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Abstract: Radio telescopes are used by astronomers to observe the naturally occurring radio waves
generated by planets, interstellar molecular clouds, galaxies, and other cosmic objects. These tele-
scopes are equipped with radio receivers that cover a portion of the radio frequency (RF) and
millimetre-wave spectra. The Sardinia Radio Telescope (SRT) is an Italian instrument designed to
operate between 300 MHz and 116 GHz. Currently, the SRT maximum observational frequency is
26.5 GHz. A feasibility study and preliminary tests were performed with the goal of equipping the
SRT with a W-band (84–116 GHz) mono-feed radio receiver, whose results are presented in this paper.
In particular, we describe the adaptation to the SRT of an 84–116 GHz cryogenic receiver developed
by the Institute de Radio Astronomie Millimétrique (IRAM) for the Plateau de Bure Interferometer
(PdBI) antennas. The receiver was upgraded by INAF with a new electronic control system for
the remote control from the SRT control room, with a new local oscillator (LO), and with a new
refrigeration system. Our feasibility study includes the design of new receiver optics. The single
side band (SSB) receiver noise temperature measured in the laboratory, Trec ≈ 66 K at 86 GHz, is
considered sufficiently low to carry out the characterisation of the SRT active surface and metrology
system in the 3 mm band.

Keywords: radio astronomy cryogenic receiver; W-band; Sardinia Radio Telescope; SIS mixer

1. Introduction

The 3 mm atmospheric window accessible for radio astronomy observation from
the Sardinia Radio Telescope (SRT) site (Sardinia, Italy), approximately 70–116 GHz [1,2],
encompasses the standard W-band, 75–110 GHz [3] (wavelength 2.4–4 mm). The design
and development of sensitive receivers for the 3 mm band for radio telescopes is relevant to
galactic and extra-galactic radio astronomy research. In particular, in our galaxy, observa-
tions of small-scale structures in cold molecular gas clouds are performed to search for new
molecules and to detect discs around young stars [4], while in nearby galaxies, scientific
measurements can be conducted to detect molecules, probe the cold interstellar medium,
and study stars’ birth [5,6].

Globally, several radio telescopes are equipped with W-band receivers that enable
their scientific research. In particular, the Robert C. Byrd Green Bank Telescope (GBT) [7],
located in Green Bank (West Virginia, United States) and with a diameter of 100 m, is
equipped with three different receivers that cover all of the frequencies of the W-band (i.e.,
the W-band 4 mm heterodyne receiver covering 67–93 GHz, the MUSTANG2 bolometric
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receiver at 80–100 GHz, and the Argus heterodyne receiver covering 74–116 GHz) [8]. In
Chile, the Atacama Large Millimeter/Submillimeter Array (ALMA) [9], the world’s largest
observatory for millimetre and sub-millimetre waves (35–950 GHz), has been delivering
ground-breaking scientific discoveries since 2011. ALMA is an interferometer that operates
as a single telescope. It is composed of 66 antennas that can be spread over distances of up
to 16 km [10]. Each antenna is equipped with a front end that can incorporate up to ten
independent receiver cartridges, which altogether cover the frequency spectrum between
35 GHz and 950 GHz [11]. The 3 mm band is covered by the Band 3 receiver cartridge (i.e.,
84–116 GHz) [12]. A new ALMA wideband receiver cartridge, Band 2, to be deployed in
the near future, has been designed to cover the 67–116 GHz band [13].

In Europe, another interferometer located on a high mountain in France is available
from IRAM (Institute de Radio Astronomie Millimétrique) for high-frequency observations.
It was named Plateau de Bure Interferometer (PdBI), and consisted of six antennas operating
in the bandwidths 81–115 GHz and 205–245 GHz [14], until it was upgraded and renamed
NOEMA (Northern Extended Millimetre Array), currently consisting of the 12-antenna
interferometer and equipped with new-generation receivers [15,16].

Concerning the Italian scenario, the 64 m diameter SRT represents the main telescope
with which high-frequency observations are possible in conjunction with the Medicina and
Noto 32 m telescopes [17]. The SRT is the result of a scientific and technical project carried
out by the Italian National Institute for Astrophysics (INAF) and it is managed by the
Astronomical Observatory of Cagliari. Although the telescope was designed to operate in a
frequency range between 300 MHz and 116 GHz, at present, its maximum observational
frequency is 26.5 GHz. In fact, the SRT is currently equipped with three cryogenic front
ends, covering a portion of the P-band (305–410 MHz), L-band (1300–1800 MHz) [18], C-
band (5.7–7.7 GHz) [19], and K-band (18–26.5 GHz) [20]. The availability of these radio
receivers [21] allowed the SRT to be employed in several scientific and space surveillance
observations [22–25]. One of the main technical features of the telescope is its 64 m primary
mirror, which is composed of about a thousand aluminium panels sustained by precision
mechanical actuators that are digitally controlled to compensate for the gravitational and
systematic deformations of the reflector. This feature is known as active surface and it allows
an antenna efficiency of up to approximately 40% to be obtained at high frequencies [26].

Some years ago, with the idea of gaining experience with a radio receiver that operates
at high frequencies and testing the performance of the SRT (i.e., telescope active surface and
metrology system), the Astronomical Observatory of Cagliari acquired a dismissed W-band
receiver developed by IRAM, which was installed on one of the PdBI antennas until 2006.
The W-band receiver prototype from IRAM, described in this paper, was adapted and
characterised in the INAF laboratory. However, the installation of the prototype in the SRT
antenna was not finalised, since in the meantime, the Italian Ministry of University and
Research funded the major INAF proposal for the SRT high-frequency upgrade [27], known
as the National Operational Program grant (PON), which included the development of
a high-performance W-band multi-beam receiver in the Work Package n. 1, as known
as PON OR1. The commissioning of the novel instrumentation acquired for the SRT
in the framework of the PON grant is underway and the results will be described in
separate articles.

