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ABSTRACT
We present a new mass function of galaxy clusters and groups using optical/near-infrared wavelength spectroscopic and
photometric data from the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) survey. At 𝑧 ∼ 1, cluster
mass function studies are rare regardless of wavelength and have never been attempted from an optical/near-infrared perspective.
This work serves as a proof of concept that 𝑧 ∼ 1 cluster mass functions are achievable without supplemental X-ray or Sunyaev-
Zel’dovich (SZ) data. Measurements of the cluster mass function provide important contraints on cosmological parameters and
are complementary to other probes. With ORELSE, a new cluster finding technique based on Voronoi tessellation Monte-Carlo
(VMC) mapping, and rigorous purity and completeness testing, we have obtained ∼240 galaxy overdensity candidates in the
redshift range 0.55 < 𝑧 < 1.37 at a mass range of 13.6 < log(𝑀/𝑀�) < 14.8. This mass range is comparable to existing optical
cluster mass function studies for the local universe. Our candidate numbers vary based on the choice of multiple input parameters
related to detection and characterization in our cluster finding algorithm, which we incorporated into the mass function analysis
through a Monte-Carlo scheme. We find cosmological constraints on the matter density, Ω𝑚, and the amplitude of fluctuations,
𝜎8, of Ω𝑚 = 0.250+0.104

−0.099 and 𝜎8 = 1.150+0.260
−0.163. While our Ω𝑚 value is close to concordance, our 𝜎8 value is ∼ 2𝜎 higher because

of the inflated observed number densities compared to theoretical mass function models owing to how our survey targeted
overdense regions. With Euclid and several other large, unbiased optical surveys on the horizon, VMC mapping will enable
optical/NIR cluster cosmology at redshifts much higher than what has been possible before.

Key words: galaxies: clusters — galaxies: groups — cosmology: large-scale structure of Universe — cosmology: cosmological
parameters — techniques: spectroscopic — techniques: photometric

1 INTRODUCTION

Cosmological models seek in part to explain the growth and distri-
bution of large-scale structure in the universe. One such quantifying
metric is the cluster mass function, which describes the number den-
sity of galaxy clusters as a function of their mass. How the mass
function evolves over time will depend on cosmological parameters,
and thus measuring the mass function over wide redshift ranges of-
fers the power of greater statistical leverage (see, e.g., Allen et al.
2011). Different cosmologies in theoretical mass functions show non-
negligible discrepancies in the predicted number counts of clusters
(e.g., Pacaud et al. 2018), motivating the need for comparisons with
observational data.

Constraints on cosmological parameters can be obtained through
fitting a number of independent probes, such as the cosmic mi-

crowave background (CMB) anisotropy (e.g., Planck Collaboration
et al. 2016; Hinshaw et al. 2013), the brightness/redshift relation for
type Ia supernovae (SNe; e.g., Riess et al. 1998; Perlmutter et al.
1999), and baryon acoustic oscillations (BAO) data (e.g., Eisenstein
et al. 2005). The cluster mass function can be used to constrain the
matter density, Ω𝑚, and the amplitude of fluctuations on the scale
of 8 ℎ−1 Mpc, 𝜎8, by fitting the predicted halo abundance, the halo
mass function. 𝜎8 shows a strong degeneracy with Ω𝑚 when deter-
mined from cluster abundance data. However, the confidence levels
of the Ω𝑚-𝜎8 likelihoods found by the cluster mass function are
advantageously almost orthogonal to those found by the CMB (e.g.,
Rozo et al. 2010). Combining the two probes therefore helps break
the degeneracy between Ω𝑚 and 𝜎8 and reduce their uncertainties,
while BAO and SNe studies can constrain Ω𝑚 independent of 𝜎8
(e.g., Vikhlinin et al. 2009; Abdullah et al. 2020).

© 2020 The Authors
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2 Hung et al.

The first analytical expression of the halo mass function was de-
rived by Press & Schechter (1974), followed by Bond et al. (1991);
Lee & Shandarin (1998); Sheth et al. (2001). However, the rise of
N-body simulations helped reveal limitations in the existing models,
and the most recent halo mass functions have been calibrated using
numerical results. These models are chiefly distinguished between
two widely used halo definitions. Haloes may be defined using the
spherical overdensity (SO; Lacey & Cole 1994) algorithm, where
spherical apertures are placed around isolated density peaks, such
that the mean interior density is some set multiple relative to the
background or critical density. Haloes may also be defined with the
Friends-of-Friends (FoF; Davis et al. 1985) algorithm, where a par-
ticle is matched with neighbors within a given linking length, and
those neighbors are matched with other neighbors until no more are
found. The final group of particles then represents an isodensity con-
tour in space. SO and FoF masses are strongly correlated for relaxed,
isolated haloes (White 2001; Tinker et al. 2008), but irregular haloes
can cause significant disagreement. Most theoretical models have
followed the convention of Jenkins et al. (2001) and used FoF haloes
in order to obtain a more universal halo mass function independent
of redshift or cosmology. However, SO haloes tend to be preferred
for comparisons to observational studies, due to the more direct link
with how virialized structures are defined in spherical apertures.

