the most interesting frames in the subsequent full EMU
survey which is anticipated to capture approximately 40 million
sources.

The EMU-PS scan contains approximately 365,000 sampled
frames making evaluation of all frames from the zoo infeasible.
Through sub-sampling of the EMU-PS Scan, the sample size for the
zoo was limited (n=1627) to ensure all frames could be evaluated
by a larger number of volunteers. However this results in poor sub-
sampling from the far right (high complexity) tail. The enrichment
sample was intended to provide better representation of the type
of observations found within frames beyond the 99.5th percentile.
Classification counts for each of the zoo classes are shown in table
1. This table includes the anomaly counts both before and after the
inclusion of the enrichment sample.

Only frames converging on a label through majority consen-
sus were used to evaluate the effectiveness of the complexity to
identify anomalous sources. Those frames from the zoo sample
where majority consensus was not reached were excluded from the
evaluation.

Table 2 shows that 99.8% of the zoo sample frames received

5 These objects, with some additional examples, are shown in Appendix C,
wherewe discuss themore unusual features of the objects, grouping these ex-
amples together in the currently most commonly used radio-morphological
classification schemes. These include a previously unreported Giant Radio
Galaxy with Largest Linear Scale (LLS) of 1.94 Mpc shown in panel 5D of
figure C1.
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Figure 4. A complexity ‘heat map’ of the EMU-PS region, where the complexity of the frame is indicated by the brightness of the pixel. While many of the
frames are red coloured, indicating the presence of a simple source, there are a few yellow or white pixels, indicating more complex sources or low-surface
brightness structures. The most complex frames seem to be randomly distributed across the survey region, with the exception of the edges, where incidental
structure increases the complexity. The region outside of the EMU-PS is coloured black.

Classification Count: Count: Count:
Non-bias sample Enrichment Combined Sample
(n=1528) (n=99) (n=1627)

Anomalous 7 17 24
Complex 366 57 423
Simple 1059 12 1071
No source 31 0 31
No consensus 65 13 78

Table 1. Classification counts by consensus for each of the options pro-
vided in the EMU-PS Anomaly in the EMU Zoo. The enrichment sample
supplements the zoo sub-sample with frames measuring complexity above
the 99.5th percentile. This creates a bias for the purpose of calculating Recall
but improves the sample size for calculation of Precision above prospective
partition thresholds. This data shows that 86% of the enrichment sample,
where consensus was reached, contains frames classified as containing com-
plex and anomalous sources.

evaluations from 3 or more volunteers and 94% from 5 or more. We
used the criterion that only frames receiving 5 or more evaluations
were used to evaluate consensus, and be given a reliable ‘truth’
label. These restrictions were imposed to avoid the results being
impacted by outlier evaluations that differed from the majority of
expert volunteers.

The average number of evaluations per frame was 6.85, with
a relatively even number of average evaluations across the outcome
labels as shown in Table 3. Table 3 also shows that where an out-
come label was assigned, the average consensus level was 70% or
greater. The number of zoo sample frames converging on a majority
consensus in each class is shown in table 1.
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Figure 5. Examples of objects found within frames sampled above the 99th
percentile complexity value from the EMU-PS Complexity Scan. These ex-
amples illustrate the breadth of objects foundwithin frames in the complexity
tail including, (a) the unusual source PKS 2130-538 (Otrupcek & Wright
1991) known as the Dancing Ghosts (Norris et al. 2021b), (b) a bright wide
angle tail source on 2MASX J21291901-5053040 in cluster Abell 3771,
(c) the large X-shaped radio source PKS 2014-55 (2MASX J20180125-
5539312), (d) two odd radio circles, EMU PD J205842.8–573658 (ORC2)
and EMU PD J205856.0-573655 (ORC3), (e) a face-on spiral galaxy NGC
7125, (f) 2MASX J20483764-4911157 FR-II remnant, (g) DES J202818.12-
492408.4 FR-I potential Double-double radio galaxy and (h) FR-I extended
radio source with host galaxy 2MASX J21512991-5520124.

4.3 Defining Complexity boundaries

Figure 7 shows both the coarse-grained complexity and the SNR
6, and the relationship between them, for the EMU-PS zoo sub-
sample inclusive of the enrichment sample (n=1627). The figure

6 The SNR is calculated as the reciprocal of the coefficient of variation for
the channel intensity values as outlined in S19 and section 3.2. As frames
contain predominantly channel values close to zero, these ratios are typically
well below unity.

Figure 6. An example frame with a complexity value above the 99.5th
percentile (> 17,000 bytes). In this frame EMU PD J205842.8–573658
(labelled ORC2) in the top right is the dominant source. This frame also
contains EMU PD J205856.0-573655 (labelled ORC3).

Number of Evaluations Percentage of samples

1 0.0%
2 0.2%
3 0.9%
4 5.2%
5 12.4%
6 23.7%
7 24.3%
8 18.6%
9 10.5%
10 3.5%
11 0.6%
12 0.1%

Table 2. Distribution of evaluation counts across the zoo sample

Zoo label Average number of votes Average consensus

Anomalous 6.8 70%
Complex 6.9 77%
Simple 6.9 87%
No source 6.5 78%
No consensus 6.4 48%

Table 3. Average number of evaluations and consensus level across the
outcome labels

also shows the classification of frames derived through consensus
from EMU in the Anomaly Zoo. We see that frames evaluated
as containing an anomalous object by consensus are measured as
having larger coarse-grained complexity and SNR values, with all
anomalous objects having complexity values greater than 14,000
bytes and an SNR ratio greater than 0.14. The figure also shows
that the concentration of frames with complex and anomalous zoo
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EMU-PS Anomaly in the EMU Zoo sub-sample excluding enrichment sample and no consensus zoo labels (n=1463)

Partition boundary Recall False Positive Rate Informedness Precision
(Anomalous only) (Anomalous only) (Anomalous only) (Anomalous only)

Complexity ≥ 14,000 bytes 1.00 0.37 0.63 0.01
Complexity ≥ 14,000 bytes, SNR ≥ 0.14 1.00 0.17 0.83 0.03

Table 4. Informedness and Precision measures at various partition boundaries. These measures are explained in detail in appendix B

Figure 7. Scatter plot showing the coarse-grained complexity and the signal-to-noise ratio (SNR), and the relationship between them, for the EMU-PS zoo
sub-sample inclusive of the enrichment sample (n=1627). The figure shows the classification of frames derived through consensus from the zoo (Anomaly in
the EMU Zoo) and the function based catalogue boundary for anomalies (Catalogue Boundary) with its exponential form shown in this figure and expressed
in terms of a log ratio adjustment of a lower bound complexity value in equation 4.