The receiver acquired from IRAM is a dual-feed system that covers two frequency
bands simultaneously: a portion of the W-band (84–116 GHz), also known as the 3 mm band,
and a frequency range between 210 and 248 GHz (1.3 mm band) [28,29]. The instrument
observed single linear polarisations and operated at cryogenic temperature to achieve a
low receiver noise temperature [28,29]. All of the components of the receiver could be
controlled and managed by a microcontroller using an Ethernet link.

Since the SRT was designed to cover all frequencies up to 116 GHz, only the 3 mm
channel of the ex-PdBI receiver was upgraded and is presented in this work. The original
version of the instrument was unsuitable for the SRT and it required significant modifica-
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tions and refurbishment from the point of view of its structural and logistical characteristics
and its electronic control system [30,31].

In this paper, a feasibility study of the upgrade of the ex-PdBI receiver for the adapta-
tion to the SRT is presented. One of the goals of the upgrade was to equip the receiver with
a new electronic control system based on onboard intelligence that permits smart remote
control. In Section 2, we present the original version of the receiver, and focus on its signal
acquisition chain of the 3 mm channel. In Section 3, all structural and logistical adaptations
for the installation on the SRT are reported (i.e., the feasibility study of the receiver optics,
the upgrade of the refrigeration system, and the evaluation of a new local oscillator) are
reported. The new electronic control system, with the onboard intelligence to remotely
control the receiver from the control room of the SRT, is described in Section 4. Finally, the
results and discussion about the receiver performances with these new modifications are
presented in Section 5.

2. Materials and Methods: The Original Version of the Ex-PdBI W-Band Receiver

The ex-PdBI receiver consists of a single cryogenically cooled cryostat equipped with
two frequency channels: one for the 84–116 GHz band and the other for the 210–248 GHz
band [28]. Since the SRT was designed to cover all frequencies up to 116 GHz, only the
84–116 GHz channel is considered. The original version of the system permits the detection
of only linearly polarised signals. Figure 1a shows a schematic of the original version of
the receiver.

The feed system consists of a circular corrugated horn that has a flare angle of
7.42 degrees, an aperture diameter of 12.4 mm, and a length of 39.2 mm [28,29]. A phase
error at the aperture of approximately one-tenth of the wavelength (i.e., approximately
3 mm) and a beam waist close to the aperture is consequently generated by the feed. A
rectangular-to-circular guide step transformer is installed downstream from the feed horn.
An optical system composed of a high-density polyethylene (HDPE) lens is designed and
placed at the aperture of the horn to compensate for the phase error and to optimally
position the beam waist. Owing to this form of optics, the antenna beam for the receiver is
adapted for the optics of the PdBI telescopes, guaranteeing a sub-reflector edge taper of
approximately −12 dB with an aperture angle of ±5.6 degrees. Further details about the
HDPE optical system and the feed system are reported in [28,29]. A polarisation grid is
installed on the receiver to allow only one linear polarisation (i.e., the horizontal or vertical
contribution) to enter the feed, depending on the orientation of its wires. In this manner,
the receiver provides a linearly polarised electromagnetic signal at the back end.

The ex-PdBI receiver utilises a down-conversion system, with a mixer as the first
active element of the chain. The weak 3 mm wave signal νRF from the radio astronomy
source (in the 84–116 GHz range) is added to a relatively strong local oscillator (LO)
monochromatic signal νLO produced locally and coupled into a non-linear element, a
superconductor–insulator–superconductor (SIS) mixer (see Figure 1a,b). The output signal
at the frequency difference νIF =|νLO − νRF|, named the intermediate frequency (IF),
preserves the amplitude and phase of the original RF signal. The down-converted IF signal
falls in the 1.2–1.8 GHz range. This IF range falls within the 0.1–2.1 GHz baseband of the
SRT. The down-conversion operation is carried out using a backshort-tuned single side
band (SSB) SIS mixer similar to the one illustrated in Figure 2b [32,33], which operates at the
cryogenic temperature of 4 K. The SSB SIS mixer design includes a rectangular waveguide
with a single adjustable non-contacting backshort for the tuning, which achieves a good
matching of the SIS junction impedance in the signal band (typically lower side band, LSB,
νLSB = νLO − νIF) in any portion of the 84–116 GHz receiver band, while rejecting the image
sideband (typically upper side band, USB, νUSB = νLO + νIF). The achieved image sideband
rejection is about 15 dB at the centre of the IF band (around 1.5 GHz). The SIS junction
consists of two layers of superconducting metal (niobium) separated by a thin insulator
layer of aluminium oxide a few nanometres thick. Typically, the SIS junctions have a size of
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the order of a few µm2 and their integrated thin-film superconducting tuning circuitry sits
on top of a quartz substrate, which is itself mounted across a waveguide [31].
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Regarding the local oscillator, the receiver was developed to use the Gunn-based
local oscillator from IRAM telescope, which exploits the performances of a semiconductor
device (Gunn diode) to achieve oscillation at a precise frequency [34]. A side-wall coupler,
with a coupling of about 20 dB and an insertion loss of about 0.2 dB, is used to inject
the local oscillator into the signal path [28]. The coupler is connected to the horn using
a brass bracket, which also acts as a support for the mixer and flange between the mixer
and coupler.
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The IF output from the SIS mixer is connected to an isolator (see Figure 1b), with a
stainless-steel coaxial cable. The down-converted IF signal is amplified by a low noise
amplifier (LNA) [35] that delivers an instantaneous bandwidth of 600 MHz, based on
high-electron-mobility transistor (HEMT) technology, with a gain of about 30 dB and a
noise temperature of about 5 K.