Determining a cluster mass function from observational data re-
quires a cluster sample where cluster masses have been estimated
either directly (as in, e.g., weak gravitational lensing) or by using an
observational proxy. Typically, the cluster sample is X-ray selected,
and the masses are derived through more indirect proxies such as X-
ray luminosity or optical cluster richness (e.g., Reiprich & Böhringer
2002; Mantz et al. 2008; Vikhlinin et al. 2009; Wen et al. 2010;
Pacaud et al. 2018; Costanzi et al. 2019). However, the resulting
cluster mass function can have large uncertainties due to factors such
as the scatter in the mass scaling relations as well as incompleteness
in the cluster sample due to selection biases or other observational ef-
fects. These issues are especially a concern at redshift 𝑧 >∼ 0.5, where
the intracluster medium (ICM) begins to be underdeveloped, partic-
ularly for intermediate or low-mass clusters. Many clusters have been
found to be X-ray underluminous, compared to what was suggested
by their dynamics (e.g., Rumbaugh et al. 2018) or the luminosity-
mass relation with weak lensing masses (e.g., Giles et al. 2015).
Cluster samples selected by other means often see a sizable portion
with no detected X-ray counterpart at 𝑧 ∼ 1 (e.g., Popesso et al. 2007;
Rumbaugh et al. 2018).

Cluster mass function studies have often supplemented their X-ray
selected samples with other observations in order to obtain more
reliable mass estimates, such as weak lensing masses (e.g., Dahle
2006) or virial masses from large-scale redshift surveys (e.g., Rines
et al. 2007). Clusters may be found through searching for signatures
of the thermal Sunyaev-Zel’dovich (SZ; Sunyaev & Zeldovich 1972)
effect (e.g., Staniszewski et al. 2009; Menanteau et al. 2010; Bocquet
et al. 2019; Bleem et al. 2020; Huang et al. 2020; Hilton et al. 2020),
which is a distortion in the CMB blackbody spectrum as a result of
Compton scattering of CMB photons by the hot ICM. The SZ effect
is unaffected by the clusters’ surface brightness dimming and is thus
insensitive to redshift. SZ surveys are thus able to detect clusters at
all redshifts above a certain mass threshold set by the detection limits
of the SZ signal (Birkinshaw 1999; Carlstrom et al. 2002). Because
of the high sensitivity needed, even recent studies (e.g., Bocquet et al.
2019; Bleem et al. 2020; Huang et al. 2020; Hilton et al. 2020) have
been limited to cluster samples with masses greater than 1014𝑀� .
In contrast, X-ray and optical/near-infrared (NIR) surveys are more
effective at finding low-mass clusters, particularly at lower redshifts.

More recently, the growing scale of photometric and spectroscopic
surveys at optical and NIR wavelengths have enabled cluster searches
independent of any X-ray data. Such searches identify clusters by
using galaxies to trace mass overdensities (e.g., Abell 1958; Oke
et al. 1998; Rykoff et al. 2016). Though there have been several
successful cluster searches done at optical wavelengths, cluster mass
function studies at optical and NIR wavelengths have been scarce and
so far limited to the local universe. Such studies use optically selected
catalogs with masses derived from supplemental weak lensing or X-
ray data (e.g., Rozo et al. 2010; Costanzi et al. 2019; Kirby et al.
2019) or through the virial mass theorem (e.g., Abdullah et al. 2020).
Beyond constraining cosmology, contrasting cluster mass functions
with X-ray and optically selected samples at different redshifts could
yield key insights on structure formation and development of the
ICM. While at least some attempts have been made at X-ray and SZ
wavelengths at redshifts up to 𝑧 ∼ 1 − 1.5 to bridge the gap between
theory and observation (e.g., Pacaud et al. 2018; Bocquet et al. 2019),
the same cannot be said for optical studies.

Our work in this paper aims to similarly derive a cluster mass
function1 from an optical/NIR perspective for the first time outside
of the relatively local universe. In Hung et al. (2020), we found
galaxy clusters using a powerful new technique known as Voronoi
tessellation Monte-Carlo (VMC) mapping and apply it to optical
and NIR photometric and spectroscopic data over the redshift range
0.55 < 𝑧 < 1.37. Unlike other cluster search algorithms, VMC map-
ping makes no assumptions about cluster geometry or morphology.
With VMC mapping, we count all galaxies irrespective of color to a
limit of stellar masses >∼ 1010𝑀� to trace overdensities, independent
of the ICM emission.

In searches of clusters with X-ray observations, there is a possi-
bility of observing a decreasing number of systems at a given X-ray
luminosity with increasing redshift. In such a case, an ambiguity
would exist in the interpretation of the trend as this behavior could
either be attributed to intermediate- to high-redshift structures of a
given mass having an underdeveloped ICM relative to the local coun-
terparts (as is true for at least some ORELSE systems, see Rumbaugh
et al. 2018), a true lack of structure at higher redshift, or some combi-
nation of the two. The same ambiguity does not exist in optical/NIR
cluster searches with spectroscopically confirmed redshifts as galax-
ies will presumably always trace clusters. In our search, because
we indiscriminately count galaxies without constraining ourselves to
any particular subpopulations such as the red sequence, we should
be able to detect a cluster so long as it is galaxy-rich with any type
of galaxies.

In Hung et al. (2020), we demonstrated VMC mapping’s sensi-
tivity to detecting unprecedentedly low mass structures, quantifying
purity and completeness estimates down to total masses of 1013.5𝑀� .
Our search recovered 51 previously known structures and found 402
new overdensity candidates, with estimated masses between 10.2
< log(𝑀/𝑀�) < 14.82 and a spectroscopic redshift fraction of at
least 5%. In this paper, we seek to derive a cluster mass function
drawn from this sample.