Enriched sample Prediction: Prediction: Total
Zoo Label Anomaly Other

Anomalous 23 1 24
Complex 58 365 423
Simple 22 1049 1071
No source 5 26 31

Total 108 1441 1549

Table 5. We use the function defined in Eqn. 4 to segment the enriched
sample to identify anomalous frames and show these predictions in terms
of truth labels derived based on zoo consensus. Results show only a single
false negative for the Anomalous class discussed further in section 5.3

labels increases in the tail above the 99.5th percentile, a complexity
value of approximately 17,000 bytes.

Table 4 shows that Recall in the zoo sub-sample above a com-
plexity threshold of 14,000 bytes is 1.00 , equivalent to 100% reten-
tion of anomalous objects, however the false positive rate of 0.37
results in an Informedness of 0.63. The false positive rate here is
measured based on the proportion of frames not containing anoma-
lous objects by consensus that fall above the threshold. The results
show that when an SNR threshold of 0.14 is incorporated, the Re-
call remains at 1.00, however the false positive rate reduces to 0.17

Non-bias sample Prediction: anomaly Prediction: other Total

Zoo: Anomaly 6 1 7
Zoo: other 59 1397 1456

Total 65 1398 1463

Table 6. We use the function based boundary to segment the non-bias
sample and construct a confusion matrix based on the binary classification
of anomalies vs all other classes where zoo consensus was reached. We use
this binary classification scheme to evaluate Recall and Informedness.

resulting in an Informedness of 0.83. The rationale for including the
SNR is discussed further when considering classification errors in
section 5.3.

In order to segment frames containing anomalous sources, and
reduce the false positive rate, we fit (based on visual inspection)
a function as the catalogue boundary in terms of the complexity
𝐶 ( 𝑓 (𝑥)) and SNR. This is illustrated in Fig. 7 as an exponential
curve where truth labels were defined using consensus votes from
zoo classifications. The functional catalogue boundary can also
be expressed in terms of a log ratio adjustment of a lower bound
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Catalogues created

Name Partition boundary Sample Size Scan Recall Informedness Precision Precision
retained (non-bias) (non-bias) (non-bias) (enriched)

Most complete Complexity boundary (Function) 16,157 5% 0.86 0.82 0.09 0.75
Compromise Function & Complexity cut ≥ 15,000 bytes 3,791 1% 0.71 0.69 0.14 0.88
Most pure Function & Complexity cut ≥ 17,000 bytes 1,558 0.5% 0.43 0.42 0.17 0.94

Table 7. Informedness and Precision measures for different anomaly catalogues. The functional form of the complexity boundary is given by equation 4, and
plotted in figure 7. Precision is calculated using both the non-bias sample with the positive class based on anomalies only (complementary with the calculation
of Recall) and also the enriched sample with the positive class based on both anomalies and complex objects (to evaluate the concentration of complex objects
amongst the false positives retained)

.

complexity value for anomalous frames

𝐶 ( 𝑓 (𝑥)) ≥ 13101 ln
(
2

3√SNR

)
, (4)

To be considered a candidate for the anomaly catalogue, a frame
must have a complexity value greater than the right side of Eqn. 4.
This equation provides a complexity boundary of𝐶 ( 𝑓 (𝑥)) > 14000
when the SNR of the frame is roughly 0.3. The majority of frames
have a SNR less than 0.3 (as we can see from Fig. 7), and so
would require a higher complexity to be considered as part of the
anomaly catalogue. Using a function based catalogue boundary that
incorporates both complexity and the SNR improves the Precision
and Informedness of the segmented sample by reducing the retention
of false positives, as illustrated in figure 7.We propose that a similar
partition will be effective with respect to the full EMU survey.

We use the function defined in Eqn. 4 to segment the enriched
sample to identify anomalous and complex frames and show these
predictions in terms of zoo labels in Table 5. We measure the Re-
call, Informedness and Precision based on the binary classification
of anomalies vs all other classes using the non-bias sample with re-
sults presented as a confusion matrix shown in Table 6. The Recall
and Informedness can be evaluated with respect to the horizontal to-
tals with results showing a Recall of 0.86 and Informedness of 0.82
for positive predictions. We use estimates of Recall and Informed-
ness based on the non-bias sub-sample to provide more accurate
estimates by avoiding the allocation of too much weight to the tail
through the inclusion of the Enrichment sample.

As shown in Table 1, the number of anomalies is very small
compared to the number of frames containing complex objects.
Accordingly, even at a very low false positive rate of 0.04 for the
functional boundary, the Precision remains low as the boundary per-
mits more familiar complex objects that are not deemed anomalies.
We use the combined complex and anomalous classes to verify that
the precision remains high with respect to both theses classes. We
use estimates of Precision based on the enriched sub-sample to pro-
vide better coverage of the right tail of the complexity distribution,
as discussed in section 3.4, with the aim of providing a better rep-
resentation of the concentration of complex and anomalous sources
above the complexity threshold defined using the function based
boundary.

The Precision can be evaluated with respect to the vertical
totals of the confusion matrix returning a low value of 0.09 when
computed using the non-bias sample with the positive class de-
fined using anomalies only. Based on the enriched sample, with
the positive class including both anomalies and complex objects,
the Precision is estimated to be 0.75 for the functional boundary.

Imposing a stricter complexity cut of 17,000 bytes the Precision is
estimated to be 0.94.