All of these components are installed on a hybrid cryostat (HDV10 from Infrared
Laboratories) [36], or Dewar (see Figures 1b and 2a), in which there are three cryogenic
stages: two of them (i.e., 70 K and 20 K) are achieved thanks to a CTI model 350CP
cold head [37] and the other (i.e., 4 K) is provided by a 10-inch-diameter high thermal
conductivity plate in thermal contact with a vessel of liquid helium. The mixer, local
oscillator coupler, circular horn, polarising grid, and optical lenses are mounted on the
4 K stage. The isolator and the LNA are mounted on the 20 K screen, connected to a
stainless-steel inner and outer conductor coaxial cable. The SSB SIS receiver, including the
SIS mixer, the IF LNA, the feed, and optics, deliver a low receiver noise temperature of less
than 50 K when measured in front of the cryostat vacuum window.

The receiver chain in the Dewar is followed by a chain section operating at room
temperature. It provides another amplification stage, with a gain of about 60 dB, and a
programmable step attenuator from 0 to 20 dB, which is useful for controlling the amplitude
level of the signals that are fed into the back end for sampling and later processing.

The noise temperature of radio astronomy receivers is one of the most important
performance parameters that directly impact the sensitivity achieved during radio astron-
omy observation. The ex-PdBI W-band receiver is equipped with a classical calibration
system that performs noise temperature measurements using the cold and ambient loads
method. The noise temperature of the receiver is evaluated at its input vacuum window
and positioned on the surface of the Dewar. The receiver calibration system is composed
of two loads at room temperature and cryogenic temperature, respectively. The load at
room temperature is an absorbing panel of a squared shape made of Emerson & Cuming
AN72 material [38], which can be positioned in the receiver signal path with a dedicated
direct current (DC) motor. The cold load consists of an absorbing panel suited to use at
4 K, positioned into the Dewar, which can be activated by moving a rooftop mirror with
normal angle of reflection, located on the outside of the cryostat at room temperature. The
rooftop mirror can be moved along the receiver signal path using a dedicated DC motor.
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This rooftop mirror allows the rotation of the polarisation angle of the incoming beam by
90 degrees and the reversal of its direction towards the cryogenic load.

The original receiver control system permits the control of all receiver functions
through a VME-based microprocessor. All communications with the control computer are
possible thanks to an Ethernet link.

3. Structural and Logistical Adaptation of the Ex-PdBI W-Band Receiver for the
Installation on the Sardinia Radio Telescope

As mentioned above, the receiver was originally designed to be installed on a PdBI
antenna. Consequently, a feasibility study for some structural and logistical modifications
is needed with a focus on adapting the system to the optics and mechanical constraints
of the SRT. In particular, a feasibility study based on the optical design of the receiver is
necessary to demonstrate that it can be installed on the SRT.

The optical design of the SRT is based on a quasi-Gregorian configuration with a
shaped primary mirror (i.e., 64 m diameter) and a shaped sub-reflector (i.e., 7.9 m diameter)
that make available two focal positions (i.e., the primary focus, with a focal length to
diameter ratio equal to 0.33 and frequency range 0.3–20 GHz, and the Gregorian focus,
with a focal length-to-diameter ratio equal to 2.34 and frequency range 7.5–116 GHz). In
addition, the SRT has a beam wave guide (BWG) room, where four positions are available
for 2.9 m mirrors and one mirror with a diameter of 3.9 m, for a total of four additional
focal positions (i.e., the F3 and F4 focus, with a focal length-to-diameter ratio equal to 1.38,
and the F5 and F6 focus, with a focal length-to-diameter ratio equal to 2.81 and frequency
range 1.4–35 GHz).

The ex-PdBI W-band receiver can be installed on the Gregorian focus of the telescope.
An octagonal support structure, located in the Gregorian room surrounding the SRT
Gregorian focus, can host up to eight receivers. This structure, named a Gregorian receiver
positioner (GRP), rotates around an axis parallel to the antenna optical axis allowing the
placement of the selected receiver on the precise point (the Gregorian focus) for astronomical
observation. Since the Dewar of the receiver is equipped with an inner vessel of liquid
helium to achieve a temperature of 4 K, a new cooling system was necessary to prevent the
leakage of the cryogenic fluid when the telescope moves in elevation. In addition, a new
local oscillator, which replaces the traditional system based on Gunn oscillators installed
on the PdBI antennas, was adopted.

The feasibility study to demonstrate that the ex-PdBI receiver is suitable for the
Gregorian focus of the SRT is presented in Section 3.1. In Section 3.2, the features of the
new local oscillator for the SRT are reported. The new cooling system, based on a new cold
head with high performance to replace the old system, is described in Section 3.3.

3.1. Feasibility Study for the Installation on the Gregorian Focus of SRT

As mentioned above, the ex-PdBI receiver can be installed on the Gregorian focus
of the SRT, which offers a focal length-to-diameter ratio equal to 2.34 and can host radio
receivers that work in the frequency range of 7.5–116 GHz. At this focal position, the angle
subtended by the edge of the sub-reflector as seen from the optical axis is about 12 degrees.
The optimum edge taper, the ratio of power at the edge of the SRT sub-reflector with respect
to the on-axis value, is approximately 13 dB.

Some feasibility studies were conducted and the receiver with its original cooling
system (based on the helium vessel) and with the upgraded version (explained in the
following Section 3.3) were both considered. In [30,31], the results of these studies are
reported in detail.