1 Our sample includes overdensity candidates with masses as small as
∼ 1013.5𝑀� , which fall below the typically defined mass limits of galaxy
clusters and instead would traditionally be regarded as groups. Though these
structures are all included in the mass function, we use the term “cluster mass
function” in this paper for the sake of brevity.
2 As we can only correct for purity and completeness down to masses of
1013.5𝑀� , it is possible that many of the overdensity candidates with smaller
masses are spurious detections. We refer the reader to §6.1.1 in Hung et al.
(2020) for a more in-depth discussion.

MNRAS 000, 1–13 (2020)



ORELSE Mass Function 3

This paper is organized as follows: In §2, we briefly review the
photometric and spectroscopic data we used and our overdensity
candidate detection method. In §3, we go over several parameters that
affect the overdensity candidate sample. In §4, we describe how we
transform these parameters and their varying overdensity candidate
samples into one mass function. In §5, we compare our observational
mass function with a theoretical model to fit forΩ𝑚 and𝜎8. In §6, we
discuss the implications of our findings as well as a few other cluster
mass function studies and highlight where our methodolgy could be
useful with data from future surveys. Finally, we present a summary
of this work in §7. Unless otherwise noted, we use a flat ΛCDM
cosmology throughout this paper, with 𝐻0 = 70 km s−1 Mpc−1, Ω𝑚

= 0.27, and ΩΛ = 0.73. All reported distances are in proper units.

2 DATA

Our previous work in Hung et al. (2020) searched for serendipi-
tous cluster candidates in the Observations of Redshift Evolution
in Large-Scale Environments (ORELSE; Lubin et al. 2009) survey,
a large multi-wavelength photometric and spectroscopic campaign
targeted at several known large-scale structures over redshifts of
0.6 < 𝑧 < 1.3. It was designed to look for surrounding large-scale
structure in each field, but it also probed the full dynamic range of
environments at all redshifts by targeting galaxies along the line-of-
sight (Gal et al. 2008; Lubin et al. 2009). Over 15 fields, ORELSE
has a combined ∼ 5 square degrees of deep imaging and a projected
spectroscopic footprint of ∼ 1.4 degrees. The optical (𝐵𝑉𝑟𝑖𝑧) imag-
ing typically ranged from depths of𝑚𝐴𝐵 = 26.4 in the 𝐵-band to𝑚𝐴𝐵

= 24.6 in the 𝑧-bands. The NIR (𝐽𝐾 , Spitzer/IRAC) imaging reached
typical depths of 𝑚𝐴𝐵 = 21.9 and 21.7 respectively in the 𝐽 and
𝐾/𝐾𝑠 bands (Tomczak et al. 2019). Its unprecedented spectroscopic
coverage includes ∼ 11, 000 high quality spectroscopic objects and
spectroscopic completeness of 25% to 80% among known structures
(Lemaux et al. 2019). Additionally, the spectral member population
has been found to be broadly representative of the underlying galaxy
population (Shen et al. 2017; Lemaux et al. 2019). ORELSE’s ex-
tensive dataset provides thousands of high-quality photometric and
spectroscopic redshifts ideal for a cluster search.

We identified galactic overdensities using a powerful new tech-
nique, Voronoi tessellation Monte-Carlo (VMC) mapping, described
in detail in Lemaux et al. (2018) and applied to look specifically for
structure in ORELSE in Hung et al. (2020). A Voronoi tessellation is
a density field estimator that splits a 2D plane by assigning a polyg-
onal cell to every object in the plane whose area is the region closer
to its host object than any other object. The cell size is thus inversely
proportional to the density at a given location. For each ORELSE
field, we separate our galaxy catalogs into redshift slices of approx-
imately ±1500 km s−1 in velocity space and apply the tessellation
to each slice. The redshift slices are defined such that neighboring
slices have 90% overlap to minimize chances of splitting individual
structures across slices.

For each slice, we have galaxies with spectroscopic redshifts,
𝑧𝑠𝑝𝑒𝑐 , and galaxies with photometric redshifts, 𝑧𝑝ℎ𝑜𝑡 . The pho-
tometric redshifts have much higher uncertainties than the spectro-
scopic redshifts, which we account for with our VMC technique. For
each Monte-Carlo realization of a slice, we Gaussian sample the PDF
of each galaxy’s 𝑧𝑝ℎ𝑜𝑡 . As a result, some galaxies fall in or out of the
redshift boundaries of the slice. We then perform the Voronoi tessel-
lation on all the 𝑧𝑠𝑝𝑒𝑐 and 𝑧𝑝ℎ𝑜𝑡 galaxies in the slice. We repeat this
100 times, and the final VMC map of the slice is then computed by
median combining the densities from all realizations. For full details

on the VMC methodology within the context of ORELSE, see Hung
et al. (2020). Overdensities are first found in the redshift slices (see
§3.1), and then linked together across neighboring slices (see §3.2).

3 FINDING STRUCTURE

How we find and catalog galaxy overdensity candidates depends on
several independent parameters, ranging from how large an over-
density must be for detection to peculiarities on how we translate
the overdensity we observe to a total mass. In Hung et al. (2020),
our goal was to establish VMC mapping as a viable tool for finding
overdensities. We thus adopted a set of parameters best suited for the
general case of detecting any structure at all and left the specifics
of fine-tuning the resulting overdensity candidate sample to future
work. We revisit our parameters in this work as we now require cru-
cial informaiton such as the proper number of overdensities at each
mass threshold in order to build the cluster mass function. In this
section, we describe the effects of each revelant parameter, and in
§4, we go over which values we use for our cluster mass function.
We encourage the reader to refer to Hung et al. (2020) where these
parameters are described in greater detail.