Summary statistics are presented in table 7. Results show only
a single false negative for the Anomalous class discussed further in
section 5.3. We note that the Informedness of the function based
catalogue boundary is comparable to the orthogonal thresholds,
made at a complexity cut of 14,000 bytes and an SNR cut at 0.14
as shown in table 4. A key advantage of the function based cata-
logue boundary however is the much smaller false positive rate with
respect to anomalies, less than one quarter (< 25%) the size. This
results in a much more efficient search space for unusual objects
and can be used to produce an anomaly catalogue of a more man-
ageable size. Imposing stricter complexity thresholds on top of the
functional boundary can further reduce the false positive rate and
improve Precision as shown in table 7. These results also show a
significant improvement in Precision with respect to both anoma-
lies and complex objects can be achieved when stricter complexity
thresholds are overlaid, with results showing an enriched Precision
of 0.88 and 0.94 when applying complexity thresholds of 15,000
bytes and 17,000 bytes respectively. These results allow the trade-
off between catalogue size, Recall and Precision to be evaluated for
different boundary choices.

5 DISCUSSION

5.1 Anomaly Catalogue

We construct three anomaly catalogue partitions, as shown in Table
7, the first based only on a function incorporating complexity and
SNR values to formulate the boundary, and the other two combining
the function based catalogue boundary with a complexity cut at
≥15,000 bytes and ≥17,000 bytes.

Using the function based catalogue boundary, without any fur-
ther complexity cuts, produces a partitioned sample with the highest
Recall of 0.86. However, it also produces a relatively large catalogue
of n=16,157 frames with an estimated false positive rate of 0.04.

To provide a more efficient search space that promotes the
discovery of unusual and novel objects, we introduce further com-
plexity cuts to reduce the catalogue size. At a complexity cut of
≥17,000 bytes, the catalogue size is reduced significantly from
16,157 frames to 1,558 frames with an estimated false positive rate
of 0.01. We note however, that despite the reduction in the false
positive rate, the Precision remains low at 0.17 with respect to the
positive class based on anomalies only. Evaluating the precision
based on the Enriched sample and including both anomalies and
complex objects within the positive class we achieve a precision of
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0.94 suggesting that the majority of objects captured in this cata-
logue will have some structure, and will be more interesting than
simple unresolved sources or single component sources. We expect
that very few of the frames belonging to this catalogue would be
classified as containing only simple objects or noise. This is the
smallest catalogue, and provides a fast search space, minimising the
number of false positives, however the low Recall of 0.43 presents a
significant risk that new and interesting objects of interest will not
be captured.

At a compromise complexity cut of ≥15,000 bytes, the cata-
logue size of n=3,791 remains significantly smaller than the cata-
logue when excluding a complexity cut (n=16,157). The estimated
Recall of 0.71, Informedness of 0.69 (based on a false positive rate
of 0.02), Precision of 0.14 and enriched Precision of 0.88 (based
on more familiar complex objects and anomalies in the positive
class) also provide a middle ground, combining improved coverage
of actual anomalies with a high concentration of interesting objects,
albeit both complex and anomalous. Furthermore, the Most Pure
sub-sample can be extracted from the Compromise sub-sample by
filtering above a complexity of 17000 bytes.

The Compromise catalogue is made available as supplemen-
tary material. Using this catalogue we extract 36 examples of high
complexity objects, each with a complexity of 17,000 bytes or
greater, and present these in Appendix C. Here we discuss in more
detail example objects of interest, concentrating on the more un-
usual features of the objects, and we group these together in the
currently most commonly used radio-morphological classification
schemes.

5.2 Using the Anomaly Catalogue

The catalogue contains the complexity value, the SNR and the
sky co-ordinates of each frame centre (RA DEC in deg). As the
frames represent a square aperture of approximately ∼12 arcmin
it is recommended that the co-ordinates of each frame centre be
used to conduct a search for objects and structures of interest within
a radius of 9 arcmin. It is also important to note that as frames
are sampled with a stride of one quarter the frame length, many
frames will be associated with the same objects of interest, with
many directly over-lapping. To help make the search more efficient,
frames have been grouped by clustering frame centre locations based
on the distance between them. The cluster number associated with
each frame is provided in the catalogue. This can help improve the
efficiency of the search once an apparent host object of interest
has been located within a cluster. The catalogue also contains an
indicator variable to identify high complexity frames positioned
adjacent to the edges of the EMU-PS region. This is to help identify
frameswhere contributions to complexitymay come from incidental
structure or artefacts produced near the edges. These frames have
not been assigned a complexity cluster but have been retained in the
catalogue as they may still be associated with objects of interest.

5.3 Classification errors

The evaluation of classification errors provides important context
for selecting a partition boundary for an anomaly catalogue. Type
II errors, representing the incorrect classifications of true positives
(i.e. false negatives), remained low at the boundaries evaluated. All
anomalies identified by zoo participants were contained by orthog-
onal thresholds, made at a complexity of 14,000 bytes and an SNR
of 0.14. The function based catalogue boundary produced only one

false negative as shown in figure 7 (below the perforated exponential
line).

False negative errors may arise due to the removal of mean-
ingful information by the smoothing functions, potentially due to
the sparse or faint representation of complex features, discernible
to the human eye or through additional measurements, but having
a reduced impact on the information content of the frame itself.
This was the case with the single false negative falling outside of
the function based catalogue boundary. This example is illustrated
in figure 8, where a faint complex structure is apparent in the top
left corner of the frame. While consensus converged on the clas-
sification of this frame as an anomaly, 3 out of 7 zoo participants
considered the frame as not containing any complex structures, and
evaluated the frame as containing only simple objects (most likely
referring to the bright source at the bottom of the frame towards
the right side). Even though this frame falls outside of the function
based catalogue boundary, a complexity value of over 14,000 bytes
suggests that this frame does contain a complex structure. In alterna-
tive overlapping frames, outside of the zoo sub-sample, even larger
complexity values are attributed to sections of sky containing this
structure. Further investigation shows that the faint complex radio
emission in the top left corner of the frame appears to be due to a
face-on spiral galaxy ESO 236-G008 (z=0.03088, optical angular
diameter ∼ 1.5 arcmin). Interestingly, the complexity value of this
frame falls below that of, and separates it from, even more unusual
faint radio structures such as ORC-like ringed radio emissions.