As described in Section 2, the HPDE optical system of the receiver matched with its
feed horn produces a beam waist that meets the edge taper requirements of the Gregorian
focus of the SRT. As a final result, the chosen configuration of installation (presented in
Section 3.3) permits a perfect match between the output beam waist of the receiver and the
beam waist of the SRT.
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3.2. Need for a New Dedicated Local Oscillator: The ALMA Band 3 Local Oscillator

As previously described, the W-band receiver builds on a down-conversion system
that uses an SIS mixer, which was originally pumped with a traditional Gunn diode located
at room temperature outside the cryostat. For the installation on the SRT, a new dedicated
local oscillator that operates at high frequencies, also placed at room temperature, was
adopted. This local oscillator was developed by the National Radio Astronomy Observatory
(NRAO) for the ALMA Band 3 (84–116 GHz) project [39]. It was expected to meet the
main requirements of frequency range tuneability and delivered output power. The ALMA
Band 3 LO module consists of an active multiplier chain (AMC) in cascade with a power
amplifier (PA). In our arrangement for the SRT, we injected a signal at the input of the
AMC from an external signal generator (Rohde and Schwarz signal generator, model SMF
100A [40]). The generator synthesises a single-tone continuous signal tuneable across
the 15.333–18.000 GHz frequency range, with a power level between 10 dBm and 15 dBm
(in the ALMA system, the 15.333–18.000 GHz signal is provided by a commercial YIG
oscillator). In the AMC, this signal is frequency multiplied by 6 (first by 2, then by 3),
filtered, and amplified in order to achieve the desired W-band local oscillator frequency
(i.e., 92–108 GHz) with an output power level in the range 1–10 mW. The AMC module
incorporates two monolithic microwave integrated circuit (MMIC) multipliers (double
and triple multipliers) and an MMIC W-band amplifier. Since the ALMA receivers are
equipped with two orthogonal polarisation channels, the PA module splits the signal
from the AMC module in two and further amplifies these new signals thanks to a user-
controlled amplitude system, with a step of 0.2 dB, in order to achieve a power value
between −4 dBm and 2 dBm. Only one of the two PA output channels is used for the
ex-PdBI receiver, whereas the other channel is terminated to 50 Ohm load. The LO output
of the PA is available from a standard WR10 waveguide with UG385 flange. A section of
interconnecting WR10 waveguide must be used between the PA and the WR10 waveguide
vacuum feedthrough located at the LO input interface of the receiver cryostat.

The W-band receiver bandwidth 84–116 GHz is the same as that of the ALMA Band 3.
However, the IF range of the ex-PdBI receiver falls between 1.25 and 1.75 GHz (500 MHz
bandwidth), as opposed to the 4–8 GHz bandwidth of the ALMA Band 3 [39]. Consequently,
the local oscillator bandwidth required to cover the desired radio frequency band for SRT
is 85.75–114.25 GHz, which is larger than the bandwidth of the ALMA Band 3. Some
preliminary tests were necessary to test the ALMA Band 3 local oscillator in the extended
frequency range of the ex-PdBI receiver with the goal of deriving the optimal power level
for achieving high performances. Figure 3 shows a photo of the ALMA Band 3 local
oscillator. The results of these tests are presented in Section 5.
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3.3. New Cooling System Based on the ARS Cold Head, Model DE-204SF, to Achieve the
Temperature of 4 K

Unfortunately, the architecture of the ex-PdBI receiver is constrained by its cryostat.
As mentioned above, the receiver is based on a hybrid Dewar from Infrared Laboratories
(i.e., model HDV10 [36]) with two cryogenic stages (i.e., 80 K and 15 K) provided by a
commercial closed-cycle cold head from the CTI-Cryodine, model 350 CP [37], and a 4.2 K
stage provided by a 10-inch diameter high thermal conductivity plate in thermal contact
with an inner vessel of liquid helium (7 L in size). To avoid spilling out this cryogenic fluid
when the telescope moves in elevation, the Dewar could be placed at an angle of 45 degrees
from the zenith direction (see Figure 4a). In this configuration, regardless of the elevation-
pointing angle, the receiver will always be within ±45 degrees from the vertical axis of the
telescope. For example, the receiver is oriented at −45 degrees when the telescope points
towards the horizon (i.e., elevation pointing of 5 degrees). Unfortunately, some design
and logistical problems rule out the possibility of applying this solution. For example,
the amount of liquid helium in the inner vessel decreased to 5 L in this configuration of
the tilted installation. However, the availability of 5 L of liquid helium ensures that the
4.2 K temperature holds for more than 15 days before a new refilling is required. A notable
limitation of this tilting installation is that switching to other receivers, installed in the
support structure of the Gregorian room, is impossible until the liquid helium of the vessel
receiver is fully evaporated. In fact, when putting into the Gregorian focus on another
receiver, the Dewar is positioned along the horizontal direction for some telescope pointing
angles and helium could leak from the cryostat. This aspect restricts the potential of SRT,
which was designed for frequency agility, i.e., the possibility to observe the sky at several
frequencies (i.e., from 0.3 to 116 GHz) by an easy a quick switch of between different
receivers. The main restriction is that there is not enough space in the Gregorian room for
the implementation of the tilting solution. In the tilting solution, because the feed is placed
on the lower part of the receiver and this is rotated at −45 degrees from the vertical axis, a
new elliptical mirror external to the receiver is required to orient the beam from SRT to the
feed. Unfortunately, the total size of this system would exceed the available space.
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An improved solution based on an additional close-cycle cryogenic cooler was pro-
posed where the temperature of the third cryogenic stage of the receiver (i.e., 4 K) can
be achieved by excluding the original refrigeration system based on liquid helium. This
new cryogenic cooler that we adopted replaces the previous CTI 350CP cold head and
allows the antenna to be pointed in any direction of the sky without causing problems to
the receiver functioning. The chosen cold head, from Advanced Research Systems (ARS),
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model DE-204SF [41], is characterised by two cryogenic stages (i.e., 20 K and 4 K) and
provides 8 W and 0.2 W of cooling power, respectively.

A mechanical modification of the Dewar was required to host the new cold head. By
adopting this solution, it would be possible to place the receiver horizontally in the upper
part of the rotating turret, in correspondence with the Gregorian focus (see Figure 4b), such
that the output beam waist of the external elliptical mirror and the beam waist of the SRT
are matched.