3.1 Detection and Deblending in SExtractor

We search for significant overdense regions in our VMC maps using
the standard photometry software package Source Extractor (SEx-
tractor; Bertin & Arnouts 1996). SExtractor’s DETECT_THRESH
parameter sets how much higher the density floor must be for a valid
detection relative to the RMS noise in the background. For example,
a 4𝜎 DETECT_THRESH stipulates that detections must be at least
four times the background RMS. In Hung et al. (2020), we found that
DETECT_THRESH values of 4 and 5𝜎 performed similarly in terms
of purity and completeness, but we decided to use 4𝜎 to maximize
our chances of detecting smaller overdensity candidates in that work.

Often, galaxy clusters are located in close proximity to each other,
and show up in SExtractor as single detections. Deblending in SEx-
tractor refers to separating these detections out to their subcompo-
nents so that we can identify the individual clusters. SExtractor has
two parameters related to deblending: the number of deblending
sub-thresholds DEBLEND_NTHRESH and the minimum contrast
DEBLEND_MINCONT. The deblending sub-thresholds refer to the
number of exponentially spaced levels from the detection floor to the
peak of the detection. Substructure is identified with the minimum
contrast DEBLEND_MINCONT parameter, which is how large the
overdensity in a substructure must be compared to the total over-
density in the entire structure to be counted as a separate detection.
Of the two deblending parameters, we choose to focus on the DE-
BLEND_MINCONT parameter as it is more sensitive to change. As
DEBLEND_MINCONT decreases, the more SExtractor splits apart
a single structure (Fig. 1).

Previously in Hung et al. (2020), we elected to adopt a DE-
BLEND_NTHRESH of 32 and DEBLEND_MINCONT of 0.01. We
deemed these parameters as acceptable as they were able to sepa-
rate some known structures while also avoiding splitting others up.
However, not every blended grouping of known structures was able
to be separated with these deblending parameters. For an unbiased
cluster mass function, we must be able to properly separate larger
conglomerates of structure by way of carefully choosing the optimal
set of deblending parameters. Not doing so would lead to an over-
abundance of high mass overdensity candidates and a depletion of
low mass overdensity candidates.

MNRAS 000, 1–13 (2020)



4 Hung et al.

Figure 1. Example SExtractor-generated segmentation maps of a blended structure in the SC1604 supercluster at 𝑧 ∼ 0.9 located in one of the ORELSE fields.
The two panels show the segmentation map generated from two different values of the minimum contrast DEBLEND_MINCONT. Two sub-components of the
SC1604 supercluster which are spectroscopically confirmed at this redshift, groups C and F, have their fiducial positions denoted in the maps. The colors here
are arbitrarily assigned; each color simply represents a single detection in SExtractor. Note that SExtractor’s segmentation maps often have display glitches,
such as group F’s disparate pixels in the left panel and the sharp vertical boundary in the right panel. Only unique colors indictate what SExtractor considers as
separate substructure. As the DEBLEND_MINCONT decreases from the left to right panel, the number of substructures increases from five to seven.

We have a measure of each overdensity candidate’s mass by way
of its isophotal flux 𝐹, a measurement of density calculated by SEx-
tractor, of the form:

log(𝑀/𝑀�) = 𝑎 + 𝑏𝐹𝑐𝑒−(𝐹/𝑑) (1)

where 𝑎, 𝑏, 𝑐, and 𝑑 are scalar constants. We fit this quantity with
the virial masses of the previously known structures in ORELSE
to obtain a general flux to mass relation. The mass zero point was
calibrated with the virial masses of the most spectroscopically well-
studied clusters and groups in ORELSE, which generally had spectral
fractions of > 50% and an average of 24 spectroscopic members per
structure. The virial masses have been found to be comparable within
the error bars of independent X-ray, lensing, and SZ measurements
where available (see e.g., Clowe et al. 1998; Margoniner et al. 2004;
Valtchanov et al. 2004; Jee et al. 2006; Maughan et al. 2006; Mu-
chovej et al. 2007; Rzepecki et al. 2007; Stott et al. 2010; Piffaretti
et al. 2011; Laganá et al. 2013; Pratt & Bregman 2020) as well as
statistically consistent with the masses we estimate from the over-
density maps directly using the method described in Cucciati et al.
(2018). We refer the reader to §6.1 of Hung et al. (2020) for further
discussion of our mass calibration as well as comparisons with other
mass estimation methods.

Previously in Hung et al. (2020), we found best-fit values of
𝑎 = 15.691 ± 0.010, 𝑏 = −2.641 ± 0.033, 𝑐 = −0.327 ± 0.039,
and 𝑑 = 124.174 ± 0.740 for equation 1. The exact mass fit will
vary in this work as the detection floor set by the choice of DE-
TECT_MINCONT will significantly change the total isophotal flux
values, but we find negligible differences with respect to the choice
in deblending parameters. The overall mass, summed over all over-
density candidates we find, remains relatively unchanged as we drop

the DETECT_MINCONT parameter, while the fraction of high mass
candidates significantly drops (Fig. 2).

3.2 Linking into Candidates

SExtractor finds individual overdensities in each redshift slice of
a VMC map. We link these overdensities over successive redshift
slices in order to obtain a single overdensity candidate. We start with
a given SExtractor detection in a redshift slice. Then, we look in
the neighboring redshift for any detections with a barycenter within
an RA-DEC distance equal to or less than the linking radius we set.
The smaller the linking radius, the closer the detections must be in
order to be linked together. If we find a match, we take the isophotal
flux-weighted barycenter between the two detections and continue
our search into the next redshift slice. If there are multiple matches,
we take both as separate linked chains and continue the search until
no more matches are found. Once we complete the search for every
detection in a redshift slice, we move on to the next redshift slice
and repeat the same search. For each linked chain of at least five
SExtractor detections, we apply a Gaussian fit of the isophotal fluxes
of the detections and accept the chain as an overdensity candidate if
the Gaussian fit converges.