False negative errors can also be caused by the mislabelling of
noise and simple objects as positives (i.e. incorrect assignment of
truth labels) due to the judgement error of zoo participants. Errors
can also be caused by a failure of zoo participant evaluations to
converge accurately given the small number of potential volunteers
with the appropriate expertise to evaluate certain objects.

Type I errors, representing the incorrect identification of simple
sources as complex (i.e. false positives), may be due to the presence
of non-random information deemed by a human observer to be
incidental and not contributing to the complexity of the source
itself. An example could be a telescope imaging artefact containing
structure, such as a point spread function originating from a brighter
source. Type I errors may also occur where multiple simple sources
are captured within a frame, as the number of sources captured in
each frame can vary significantly.

Errors again may also be due to a failure of volunteer evalua-
tions to converge on accurate truth labels, in this case mislabelling
frames containing complex and unusual objects as negatives po-
tentially due to the loss of information in each frame due to the
sampling process. This is particularly likely where only part of an
interesting source was captured in the sample frame. For exam-
ple, the X-shaped radio galaxy 2MASX J20180125-5539312, as
shown in figure 9, is large enough that the scan frames capture only
part of this larger structure. These examples were misclassified by
some participants as frames containing only noise or simple ob-
jects. While expert astronomers did in fact identify these frames
as containing complex and anomalous structures, misclassifications
by some volunteers resulted in the failure of some of these frames
to reach a consensus vote that converged on a positive label. Fur-
thermore, the human criteria for what is interesting or anomalous
may be somewhat tarnished by previous exposure and not judged
on its own merits (e.g. a galaxy image may have a high complexity,
but be identical to images previously seen by the human judge and
accordingly classified as simple).

Alternatively, type I errors may be explained by the retention
of random inputs not removed by the smoothing function. In S19 we
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Figure 8. False negative errors may arise due to the removal of meaningful
information by the smoothing functions due to the faint representation of
complex features. This was the case with the single false negative falling
outside of the function based catalogue boundary. A faint complex structure
is apparent in the top left corner of the frame.While consensus converged on
the classification of this frame as an anomaly, 3 out of 7 zoo participants eval-
uated the frame as containing only simple objects (most likely referring the
bright source at the bottom of the frame towards the right side). In alternative
overlapping frames, outside of the zoo sub-sample, even larger complexity
values are attributed to this structure.Further investigation shows that the
faint complex radio emission in the top left corner of the frame appears to be
due to a face-on spiral galaxy ESO 236-G008 (z=0.03088, optical angular
diameter ∼ 1.5′). Interestingly, the complexity value separates this frame
from even more unusual faint radio structures such as ORC-like ringed radio
emissions.

demonstrated that in the ATLAS sample there was a large amount
of noise in the simple sources at baseline. This presents a risk that in
some images random inputs will take the form of incidental struc-
ture that may not be removed as smoothing increases. Where ran-
dom inputs are retained after smoothing, segmentation efficiency
is likely to be improved by incorporating thresholds in both the
coarse-grained complexity and the SNR, as incidental structure and
imaging artefacts are less likely to have the same gradient structure
as astronomical sources and are therefore likely to be distributed
more uniformly across the available channel values. Figure 7 illus-
trates the benefit of incorporating the SNR to reduce false positives
(type I errors).

6 SUMMARY

The coarse-grained complexity can be used as a tool for identifying
unusual and complex images, useful for segmenting complex images
from simple images, as demonstrated in S19. In this work we apply
it to the new and larger EMU-PS data (365,000 sampled frames
containing at least the ∼220,000 Selavy catalogue sources) after
being calibrated on the much smaller ATLAS DR1 data used in S19
(∼700 training sources) to identify and segment unusual sources (i.e.
anomalies). This demonstrates the generalisability of the coarse-
grained complexity for identifying unusual sources in increasingly
larger deep radio continuum surveys such as the full EMU survey.

Figure 9. TheX-shaped radio galaxy 2MASXJ20180125-5539312 provides
an example where frames captured only part of the larger structure. These
partial frames were sometimes misclassified by participants as not being of
interest.

The supporting steps taken and results discussed in this paper are
summarised as follows:

• We scanned the mosaic image of Pilot Survey of the Evolu-
tionary Map of the Universe, measuring the complexity of frames
rather than individual sources, and examined the distribution of
complexity values. An important feature of the scan method is that
the frames are sampled from the EMU-PS data in a blind manner,
without reference to any source catalogue.

• We found that the high-value tail of the complexity distribution
comprises many unusual, complex and extended objects. Extended
sources featured heavily in the tail above the 95th percentile, with
wide angle tail radio galaxies and objects of a more anomalous
appearance apparent from above the 99th percentile. The ability of
the coarse-grained complexity measure to segment these sources
in the distribution tail shows the effectiveness of this approach at
identifying scientifically interesting observations in large data sets
in an efficient manner.

• These results demonstrate the effectiveness of this approach
in recovering extended or complex structures. Examples are pre-
sented in Appendix C. These include peculiar FRII and FRI type
sources, Tailed Radio Galaxies, Odd Radio Circles, and Giant Ra-
dio Galaxies including a previously unreported Giant Radio Galaxy
with largest linear scale (LLS) of 1.94 Mpc shown in panel 5d of
figure C1.

• We used a Zooinverse project to produce crowd-sourced labels
for a sub-sample of frames produced by a blind scan of the EMU-PS
data to evaluate the effectiveness of the coarse-grained complexity
as an anomaly partition.We identified an effective anomaly partition
using the coarse-grained complexity and SNR values. These can be
used to generate an anomaly catalogue and we propose that a similar
partition will be effective with respect to the full EMU survey.