4. New Electronic Control System of the Receiver for the Installation on SRT

The original control system of the ex-PdBI receiver consists of three control boards
developed by IRAM, two of which are used to control the SIS mixer (and the Gunn-based
local oscillator) and the other being dedicated to the management of the calibration system.
All boards are connected to a VME-based microprocessor using an Ethernet link. These
control boards are devoid of on-board intelligence and they are unable to operate in a
telescope such as the SRT, where the remote control of the receiver is essential. Therefore,
a new ad hoc electronic control system has been designed and developed to make the
receiver suitable for the SRT.

The new electronic control system is composed of a Raspberry Pi 2 (Model B) [42],
which serves as the brain of the system and controls three different Arduino UNO REV3
microcontrollers, based on Atmel ATmega 328P [43]. Each Arduino UNO REV3 micro-
controller manages one or more electronic boards dedicated to a specific function for the
receiver operation: biasing the SIS mixer, controlling the receiver calibration system, and
biasing and tuning the ALMA local oscillator. The Raspberry Pi 2 board permits linking
of the receiver to the SRT software control and managing and it consequently makes re-
mote control of the receiver available. The architecture of the electronic control system
is illustrated in Figure 5. Table 1 summarises the technical features and functioning of
each subsystem.
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Table 1. Summary of the technical features and functioning of each subsystem of the new electronic
control system.

Module Name Technical Features Functioning

Raspberry Pi 2 (Model B)

- 900 MHz quad-core ARM Cortex-A7 CPU;
- 1 GB RAM;
- Ethernet port;
- 4 USB ports.

Core of the new control system.

Arduino UNO REV3
- 16 MHz ATmega328P;
- UART, I2C, SPI;
- USB port.

Each microcontroller manages one block
of the new control system.

Mixer Biasing Block - I/O Voltage: 5 V, 12 V, 15 V;
- 16-bit resolution ADC ADS1115.

Manage the IRAM Junction Bias board
for the SIS mixer biasing.

Mixer Tuning and Receiver
Calibration Block

- I/O Voltage: 5 V, 12 V, 15 V;
- 16-bit resolution ADC ADS1115.

Composed of the SIS mixer backshort
motor control board for the mixer tuning,
and the receiver calibration motors
control board for the receiver calibration.

Monitoring and Control Boards for
the ALMA Local Oscillator Block

- I/O Voltage: +6 V @ 1.5 A, ±15 V @ 500 mA;
- 16-bit resolution ADC ADS1115;
- SPI bus.

Composed of two modules: one for
managing the AMC and the other for
controlling the PA of the ALMA local
oscillator.

All components of the new control system are integrated into a unique rack, which
can be installed close to the cryostat. With the aim of reducing the self-generation of radio
frequency signals, which represents a noise for the radio astronomy observations performed
with others SRT receivers (i.e., P, L, C, and K frequency bands [18–20]), all electronic boards
are enclosed in aluminium boxes.

4.1. Raspberry Pi 2 (Model B): The Core of the Electronic Control System

Before astronomy observations can be performed with the ex-PdBI W-band receiver,
some settings need to be executed to prepare the instrument properly. These settings must
be executed remotely from the SRT control room by the astronomers that use the telescope.

In particular, tuning the ALMA local oscillator and locking it to the desired frequency
is required for each observation. To do this, the backshort of the SIS mixer is placed at the
proper position for the chosen frequency, and the junction bias voltage is set. The local
oscillator power supply is adjusted to achieve a junction direct current of the order of
20 µA [39]. Typically, this set of setting operations takes a few minutes and it should be
completely transparent to the astronomers that use SRT to collect data for scientific research.
This is possible because of the single-board computer Raspberry Pi 2 (Model B), which is
programmed with ad hoc Python scripts [31], which represents the core of the new control
system and allows the remote control of the receiver. The Raspberry Pi 2 is chosen for its
quad-core processor, which runs at 900 MHz with 1 gigabyte of random-access memory
(RAM) for its USB and Ethernet ports (i.e., four and one, respectively) and because it made
it possible to use an operative system based on Linux open-source software [42], as well as
its small size.

Apart from the technical features of the device that are perfect for the requirements to
be met, the self-generation of radio frequency interference (RFI) represents a critical issue for
a system that will be installed on a radio telescope. In this respect, an accurate measurement
campaign was conducted with the aim to obtain knowledge of all self-produced signals
and validate the logistical solutions for their mitigation. Since SRT was designed to operate
from 300 MHz to 116 GHz, and considering that some receivers up to 26.5 GHz are installed
on it, the RFI measurement campaign is performed in the frequency range of 0.1–6 GHz.
The measurement campaign is performed in free space using a log-periodic antenna, which
operates in the frequency range between 250 MHz and 7 GHz, and the Rohde and Schwarz
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FSV40 Spectrum Analyzer as the back end [31]. Three different types of measurement are
carried out:

• Raspberry powered off, to highlight all signals coming from known external sources
(i.e., frequency modulation radio signals, mobile communications signals, etc.) and to
establish a reference level baseline;

• Raspberry powered on without a shield to highlight all signals that are self-generated
by the internal clock and Ethernet technology of the device;

• Raspberry powered on with a double aluminium box to highlight the strong attenua-
tion of the signals that are self-generated by the device.

The results of the RFI measurement campaign are reported in [31]. There was evidence
that positioning the Raspberry in a double aluminium box resulted in almost sufficient atten-
uation of the self-produced signals. The signals across the P-band (i.e., 300–400 MHz [18])
are the only ones that have a relevant amplitude. In the case of P-band observations with
SRT, the W-band receiver control system can be turned off.