Because we link every detection to every possible match, we have
the same detections assigned to more than one linked chain. Thus,
we would overcount the number of overdensity candidates we had
if we treated each chain as a new unique candidate. In Hung et al.
(2020), we resolved this issue by sorting the overdensity candidates
by greatest Gaussian fit amplitude and removing any other candidates
that fell within 0.7 Mpc and Δ𝑧 < 0.2 of their centroids. Though this
crude removal process likely left in a few duplicates and eliminated
some valid candidates, our work in Hung et al. (2020) was primarily

MNRAS 000, 1–13 (2020)
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Figure 2. We plot the total mass of all overdensity candidates we find while
varying the SExtractor deblending parameter DEBLEND_MINCONT. The
deblending becomes finer for smaller values of DEBLEND_MINCONT. Fol-
lowing our expectations, finer deblending yields more low-mass overdensity
candidates as more high-mass structures are broken up. Between the DE-
BLEND_MINCONT extremes plotted, the total mass decreases by 19%,
while the fraction of high mass candidates drops by 66%.

concerned with establishing the VMC technique for finding overden-
sities for the general case rather than precise optimization for our
particular set of fields.

For the purpose of constructing a cluster mass function, how-
ever, including the smaller substructures we originally eliminated is
paramount. For this work, we revised our linking scheme by em-
ploying a goodness of fit test in order to remove only the duplicate
detections. We first remove all linked chains that are complete sub-
sets of other larger chains. Then, we apply our Gaussian fit for each
linked chain. We measure the goodness of fit with the coefficient of
determination, 𝑅2. The 𝑅2 statistic ranges between 0 and 1, with the
latter indicating a perfect agreement between the model and data. We
sort our linked chains by their 𝑅2 values from high to low. We accept
the first linked chain as an overdensity candidate, and we remove all
other linked chains that include any of the same SExtractor detec-
tions as the accepted candidate. We repeat this iteratively with the
next highest 𝑅2 linked chain until no SExtractor detections are shared
between any of the candidates. We emphasize that this removal pro-
cess only eliminates duplicate detections of the same overdensity
candidates from our catalog; no real structure or substructure is lost
as a result of this process.

Ignoring the linked chains that were complete subsets of another,
the removal process eliminated as few as 20 to over 1000 linked chains

across all ORELSE fields depending on how sensitive we set the
detection and deblending parameters in §3.1. Despite this wide range
in removals, the number of linked chains remaining was fairly robust,
typically being between a total of 300 to 400, so we consistently have
around the same number of overdensity candidates after removing
all duplicate detections. More linked chains are removed by number
at lower redshifts due to a greater abundance of detections, though
the percentage of removals is not sensitive to redshift. We note that
this methodolgy will disfavor irregularly shaped structures where the
velocity distribution deviates appreciably from a Gaussian, though
they are likely still picked up in many cases as our goodness of fit
test is a relative measure.

3.3 Exclusion of Previously Known Structures

ORELSE was designed to target massive known clusters. Thanks to
the high levels of spectroscopy around these systems, we found a few
dozen more clusters and groups nearby in the fields on an initial,
primarily spectroscopic search. In Hung et al. (2020), we optimized
our choice of SExtractor parameters in part based on how well we
could recover all known structures in the ORELSE fields, both those
the survey was targeted at and those found with spectroscopy. The
inclusion of all these known structures will bias a mass function high
relative to structures found in a field survey. This is particularly true at
the high mass end as the known structures are among the highest mass
overdensities we detect with our technique. In addition, there were a
small number of structures, such as clusters B and C in RXJ1716 (see
§4.3.1 in Hung et al. 2020), that we were not able to separate no matter
how fine we set the deblending parameters. We would pick up these
blended structures as single overdensities and thus overestimate their
masses. By excluding the previously known structures we recover
from our cluster mass function calculations, we can possibly avoid
biasing our data towards higher mass overdensities. Regardless of
this removal, it is likely that the mass function will still be biased
high because of additional structures around the targeted structures
that were missed by the original spectral search.

3.4 Correcting to 𝑅200

Cluster mass function studies typically compare to theoretical models
that calculate the dark matter halo mass function. Dark matter haloes
are typically defined within spherical apertures of radii 𝑅200 corre-
sponding to an overdensity Δ = 200. As we cannot measure haloes
from our observational data, we look to scaling the effective circular
radius, 𝑅circ, of each overdensity candidate to their 𝑅200 radii. Each
overdensity candidate is made up of a series of SExtractor detections
we linked together over several redshift slices. We obtain 𝑅circ by
taking the largest SExtractor detection by isophotal area in an over-
density candidate and finding its effective circularized radius. We
derive 𝑅200 by treating the overdensity candidate’s estimated mass
from equation 1 in §3.1 as equal to 𝑀200 with:

𝑅200 =

(
𝐺𝑀200

100𝐻2 (𝑡)

)1/3
(2)

where 𝐻 (𝑡) is the Hubble parameter and 𝐺 is the gravitational
constant.