• We generate three anomaly catalogue boundaries using coarse-
grained complexity and SNR values to partition the frames. The
most complete catalogue boundary uses a function based on com-
plexity and SNRvalues to formulate the boundary, and has n=16,157
frames, less than 5% of the total n=365,000 frames produced from
the EMU-PS scan, with an estimated Recall of 0.86 and a Informed-
ness of 0.82.

• The most pure catalogue boundary has an additional complex-
ity cut at ≥17,000 bytes (on top of the functional boundary), with a
catalogue size of 1,558 frames and an estimated Recall of 0.43 and
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Informedness of 0.42. While Precision is measured at 0.17 based
on anomalies only, by redefining the positive class in terms of both
familiar complex objects and anomalies this partition returns an
enriched Precision of 0.94.

• The compromise catalogue boundary uses a lower complexity
cut of only ≥15,000 bytes and has a catalogue size of n=3,791,
with a Recall of 0.71 and Informedness of 0.69, providing a middle
ground with respect to catalogue size and Recall. We make this
catalogue available to the community as supplementary material.

The analysis has demonstrated the ability of the coarse-grained
complexity to single out regions of the sky that contain complex and
unusual sources based on calibration from a much smaller sample.
The approach is efficient to compute and reduces expectation bias
as it can be computed at worst-case linear time complexity without
reference to the broader sample or existing catalogue data. This
positions the approach as an efficient and powerful tool in identi-
fying new and anomalous sources in the full EMU survey, as well
as subsequent large and deep radio continuum and optical imaging
surveys.
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APPENDIX A: SUB-SAMPLING EXCLUSIONS

Figure A1 shows the histogram of complexity values from the zoo
sub-sample. Complexity values ranging from12,200 bytes to 13,400
bytes were not included in the zoo sub-sample due to the selection
procedure of inward sampling from the tails. Values within this
range occur within the inner quartiles of the EMU-PS sample. The
zoo results, as depicted in figure A2, show that all sources classified
by zoo participants as unexpected or anomalous have a measured
complexity value of approximately 14,000 bytes or greater. It is
assumed that the frames not sub-sampled within the complexity
range 12,200 bytes to 13,400 bytes would have minimal impact
on the assessment of Recall, given the low probability of sources
being classified as unexpected or anomalous below 14,000 bytes.
Any false negatives (Type II errors) resulting from defining the
partition boundary at this level or above are expected to be few.
This is supported by the large zoo sub-sample below 14,000 bytes,
over 60% of the total zoo sub-sample, in which no sources were
classified as anomalous. Furthermore the fraction of anomalous
sources appears to reduce quickly at lower complexity values, as
demonstrated by the steep slope at high complexity values in the
cumulative probability distribution for anomalies, as shown in figure
A2. Accordingly, re-sampling from within the missing range was
not deemed as necessary.

APPENDIX B: PERFORMANCE EVALUATION

B1 Recall and Precision

Tomeasure Recall and Precision using the results from theAnomaly
Zoo, we use the following metrics:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 . (B1)

Figure A1. Histogram partitioned by consensus votes from the zoo. Bins in
the range 12,200 bytes to 13,400 bytes were omitted as described in appendix
A.

Figure A2. Cumulative probability of complexity values from both the
Total sample and for anomalies identified in the zoo

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , (B2)

Here FP are False Positives (or Type I errors, objects misiden-
tified as being of interest), FN are False Negatives (or Type II errors,
complex and unusual objects misidentified as being simple), TP are
True Positives (correct positive classifications) and TN are True
Negatives (correct negative classifications).

Precision determines the number of correct positive classifica-
tions as a fraction of all positive classifications, TP/(TP+FP), while
Recall determines the number of correct positive classifications as
a fraction of the total number of real positives (RP=TP+FN), and
so is TP/RP. The fraction of positive objects that have been missed
would be 1 − Recall, in the binary classification case.

B2 Informedness

An alternative framework for measuring performance involves the
use of Receiver Operating Characteristic (ROC) curves. The use of
ROC curves to construct a comparative framework has been adopted
in the machine learning literature (Fürnkranz & Flach 2005). These
approaches account for chance level performance and can also be
used to account for the cost weightings of negative and positive
cases. ROC analysis examines the false positive rate (FP/RN) versus
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Class + Class - Total
Prediction + TP FP (Type I error) Predicted Positives (PP)
Prediction - FN (Type II error) TN Predicted Negatives (PN)

Total Real Positives (RP) Real Negatives (RN)

Table B1. Confusion Matrix for binary classification problem.

the true positive rate (TP/RP), which can be used to account for the
trade-off between these two measures.

The maximum positive distance of the receiver operating char-
acteristic (ROC) curve from the 45 degree chance line is known as
Youden’s J statistic (Youden 1950) or as the Informedness measure
(Powers 2011). The Informedness measure is equivalent to the sub-
traction of the false positive rate (FPR) from the true positive rate
(TPR) as follows:

Informedness = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 − 𝐹𝑃

𝑇𝑁 + 𝐹𝑃 = TPR − FPR (B3)

Powers (2011) shows that Informedness is an unbiased estima-
tor of above chance performance. The measure incorporates both
Type I errors (False Positives) and Type II errors (False Negatives)
and describes the improved performance of the measured classifier
with respect to chance, costing true positives and false positives in
a way analogous to how a bookmaker fairly prices the odds (Powers
2011). For this reason the measure is also referred to as Bookmaker
Informedness. The Informedness measure is defined on a (-1,1)
interval and gives equal weighting to the true positive and false
positive rate.

Informedness appears appropriate for evaluating the effective-
ness of alternative approaches at detecting and classifying complex
and unusual observations in large astronomical data. The Informed-
ness measure relates to the following objectives of classification:

(i) Maximise true positive rate (i.e. minimise the type II error
rate) - ensuring the search space contains as many truly interesting
things as possible.
(ii) Minimise false positive rate (i.e. minimise the type I error

rate) - ensuring the search space does not become too large and
predominantly contains truly interesting things.