For the monitoring and control of the system, a dedicated software (named
Tester100GHz) based on Microsoft Visual Basic .NET has been developed to allow com-
munication with the Raspberry module. This sends and receives messages from the three
satellite cards. The Tester100GHz uses a graphical user interface (GUI) that allows the user
to configure the system in a simplified manner.

4.2. Mixer Biasing Block: The SIS Mixer Biasing Control Board

One side of the SIS junction is connected to a properly designed interconnecting bias
circuitry that acts as an interface with the outside. This circuitry is implemented by IRAM in
the so-called Junction Bias (JB) board (see Figure 6a), which permits both bringing out the IF
signal and to providing bias driving in voltage or current modes [31]. This board, equipped
with an internal reference voltage, provides the input junction voltage or current using
a DC motor with a potentiometer or a digital-to-analogue converter (DAC), respectively.
To evaluate the optimal biasing of the SIS junction, the board is fitted with two analogical
outputs that trace the I/V characteristics. Unfortunately, the IRAM JB board has no on-
board intelligence and is unsuitable for a receiver that is installed on the SRT. For these
reasons, a new electronic control board has been developed for the purpose of managing
the IRAM JB board (see Figure 6b), remotely. The new control board is equipped with a
power supply stage designed to provide different voltage supplies (i.e., 5 V for digital logic
circuit and for the potentiometer calibration, ±15 V for operational amplifiers, and 12 V
for motor–potentiometer), a readout interface, and a control stage of the potentiometer
motor. The readout stage is based on a high-resolution analogue-to-digital converter (ADC),
model ADS1115, fitted on Adafruit modules from Texas Instruments [44] that allows the
reading of the voltage and current values about the junction biasing, the potentiometer
motor position, and the DAC of the IRAM JB board. The control stage of the potentiometer
motor enables the tuning of the potentiometer using digital controls to set a specific current
or voltage value for the SIS mixer junction. Furthermore, this stage also permits the setting
of supplies for both the motor–potentiometer configuration and the DAC configuration of
the IRAM JB board.

A dedicated module of Tester100GHz reads all ADC values and set the voltage values
managing the potentiometer or the DAC.
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4.3. Mixer Tuning and Receiver Calibration Block

The mixer tuning and receiver calibration block is composed of two electronic boards,
both controlled by a single Arduino UNO REV3 microcontroller. Only one microcontroller
is enough to handle the signals and functions of these two electronic devices. These boards
are fundamental to calibrate the ex-PdBI receiver, evaluating its noise temperature, and for
tuning its operating frequency. In particular, these two electronic devices are (see Figure 7a):

• The SIS mixer backshort motor control board;
• The receiver calibration motor control board.
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Figure 7. (a) Mixer tuning and receiver calibration block, composed of the SIS mixer backshort motor
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SIS mixer showing the movable backshort and the mixer chip [32,33].

The embedding impedance the SIS mixer due to its integrated superconducting cir-
cuitry in the waveguide structure is frequency-dependent. A suitable mixer tuning is
obtained by adjusting the length of the waveguide section between the SIS junction block
and the backshort (see Figure 7b). IRAM developed a system, devoid of onboard intelli-
gence, based on a DC motor with a potentiometer for backshort regulation (moving forward
or backward) with respect to the junction (see Figure 8a). Highly accurate positioning
results can be achieved by supplying short pulses to the motor. This IRAM board was
placed at the top of the device to control the motor displacement. A new electronic board
has been developed to remotely control the IRAM board (Figure 8b). This new board,
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named an SIS mixer backshort motor control board, features a power supply block, readout
block, and motor control block. The board is managed using a second Arduino UNO REV3
microcontroller [43]. The readout block is equipped with a high-resolution ADC, model
ADS1115, fitted on Adafruit modules from Texas Instruments [44], for the evaluation of
the backshort motor position based on reading its voltage values. The motor control block
allows adjustment of the potentiometer using digital commands to position the backshort
of the mixer at the desired position.
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As explained in Section 2, the ex-PdBI W-band receiver is equipped with a classical
calibration system based on the cold and ambient load method. The cryogenic and room
temperature loads are installed on their respective DC motors, which allow their correct
positioning for receiver calibration.

The control system for the management of the receiver calibration block requires
switching from two available positions for the DC motor: calibration on and calibration
off, respectively. These features are provided by the motor position with respect to two
inductive proximity switches: the first for the rest position (i.e., calibration off) and the
second one for the working position (i.e., calibration on). IRAM developed an electronic
board for the execution of these operations (see Figure 9a) devoid of onboard intelligence,
and the remote control is unavailable. Therefore, a new receiver calibration motors control
board, equipped with a power supply stage and a motor control stage, was developed (see
Figure 9b). The motor control stage permits moving the DC motor between the two working
positions (i.e., calibration on and calibration off positions) and collecting information about
its state.
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A dedicated module of Tester100GHz was developed to control and test the mixer
tuning and receiver calibration block. The module is divided into two parts: one for the
mixer tuning and the other for the receiver calibration system, respectively. The first one
permits reading the ADC data and setting the potentiometer to select the optimal voltage.
This value of voltage can be continuously monitored by the user. Instead, the part of
the software for the calibration system enables the DC motor’s movement thanks to the
availability of two side bars, and the monitoring of their status, with specific indicators for
any anomalies.

4.4. Monitoring and Control Boards for the ALMA Local Oscillator at SRT

As mentioned above, the adaptation of the ex-PdBI receiver to SRT involves the
installation of the NRAO local oscillator developed for the ALMA Band 3 project. A new
ad hoc prototype of an electronic board has been developed to remotely tune this local
oscillator. This prototype is composed of two modules: one for managing the AMC and
the other for controlling the PA, respectively. Since the two modules require high DC
power supplies (i.e., AMC/PA: +6 V and 1.5 A, ±15 V and 500 mA), each control board
is equipped with a power supply stage that ensures high stability at high currents. In
addition, a further protection stage to prevent malfunction is built on each board.