In Figure 3, we plot 𝑅circ and 𝑅200 values for four different DE-
BLEND_MINCONT parameters using a DETECT_THRESH of 4𝜎.
Above approximately 0.6 Mpc, 𝑅circ predominantly outpaces 𝑅200.
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Figure 3. In an attempt to better match our cluster mass function to theoretical halo mass function models, we can scale our overdensity candidates circular radii
𝑅circ to their equivalent 𝑅200 radii, assuming their mass is equal to 𝑀200. We plot linear fits of 𝑅circ and 𝑅200 for our four different DEBLEND_MINCONT
parameters using a fixed DETECT_THRESH of 4𝜎. We calculate 𝑅200 according to Equation 2. We measure 𝑅circ from the largest SExtractor detection by
area in each overdensity candidate. The scatter points represent all found overdensity candidates for each DEBLEND_MINCONT parameter. The filled scatter
points represent the overdensity candidates with masses log(𝑀tot/𝑀�) > 14.5. The fits between the DEBLEND_MINCONT parameters do not significantly
change. 𝑅circ and 𝑅200 appear to be closest to equal (the dashed black line) below around 0.6 Mpc.

In other words, it is likely we are estimating a mass for larger overden-
sity candidates at an effective radius larger than 𝑅200. The disagree-
ment between the two radius measures implies that our assumption
that our mass estimate is equal to 𝑀200 is incorrect, which means the
comparisons between our observed mass function and the theoretical
mass functions may also be off due to the latter using 𝑅200

3. This
indicates a possible need to scale down the masses of such overden-
sity candidates to the mass enclosed by their 𝑅200 radii to match the
comparisons we make with the theoretical halo mass function in §5.

Equation 37 of Coe (2010) gives the mass of a Navarro-Frenk-

3 For transparency, we note that we also allow the theoretical value to vary
to account for the imprecision in this process. More details can be found in
§5.

White (NFW) dark matter halo within a sphere of radius 𝑟 = 𝑥𝑟𝑠
as:

𝑀 (𝑟) = 4𝜋𝜌𝑠𝑟3
𝑠

(
ln(1 + 𝑥) − 𝑥

1 + 𝑥

)
(3)

where 𝜌𝑠 is the scale density, 𝑟𝑠 is the scale radius, and 𝑥 is a
multiplicative factor. We use this equation to calculate the quotient
of the mass enclosed at 𝑅200, 𝑀200, and the mass enclosed at some
generalized radius. From equation 1 of Coe (2010), the scale radius
is equivalent to 𝑟𝑠 = (𝐶𝑣𝑖𝑟 /𝑟𝑣𝑖𝑟 )−1, where𝐶𝑣𝑖𝑟 is the concentration
at the virial radius, and 𝑟𝑣𝑖𝑟 is the virial radius. We assume that
𝑟𝑣𝑖𝑟 = 𝑅200/1.14 and estimate that 𝐶𝑣𝑖𝑟 ≈ 3.5 for our higher mass
overdensity candidates (Duffy et al. 2008). Taking the ratio 𝜅 of the
masses enclosed in 𝑅circ over 𝑅200 reduces to:

𝜅 =
ln(5) − 4/5(

ln(1 + 4𝑥) − 4𝑥
1+4𝑥

) (4)
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𝑥 =
𝑅circ
𝑅200

=
(1 − 𝑏/𝑅200)

𝑚
(5)

where 𝑚 and 𝑏 are the slope and intercept of the 𝑅circ and 𝑅200
linear fit.

For a given overdensity candidate, we would multiply its mass by
𝜅 to scale it back to𝑀200. As overdensity candidates with 𝑅200 ≤ 0.6
Mpc not only have very low flux values but also 𝑅200 ≈ 𝑅circ, we
consider this correction only for candidates with 𝑅200 > 0.6 Mpc.
𝜅 decreases with mass, giving typical values of 0.90, 0.71, and 0.64
for masses of 1014𝑀� , 1014.5𝑀� , and 1015𝑀� respectively.

4 BUILDING THE CLUSTER MASS FUNCTION

We represent the cluster mass function as a cumulative distribution,
where we plot the number density 𝑁 (> 𝑀) for a given mass. In
Hung et al. (2020), we constructed several mock candidate catalogs
to estimate our purity and completeness numbers. The mock catalogs
sampled slightly different mass ranges depending on the redshift, but
they inclusively covered log(𝑀/𝑀�) = 13.64 to 14.81. We use 10
equally logarithmically spaced points in the same mass range for our
mass function. The spacing between the mass bins do not affect the
measured number densities as long as they are wider than the average
mass uncertainties. Because we have purity and completeness esti-
mates, and associated uncertainties on those purity and completeness
values, as functions of redshift, mass, and spectroscopic function, we
do not need to rely on using a 𝑉𝑚𝑎𝑥 method to limit our sample to
where we have high completeness.

4.1 Mass Bin Assignment

We assign the overdensity candidates to the mass bins using a Monte-
Carlo method. For each overdensity candidate, we have an estimate
of its mass and redshift and their associated uncertainties. We Gaus-
sian sample each to obtain a new mass 𝑀𝑖 and redshift 𝑧𝑖 for an
iteration. 𝑀𝑖 and 𝑧𝑖 are used to compute the purity and completeness
corrections, which also have associated uncertainties and are again
Gaussian sampled. The number density 𝑛𝑖 of the candidate is then:

𝑛𝑖 =
𝑃𝑖/𝐶𝑖
𝑉

(6)

where 𝑃𝑖 and 𝐶𝑖 are the purity and completeness for the given
iteration, and 𝑉 is the comoving volume, which is 9.82 × 106 Mpc3

for our redshift range of 0.55 to 1.37 and effective transverse survey
area of 1.4 square degrees. 𝑛𝑖 is added to its mass bin, assigned by
𝑀𝑖 . As more overdensity candidates are assigned to the same mass
bin, the larger the total number density in the bin grows. We repeat
this process 1000 times and then take the median of all iterations as
the final number densities for each mass bin, with the 16th and 84th
percentiles as approximate 1𝜎 uncertainties.