Removing false positives reduces the search space, and the
associated costs of handling larger data sets, helping to make the
discovery process more efficient. Due to the likely small number
of actually unusual observations (new types of objects) compared
to normal observations (objects belonging to an already known or
common class) in the total sample, the metric is likely to be more
sensitive to small changes in the true positive count resulting from
misclassification or disagreement between zoo volunteers.

In assessing the effectiveness of the approach, a key consid-
eration is the reduction of the type II error rate, measuring the
effectiveness of the approach at identifying as many of the unusual
observations as possible. Minimising the type I error rate is also
of importance in providing a significant reduction in the search
space. Reducing the type I error rate also reduces contamination
of the search space by simple sources and noise. This is reflected
in the complementary measure of Precision. For these reasons the
Informedness and Precision measures were chosen as the principle
criteria for evaluating prospective partition boundaries.

APPENDIX C: EXAMPLES OF HIGH COMPLEXITY
SOURCES

Table 7 outlines three boundaries used to construct and partition an
anomaly catalogue using a complexity cuts.

Examples of interesting non-overlapping frames from within
the catalogue boundary, with a complexity of 17,000 bytes or
greater, are shown in figure C1. Frames with figure reference 2C,
4A, 4B, 4C and 7A were found efficiently within the catalogue
search space. The remaining frames shown in figure C1 were sam-
pled from within selected fractional percentile bins above 17,000
bytes and provide a representation of the high value complexity tail
and the diverse morphology found within. We found the apparent
host object associated with each example frame and detail these
along with their main characteristics in table C1.

C1 Notes on Examples of interest

We looked up the regions of the 36 panels displayed in figure
C1 in both the EMU PS full-resolution radio image (Norris et al.
2021b) as well as in the deep optical images of the Dark Energy
Survey Data Release 1 (DES, Abbott et al. (2018)). as offered
in the Aladin software package (Bonnarel et al. 2000). This al-
lowed us to identify the apparent host object, and we retrieved their
main characteristics (exact position, brightness, spectroscopic red-
shifts, etc.) from the NASA/IPAC Extragalactic Database (NED,
ned.ipac.caltech.edu) as well as the VizieR catalogue browser
at CDS (Ochsenbein et al. 2000). Photometric redshifts were
searched in various catalogues not readily available from the above
data sources, like Bilicki et al. (2014, 2016); Zhou et al. (2021);
Zou et al. (2022) and an average value was adopted if more than one
was available. The largest angular sizes (LAS) of the radio sources
(including parts that exceed the panel limits of figure C1) were
measured and converted to largest linear sizes (LLS) using stan-
dard cosmological parameters, 𝐻0 = 70 km s−1Mpc−1, Ω𝑚=0.3,
ΩΛ=0.7. These details along with the location of the apparent host
object are provided in table C1.

In what follows we describe our findings, concentrating on the
more unusual features of the objects, which we group together in the
currently most commonly used radio-morphological classification
schemes, with the major such scheme being the Fanaroff-Riley class
(I or II according to Fanaroff & Riley (1974)) followed by wide-
angle (WAT) or narrow-angle tailed (NAT) radio galaxies, and less
well-defined morphological classes.

C1.1 FR II type sources

The FR II type radio galaxies shown in figure C1 tend to have more
inflated lobes than that of average objects with this classification,
most likely because these features contribute to the complexity level.
The most regular and at the same time linearly largest FR II is seen
in panel 5D, while the others (panels 1A, 1B, 1C, 2A, 4D, 5B,
9B) tend to have more inflated lobes of the remnant type, the most
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extreme of these being the one in panel 8A, already presented in
Fig. 23 of Norris et al. (2021b).

C1.2 FR I type sources

FR I type sources are more abundant in our selection for figure C1.
Apart from some sources mentioned elsewhere in this section, we
emphasize the WAT-like one in panel 2D which has two symmetric
inner jets but only one complex lobe due North, while a South lobe
or tail is not detected. The source’s linear size, already without a
South lobe, is close to 1Mpc. At an adequate contrast the N jet is
seen to follow a NNE direction, then curving backward on itself
in projection due SSE. The host may be either one of two bright
galaxies in a close pair, whose interaction may be responsible for
the wiggles in the jets.

C1.3 Tailed Radio Galaxies like WATs and NATs

The angularly largest WAT is the one in panel 7D, whose N lobe is
seen only in the lower section of panel 3D. Another large WAT is
the one seen in both panels 6D with its central part and 8D with its
Southern tail. Salient features in the EMU PS radio image are the
sharp edges of the widening S tail and a circular shock feature in
the NNE tail. The two most peculiar WAT-type sources are those in
panels 7A and 8B. The one in 7A has been coined “Dancing Ghosts”
in Norris et al. (2021b) and features two WATs in the same cluster,
Abell 3785, as already discussed by these authors (see their Fig. 21).
The one in panel 8B has its host just beyond the SW corner of the
panel, and was already shown in a more spectacular radio-optical
overlay in Fig. 22 of Norris et al. (2021b).

Another odd-shaped WAT is that in panel 3B which looks like
a radio ring but clearly has its very bright cD-like host galaxy at
one radio knot due SW. The tails are likely curved in projection
along the line of sight to cause the impression of a ring. The host
is by far the brightest galaxy towards the cluster Abell 3796, and is
likely a member of the intermediate-distance group of three (with
𝑧 ∼0.056, 0.076 and 0.094) that seem to cause the illusion of a
single rich cluster.

Panel 2C shows a WAT with its host at its southern tip. The
tails bend rather sharply and symmetrically due N before they are
fairly abruptly bent due W, perhaps due to shear in the intergalactic
medium. A very twisted, but still rather symmetric WAT is seen in
panel 3C, and another WAT rather sharply bent near its host at its
Eastern tip is shown in panel 9C.

No actual NATs are among those in figure C1, possibly due to
their complexity falling below the 99.5th percentile. Analysis of the
complexity distribution of Selavy cutouts suggests NATs are more
common above the 98th percentile.