The board for the control of the AMC module is designed to provide feedback for
the voltages by the power supply stage. The board is based on two high-resolution
ADCs, model ADS1115, fitted on Adafruit modules from Texas Instruments [44], which
are capable of reading all AMC voltages with 16-bit resolution. The board is equipped
with an inter-integrated circuit (I2C) bus for communication with the Arduino UNO REV3
microcontroller (see Figure 10).
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The PA module is controlled such that the gate and drain voltages can be set indepen-
dently. The gate and drain voltages are set by two programmable potentiometers, one for
each PA output channel. The remote control of these potentiometers and data sending are
possible thanks to a serial peripheral interface (SPI) bus, which is directly connected to the
Arduino microcontroller. The PA control board is also equipped with two high-precision
ADCs [44] that provide feedback about the state of the amplifier junction’s polarisation.

A dedicate module of Tester100GHz was developed to test the monitoring and control
electronics boards for the ALMA Local Oscillator [31], as well as for the other electronic
boards. This module permits the reading of all voltage values generated by the two
boards and is useful for the tuning of the ALMA local oscillator. The whole system is
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equipped with an I2C bus, which serves to the communication between the ADCs of the
two boards and the Arduino microcontroller, and a serial peripheral interface (SPI) bus to
communicate between the potentiometers and the Arduino microcontroller. The module
provides real-time feedback to the users.

5. Results and Discussion

The ex-PdBI receiver was upgraded for its installation on the SRT. The following
modifications were made:

• Its cooling system was redesigned, as described in Section 3.3;
• The ALMA Band 3 local oscillator was used as a replacement for a Gunn oscillator;
• A new electronic control system was developed for the remote control from the control

room of SRT (Section 4).

Following these changes, tests and measurements were necessary to evaluate the
performance of the system. In Section 5.1, we describe the suitability of the ALMA Band
3 local oscillator, considering the power requirements and extended LO frequency range
85.75–114.25 GHz to drive the ex-PdBI receiver with its optimum parameters. The measure-
ments of the noise temperature in the bandwidth of the receiver are reported in Section 5.2.

5.1. Evaluation of the Output Power of the ALMA Band 3 Local Oscillator

The performances of a receiver based on an SIS mixer depend on the pumping levels
applied by the local oscillator [45]. Laboratory measurements were performed to study the
optimum output power level of the ALMA Band 3 local oscillator to bias the SIS junction
of the mixer. A signal generator (model SMF100A from Rohde & Schwarz [40]), a digital
oscilloscope (model RTO 1044 from Rohde & Schwarz [40]), and a power meter (model
PM5 from Erickson [46]) were used to perform these measurements.

The Raspberry Pi 2 was programmed to enable the control of the laboratory instru-
ments to run the tests. The frequency and amplitude sweep of the signal, synthesised by the
signal generator and directly connected to the input of the ALMA Band 3 local oscillator,
were varied in pre-established steps. The power meter, connected to the output of the local
oscillator, measured the output power levels and saved the data simultaneously. These
data were compared with the nominal power levels required for the SIS mixer biasing. The
order of magnitude of the LO pumping power level required at the junction, named PLO, is
given by the following formula (we assume to bias the mixer on the first photon step below
the gap voltage of the superconductor) [45]:

PLO =
(N·h·νLO)

2

2·RN ·e2 (1)

where N represents the number of the SIS mixer junctions in series, h is the Planck’s constant,
νLO is the LO frequency, RN is the normal-state resistance of the current–voltage (I-V) SIS
junction characteristic, and e the electron charge. The minimum required LO power level
at the SIS junctions is of the order of 10 nW at 100 GHz for an SIS mixer with a single
junction (N = 1) and 40 nW for a two-junction series array (N = 2), like the one used in
the ex-PdBI 3 mm band SIS mixer. The attenuation of each component between the local
oscillator injection coupler and the SIS mixer module is considered for the evaluation of the
LO output power levels required for the local oscillator at the WR10 LO waveguide output
flange of the cryostat. In detail, the LO coupler module (attached to the SIS mixer module
is connected through a waveguide transition (with an insertion loss of approximately 6 dB)
to the WR10 waveguide output of the ALMA Band 3 local oscillator (located outside the
cryostat). The LO coupler (see Figure 1) has a coupling value of approximately −28 dB. The
coupling value is small so as to minimise the noise added to the signal path. The LO output
power required at the WR10 output waveguide flange of the PA be more than three orders
of magnitude greater than the nominal power level calculated using (1). The minimum
value of the required LO power is taken to equal to 2 mW across the 92–108 GHz band.
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Figure 11 shows the plot of the output power of the local oscillator (channel 1). The
drain and gate voltage values are set at 1.67 V and −0.1 V, respectively. The curve shows a
peak power of approximately 7 mW at 98 GHz. The minimum value of 2 mW (highlighted
in red) is exceeded in almost all local oscillator bandwidths from 85.75 to 114.25 GHz. These
requirements can be easily achieved by optimising the drain and gate voltages.
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Figure 11. Measured output power from the channel 1 of the ALMA Band 3 local oscillator. In red,
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−0.1 V, respectively.

After the evaluation of the output power levels of the local oscillator, the I-V character-
istic of the SIS junction of the two-junction array mixer is measured [47]. The measurement
is carried out by connecting the digital oscilloscope to the SIS mixer junction bias module
of the control system. In Figure 12, the measurement results are shown. In particular, the
curve of Figure 12a shows the I-V characteristic of the mixer without the local oscillator
power applied, where a spurious Josephson current is present (unsuppressed, as the mixer
does not have a magnetic circuit), whereas the curve of Figure 12b represents the case with
the local oscillator biasing at 87.5 GHz.
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5.2. Measurements of the Noise Temperature of the System

When a radio telescope detects a signal, the noise from the receiver is added to it.
The most important requirement to be met in a receiver design is the minimisation of the
self-produced thermal noise, known as the equivalent noise temperature of the system. A
low noise temperature implies the high sensitivity of the receiver [48].