4.2 Testing for Eddington Bias

We tested for the presence of Eddington (1913) bias in our sample of
overdensity candidates using a toy cluster mass function. We devised
a mock cluster mass function and sampled from it a population of ob-
served synthetic clusters. Redshifts and spectroscopic fractions were
generated for each synthetic cluster by uniform randomly sampling
the full range of these two parameters of the real overdensity candi-
date sample. Our purity and completeness estimates were unchanged.

Table 1. Overdensity Candidate Parameters

Parameter Values
Mass Fit (DETECT_THRESH 𝜎) Original (Hung et al. 2020), 4, 5
DEBLEND_MINCONT 0.03, 0.01, 0.005, 0.003
Linking Radius (Mpc) 1.0, 0.50, 0.25
Using Known Structures Yes, No
Using 𝑅200 Correction Yes, No

Each parameter listed here will affect how many overdensity candidates are
found and at what mass, directly affecting whatever mass function we
attempt to derive. As we do not know a priori the optimal set of parameters
to use, we consider reasonable ranges of values for five total parameters,
described in §3 and §4, giving 144 unique arrangements.

We assigned every synthetic cluster the same fixed mass uncertainty
and tested two cases: 0.05 dex, the typical uncertainty we see in our
real overdensity candidate sample, and 0.15 dex, one of the largest
uncertainties in the sample. We assigned the synthetic clusters into
mass bins with the same Monte-Carlo method described in §4.1 to
see if we could recover our toy cluster mass function. Though Ed-
dington bias was always clearly present, we found that our number
densities only noticeably deviated from the toy mass function when
the size of the mass bin was smaller than the clusters’ mass uncer-
tainties. Any deviation was negligible otherwise. Given that we use
a much larger mass bin of 0.38 dex for our real mass function, we
can consider the effects of Eddington bias as small compared to our
typical mass error and purity and completeness corrections.

4.3 Averaging over Parameter Values

The overdensity candidates in our catalog will change depending on
our choice of parameters, and we do not know a priori which choice
is optimal for building our cluster mass function. However, we can
define for each parameter a reasonable range of values from our prior
rigorous testing on both real and mock data in §4 and 5 in Hung et al.
(2020). With the values we choose below, we were able to recover
high fractions of previously known structures with similar redshift
and transverse position offsets from their fiducial coordinates. Like-
wise, our estimated levels of completeness and purity largely fell
within a 5% variation.

We define our grid in Table 1 by the set of parameters described
in §3, and we plot the variations in our overdensity candidates in
number and redshift in Figure 4. The mass fit is dependent on the
DETECT_THRESH 𝜎 used, as a higher 𝜎 decreases the sizes of
the SExtractor detections. We use new mass fits drawn from us-
ing DETECT_THRESH values of 4 and 5𝜎. Because we have four
unique values for DEBLEND_MINCONT, the mass fit will slightly
differ for each one. In order to obtain a single mass fit for the same
DETECT_THRESH value, we compute a mass fit for each DE-
BLEND_MINCONT value, leaving us four sets of best-fit terms for
the fitting function in Eq. 1. We then obtain an average mass fit by
taking the median for each term, and we treat the median absolute de-
viation as the uncertainty in the term. We also use our original mass
fit from Hung et al. (2020), which used a DETECT_THRESH of
4𝜎, as a means of testing another methodological approach divorced
from the choice of parameters described in this paper.

We chose a reasonable range of our DEBLEND_MINCONT val-
ues by examining by eye five pairs of known structures within 0.2
to 3.5 Mpc in the transverse dimensions and 𝑧 < Δ0.02 in red-
shift across different ORELSE fields. The deblending becomes finer
for smaller values of DEBLEND_MINCONT. Dropping the DE-
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Figure 4. Our sample of overdensity candidates will change based on the choice of input parameters in our detection algorithm. Here we show how the total
number (left) and redshifts (right) of overdensity candidates vary by averaging over the ranges of values we set in Table 1. The points denote the median number
in each mass bin, and the error bars show the 16th and 84th percentiles. For simplicity, we assume all individual candidate mass and redshift uncertainties as well
as purity and completeness correction uncertainties to be 0 in this plot. The median total number of candidates is 241 in the plotted mass range. The candidate
numbers fall just short of 0 for our highest mass bin, and we see the largest spreads in candidate numbers below 14.2 dex. The dashed red line gives the overall
mean redshift of the sample at 𝑧 = 0.94, which falls within 1𝜎 of the redshift range in every mass bin.

BLEND_MINCONT too far runs the risk of breaking apart indi-
vidual overdensities, so we looked for the most conservative value
of DEBLEND_MINCONT that was able to deblend a given pair of
known structures. For four of the pairs, we respectively found DE-
BLEND_MINCONT values of 0.03, 0.01, 0.005, and 0.003. For the
remaining fifth pair, we were not able to split the two substructures
without breaking the conglomerate detection in SExtractor into more
than two components.

We consider linking radii of 1.0, 0.50, and 0.25 Mpc, which we
had previously tested in Hung et al. (2020). Finally, we examine
the effects of including previously known structures or not, which
can bias our cluster mass function to high mass overdensities, and
using the 𝑅200 correction, which will shift our larger overdensity
candidates to lower masses.