C1.4 Circular, X-shaped, hybrid or otherwise oddly shaped
Sources

Panel 4C shows the pair of “odd radio circles” (ORC2 and ORC3)
already described in Norris et al. (2021a), Koribalski et al. (2021),
and Norris et al. (2022).

Apart from the giant X-shaped source PKS 2014−558 (Cotton
et al. 2020) there is another X-shaped source with less prominent
wings in panel 6C. Panel 4D shows an E-W oriented FR II radio
galaxy with plumes extending NE and SW from the core and may
thus be considered as X-shaped as well.

Hybrid morphology sources (or HyMORS, see e.g. Kapińska

et al. (2017)) are those with FR I morphology on one side and FR II
on the other. These are very rare sources and the example closest to
this in figure C1 may be seen in panel 8C with a 610-kpc wide radio
galaxy with an FR I-type East lobe and a shorter FR II-type West
lobe that widens with distance from the core and ends in a lobe with
an outer boundary oriented perpendicular to the main source axis.
The compact source further W of it is due to a quasar candidate.

Panel 2B shows the radio emission of the bright elliptical
galaxy Fairall 106 which extends over 2 arcmin on the DES im-
age, showing faint optical shells. It is the brightest of a group of
four members reported by Díaz-Giménez & Zandivarez (2015). Its
complex and diffuse radio emission is predominantly East of the
galaxy extending over less than three times its optical size.

The radio emission of the source in panel 3A is peaked on the
brightest galaxy in Abell 3826B (the more distant of two groups)
and has been interpreted as due to a (currently) E-W oriented jet that
has precessed in the past in a counterclockwise direction causing
a short circular arc in the N and a longer one in the S half of the
source (see middle panel of Fig. 8 of Gupta et al. (2022).)

Panel 5C displays a double radio galaxy with highly unusual
lobe shapes. These lobes appear to consist of inner spines (jets?)
accompanied by parallel elongated features on each side of the
spines, somewhat reminiscent of a trident, which is suggestive of
a collimated backflow of jet/lobe material after reaching the outer
ends of the source, and which show no prominent hotspots. While
the radio core appears to be extended due W, almost perpendicular
to the general source axis, this is likely due to a point source ∼
11′′WSW, on the unrelated galaxy DESI J325.8764-51.0961 which
appears to be located at a similar redshift.

C1.5 Giant Radio Galaxies, GRG

As can be seen from table C1, there are five sources that exceed
an LLS of 1Mpc. The largest, and previously unreported, one of
1.94Mpc is seen in panel 5Dof figureC1, is hosted by an r=20.2mag
galaxy. EMU PS shows continuous emission from one end of the
source to the other, suggesting the presence of jets all the way
from the core to the lobes which is unusual for such large radio
galaxies. The next largest GRG of 1.57Mpc (panels 4A and 4B) is
the largestX-shaped source known, PKS2014−558, andwas studied
in detail by Cotton et al. (2020). The source in panel 9A reminds of a
restarted (or double-double) radio galaxy with its inner radio knots
on opposite sides of the host, but the outer FR I-type lobes rather
suggest it is a WAT oriented with its plane containing our line of
sight. However, there is no evidence for a cluster in the DES image,
and its size of 1.37Mpc is unusual for WAT sources. Panel 5C
shows a core-dominated double source with trident-shaped lobes,
already described above and extremely unusual for its large LLS of
1.30Ṁpc. The fifth-largest source of 1.15Mpc is seen in panel 1C,
although its northern lobe reaches beyond the panel size. It has very
diffuse, remnant-type inflated lobes, again unusual for such large
sources. Apart from these sources there are seven more (panels
1A, 2D, 3D=7D, 4C, 5B, 6D, 8D) in the range LLS=0.7–1Mpc,
considered by most current authors as GRGs as well.

C1.6 Nearby spiral Galaxies

Spiral galaxies, with extremely few exceptions, tend to show radio
emission that more or less extends over part or all of their optical
extent. Edge-on spirals, when observed with sufficient sensitivity,
may show radio emission extending away from their galactic planes.
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The latter is what we see for the only perfect edge-on spiral in
Fig. C1, NGC 7090, in panel 1D, with an inclination angle of 0◦
according to HyperLEDA (Makarov et al. 2014), where the optical
galaxy is oriented SE-NW and the radio emission on its NE side
appears more extended than on its SW side. Radio emission is
detected over about half the projected length of the optical disk in
the DES image (see also Fig. 26 of Norris et al. (2021b)).

Panel 5A shows the radio emission of the barred and almost
face-on spiral NGC 7125, which extends over its entire optical
extent, but is more patchy and irregular than the optical emission
(see Fig. 27 of Norris et al. (2021b)).

The SE corner of panel 6A shows the amorphous radio emis-
sion of the dwarf irregular galaxy IC 5152, a member of the Local
Group.

Panel 6B shows the barred spiral NGC 6984, which is too small
for EMU PS to resolve details of the spiral structure.

The SE quadrant of panel 7B features the ring-like radio emis-
sion of NGC 6935, a very high surface brightness barred spiral
surrounded by faint and tightly bound spiral arms in the DES im-
age, where radio emission is still faintly seen in EMU PS.

The radio emission in panel 7C traces the spiral structure of
the Sbc type galaxy NGC 7205 of intermediate inclination.