As described in Section 2, a two-load calibration subsystem is included in the original
version of the ex-PdBI receiver, which is useful for the calibration when it is installed on the
telescope, allowing the measurement of the receiver noise. In our laboratory, we performed
noise temperature measurements at several frequencies using the cold and ambient load (Y
factor) method [49], without using the internal cryogenic calibration load. Some photos of
the experiment are shown in Figure 13. In particular, the absorbing panel (i.e., Emerson
& Cuming AN72 material) of the calibration system was used as the room temperature
load (see Figure 13a). The cold load was an absorbing panel immersed in a container filled
with liquid nitrogen in such a way that the load temperature was lowered to the one of the
liquid nitrogen temperature, 77 K (see Figure 13b). The room temperature and cold loads
were alternately placed in front of the HDPE vacuum window (and, consequently, in front
of the feed of the receiver, as shown in Figure 13c).
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A power meter was used as back end and the noise temperature was calculated using
the following formulas [49]:

Y =
Phot
Pcold

(2)

Trec =
Thot − Y·Tcold

Y − 1
(3)

where Y represents the ratio between the measured power level Phot when the hot load is
positioned in front of the receiver, and the measured power level Pcold when the cold load
is considered. The noise temperature of the receiver Trec is calculated using formula (3),
where for the radiated temperature Thot we assumed the room temperature (approximately
293 K) and for Tcold the nitrogen temperature of the cold load (approximately 77 K).

Table 2 summarises the results of the experiment in the frequency range between 84
and 115 GHz. The measured receiver noise temperature varies considerably as a function
of the LO frequency, as shown in the plot of Figure 14. The noise has a minimum of
approximately 66 K around 86 GHz RF and increases to approximately 290 K at 105 GHz
RF. The measured noise is considerably higher than the one delivered by the original PdBI
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receiver (where noise of order Trec ≈ 30 K was reported), which was based on a third
cryogenic stage cryogenically cooled by liquid helium at 4.2 K, allowing the thermal cooling
of the SIS mixer to less than half of the critical temperature of the niobium superconductor
(with Tc ≈ 9.2 K). The discrepancy between the receiver noise temperatures measured
by IRAM in the original receiver configuration and the one measured at INAF with the
modified receiver are mainly due to the different physical temperatures achieved for the
third stage (4 K stage), where the mixer is thermalised. The receiver noise is expected to
degrade considerably if the physical temperature of the SIS mixer is increased beyond
≈4.5 K. A cryogenic temperature of approximately 6.6 K (much greater than the required
≈4 K value) was achieved during the laboratory tests, in part due to the limited thermal
cooling power delivered by the ARS cold head, and in part due to the non-optimal thermal
isolation of the coldest cryogenic stage, which requires improvement. This aspect caused
a degradation of the receiver noise performance. However, the noise temperature results
achieved in the frequency bandwidth 84–95 GHz are considered in line with the initial goals
of this project, which aimed at testing the capabilities of the SRT in the 3 mm frequency
range. The receiver, if installed on the SRT, could also be suitable to conduct millimetre
VLBI experiments at 86 GHz [50].

Table 2. Results of the noise temperature measurements for SIS mixer tuned in LSB at several
LO frequencies.

RF Bandwidth (GHz) Local Oscillator Frequency (GHz) Voltage and Current Biasing Values Noise Temperature (K)

83.7–84.3 85.5 V = 4.07 mV; I = 28.0 µA 73
85.7–86.3 87.5 V = 4.08 mV; I = 30.0 µA 65.8
89.7–90.3 91.5 V = 4.06 mV; I = 34.5 µA 78
94.7–95.3 96.5 V = 4.05 mV; I = 31.7 µA 143
98.2–98.8 100 V = 4.03 mV; I = 28.7 µA 158

104.7–105.3 106.5 V = 3.93 mV; I = 28.5 µA 287
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6. Conclusions and Future Work

We presented the feasibility study and preliminary tests for the installation on the
SRT of a W-band radio receiver based on a SSB SIS mixer. The instrument was expected
to provide very low noise receiver performance across the frequency range 84–116 GHz
if the SIS mixer is cryogenically cooled at a physical temperature of approximately 4 K. It
was developed by IRAM for the PdBI antennas. A new dedicated electronic control system
was designed and developed by our INAF team for its remote control. The feasibility study
of the receiver optics, the upgrade of the cooling system, and the evaluation of using a
new dedicated local oscillator were presented. The local oscillator system is the same type
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adopted for the ALMA Band 3 project. The local oscillator was successfully tested and
evaluated in the laboratory. The SSB receiver noise temperature measured in the laboratory,
at the frequency bandwidth of 84–95 GHz, was less than 150 K, although the temperature
of the third cryogenic stage to which the SIS mixer was thermalised was far from optimum,
and of approximately 6 K (the recommended temperature of the SIS mixer should be less
than approximately 4.5 K). In particular, the noise temperature at 86 GHz was less than 70 K,
which would be acceptable for preliminary testing of the SRT active surface, metrology
system and evaluating the atmospheric noise contribution and system noise at the 600 m
altitude of the SRT site. The receiver could also be used for millimetre VLBI experiments at
86 GHz.

In future work, the receiver could be modified for improved thermal isolation of the
third cryogenic stage of the cold head. The receiver noise would considerably improve
(decrease) by reducing the physical noise of the third stage.

The experience gained in this work proved to be useful for the recent project to upgrade
SRT to allow observations at high radio frequencies. The specific details of this project are
described in [27].
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