Finally, the upper half of panel 9D shows the barred spiral
NGC 7059 with its inner region bright in both radio and optical.
The compact radio source in the Eastern outskirts of the galaxy
coincides with the X-ray source 2SXPS J212729.2−600102 and
is likely the counterpart of the 𝛾-ray source 4FGL J2127.6−5959
(Kerby et al. 2021) in the background of NGC 7059.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure C1. Examples of interesting non-overlapping frames with a complexity of 17,000 bytes or greater. All frames presented are of equal size, showing a
256 × 256 pixel region (equivalent to a span of approximately ∼ 12 arcmin). These frames were used to locate each object of interest however the associated
characteristics of each object and the precise coordinates of the host were determined after the object was found. Coordinates of the optical host for each object
are provided in Table C1. The color bars show the intensity scale for each image based on the flux density in each pixel (mJy/beam).
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Fig ref Complexity (bytes) Percentile RAJhost DECJhost LAS/’ z ztype LLS/Mpc Host Name
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1A 17348 99.5 306.8107 −55.3130 2.88 0.36 p 0.87 DES J202714.57−551846.9
1B 18932 99.9 319.1425 −63.0186 2.82 0.25 p 0.66 2MASX J21163413−6301068
1C 19749 99.9 326.0088 −48.3159 7.95 0.135 p 1.15 2MASX J21440210−4818581
1D 19670 99.9 324.1203 −54.5573 4.0 0.002825 s 0.014 NGC 7090, edge-on spiral galaxy
2A 18965 99.9 306.6852 −55.3743 2.15 0.26 p 0.51 DES J202644.45−552227.3
2B 19467 99.9 323.7978 −62.0786 3.6 0.05629 s 0.24 2MASX J21351149−6204432
2C 19316 99.9 322.3293 −50.8844 3.2 0.07999 s 0.29 2MASX J21291901−5053040
2D 19476 99.9 325.7994 −61.4718 5.2 0.1825 s 0.96 2MASX J21431182−6128184
3A 19023 99.9 330.1005 −56.1782 1.6 0.07578 s 0.14 2MASX J22002408−5610413
3B 17367 99.5 324.8748 −51.3955 1.7 0.07573 s 0.15 2MASX J21392989−5123440
3C 19987 99.9 309.1440 −57.6233 3.56 0.03586 s 0.15 ESO 143−G035, Fairall 74
3D 19152 99.9 327.8747 −55.3369 15.2 0.03878 s 0.70 2MASX J21512991−5520124
4A 19839 99.9 304.5055 −55.6586 22.4 0.0606 s 1.57 2MASX J20180125−5539312
4B 19745 99.9 304.5055 −55.6586 22.4 0.0606 s 1.57 2MASX J20180125−5539312
4C 17570 99.5 314.7033 −57.6033 2.68 0.31 p 0.73 DES J205848.79−573612.0
4D 19629 99.9 335.2748 −50.3070 2.2 0.32 p 0.62 DES J222105.94−501825.2
5A 18870 99.9 327.3166 −60.7131 3.1 0.010501 s 0.041 NGC 7125, face-on spiral galaxy
5B 17992 99.8 308.5346 −52.8950 1.68 0.70 p 0.72 DES J203408.30−525341.8
5C 17212 99.5 325.8806 −51.0948 3.3 0.58 p 1.30 DES J214331.34−510541.1
5D 17867 99.8 334.1668 −62.8782 4.86 0.596 p 1.94 DES J221640.02−625241.6
6A 17419 99.6 330.6730 −51.2964 3.7 0.000407 s 0.002 IC 5152; ESO 237−G027
6B 17655 99.7 314.4749 −51.8708 1.6 0.015577 s 0.031 NGC 6984, spiral galaxy
6C 17411 99.6 324.5352 −59.6218 1.93 0.21 p 0.40 DES J213808.45−593718.4
6D 20230 99.9 311.4677 −51.1074 13.9 0.04849 s 0.79 2MASX J20455226−5106267
7A 20179 99.9 323.5737 −53.6363 4.4 0.07945 s 0.39 2MASX J21341775−5338101
7B 17642 99.7 309.5843 −52.1104 1.5 0.015154 s 0.027 NGC 6935, ringed face-on spiral galaxy
7C 18983 99.9 332.1429 −57.4426 3.8 0.005623 s 0.027 NGC 7205, spiral galaxy
7D 20670 99.9 327.8747 −55.3369 15.2 0.03878 s 0.70 2MASX J21512991−5520124
8A 18944 99.9 312.1568 −49.1876 4.76 0.11 p 0.57 2MASX J20483764−4911157
8B 18906 99.9 310.3001 −52.9605 5.8 0.04801 s 0.33 2MASX J20411202−5257379
8C 18185 99.8 328.8026 −59.1505 5.0 0.115 p 0.61 2MASX J21551267−5909011
8D 20215 99.9 311.4677 −51.1074 13.9 0.04849 s 0.79 2MASX J20455226−5106267
9A 17886 99.8 307.0755 −49.4023 5.14 0.31 p 1.37 DES J202818.12−492408.4
9B 19108 99.9 334.8894 −60.0305 3.3 0.19 p 0.63 DES J221933.46−600149.9
9C 18270 99.8 322.1716 −60.3659 2.61 0.10052 s 0.29 2MASX J21284113−6021568
9D 17913 99.8 321.8395 −60.0146 3.5 0.005784 s 0.036 NGC 7059, spiral galaxy

Table C1. Optical identifications of sources in all frames of Figure C1, with a complexity of at least 17,000 bytes. Column 1 gives the frame position (row
number and column letter) in C1, Column 1 provides the complexity in bytes of the sample frame used to find the object of interest, Column 3 provides the
complexity percentile or the estimated probability of a frame having a complexity below this value, Columns 4 and 5 give the RA and DEC (J2000) of the
optical host object, column 6 its largest angular radio size, and column 7 the redshift, followed by its type (s for spectroscopic, p for photometric). Column 8
lists the largest linear size, and column 9 the name of the host with an explicit mention in case of spiral galaxies. Comments: 1B: Further source at frame centre,
extended ∼ 1′ N-S, has no obvious optical identification; 2B: Fairall 106, optical shells; 3D: Only N half of N lobe is seen in frame 3D, rest of source is in
frame 7D; 4D: In W half of frame; central part shows 2MASX J22212664−5016453; 5C: Trident-shaped lobes; 6A: Dwarf irregular G in Local Group;
6D: S part of source in panel 8D; 7A: Also shows 2MASX J21340666-5334186 in Abell 3785; 7D: Inner part of large WAT, N lobe in frame 3D; 8D: N
half of source in panel 6D.
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