In total, we consider 144 unique sets of values over five indepen-
dent parameters for the purposes of our cluster mass function. For
each set, we use the Monte-Carlo method described in §4.1 to as-
sign the candidates to each mass bin and compute a number density
by taking the median over 1000 iterations. We do this for each set
of values, meaning we end up with 144 number densities. Because
we do not expect any sample of overdensity candidates to be more
indicative of reality than another, we then take the median of these
number densities to give us our final mass function, with the 1𝜎
upper and lower bounds defined by the 84th and 16th percentiles.

5 COMPARISON WITH THEORY

For our analysis, we use the halo mass function by Tinker et al.
(2010), derived from identifying dark matter haloes in N-body sim-
ulations of flat ΛCDM cosmology. Using the spherical overdensity
(SO) algorithm, haloes are identified as isolated density peaks. The
halo mass is defined in spherical apertures enclosing overdensities Δ,
defined as the mean interior density relative to the background. The
halo mass function is not the same as the cluster total mass function,
but simulations suggest a tight correlation between halo mass and
cluster mass proxies (e.g., Kravtsov et al. 2006; Nagai 2006). We
chose to use the Tinker et al. (2010) halo mass function as it and
Tinker et al. (2008) are highly cited as a point of comparison for
observational studies, and both models are very nearly equal for our
redshift and mass ranges. We note, however, that choosing other mod-
ern halo mass functions (e.g., Crocce et al. 2010; Courtin et al. 2011;
Bhattacharya et al. 2011; Angulo et al. 2012; Watson et al. 2013)
does not significantly change our results as the differences between
the models are smaller than our typical number density uncertainties
(Fig. 5).

We generate the theoretical models with the Halo Mass Function
calculator (HMFcalc; Murray et al. 2013) available through an online
interface as well as a Python package4. The main cosmological pa-
rameters that define the halo mass function are Ω𝑚 and 𝜎8. The other

4 Version 3.0.12; https://github.com/steven-murray/hmf
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Figure 5. We compare the Tinker et al. (2010) halo mass function with several
of the most recent models available in the Halo Mass Function calculator,
fixing 𝑧 = 0.94, Δ = 200, and using WMAP9 cosmology. Models can either
define haloes through the spherical overdensity (SO; solid lines) or Friend-of-
Friend (FoF; dashed lines) algorithms. SO halo mass functions are generally
taken to be more suited for observational comparisons due to similar spherical
definitions of mass, and as expected we see the largest discrepancies with the
FoF models, and the discrepancies increase with higher masses. However, all
of the plotted models fall within a maximum factor of 3 (average factor of
1.3) of Tinker et al. (2010) for our mass range of interest, which is smaller
than the typical uncertainties we see in our observed number densities.

parameters do not strongly affect the halo mass function, so we keep
them fixed, adopting the nine-year Wilkinson Microwave Anisotropy
Probe (WMAP9; Hinshaw et al. 2013) parameters, which is available
in HMFcalc as a pre-defined cosmology. We plot our observational
points against several sets of Ω𝑚 and 𝜎8 in Figure 6. We fix the
redshift to 𝑧 = 0.94, which is the mean redshift of our overdensity
candidate sample, a mean which does not depend strongly on struc-
ture mass (see Figure 4). When comparing 𝑅circ and 𝑅200 across our
sample, we have seen the former be consistently larger. Though we
try to correct our masses to roughly 𝑀200, we plot Δ ranges of 100
to 200 to compare with larger radii due to our ignorance in how our
masses are constructed over the same spatial extents (Fig. 6).

Our observational points consistently appear high compared to
concordance cosmology, which is likely a consequence of our survey
being targeted around previously known clusters. Despite this, we
can still attempt to fit our observed points for Ω𝑚 and 𝜎8 to demon-
strate the proof of concept that such constraints are possible from
𝑧 ∼ 1 optical/NIR surveys. In order to constrain Ω𝑚 and 𝜎8, we
define a grid of values in 0.005 steps for 0.080 < Ω𝑚 < 0.600 and
0.600 < 𝜎8 < 2.000 which we iterate over in the Tinker et al. (2010)
halo mass function at 𝑧 = 0.94, with Δ = 200, and using WMAP9
cosmology. Ω𝑚 is varied in HMFcalc such that the total density
parameter Ωtot remains flat. At each point in the grid, we measure
the 𝜒2 difference between the cluster and halo mass functions using
a standard least squares method, which is transformed to a likeli-
hood by 𝑒−𝜒2/2. When fitting for Ω𝑚 and 𝜎8, we split our observed
number densities into two groups: one that contains all overdensity

candidates as described in §4 and one excluding all previously known
structures (Fig. 7). Depending on the choice of SExtractor detection
and deblending parameters, we recover between 77 to 93% of the
56 previously known structures in the ORELSE fields. The known
structures constitute 13 to 20% of all overdensities in our sample by
number. At masses greater than log(𝑀/𝑀�) = 14.5, however, the
known structures make up between 53 to 82% of the sample. The
known structures are among the most massive in our sample, and
thus we expect them to bias our observed high-mass densities.

We findΩ𝑚 = 0.250+0.104
−0.099 and 𝜎8 = 1.150+0.260

−0.163 among our com-
plete sample, and Ω𝑚,𝑛𝑘 = 0.240+0.139

−0.077 and 𝜎8,𝑛𝑘 = 1.070+0.133
−0.157

when the known structures are removed. We plot these fits against
their respective observed points in Figure 8. Under theΛCDM model,
WMAP9 gives Ω𝑚 = 0.279 ± 0.025 and 𝜎8 = 0.821 ± 0.0235. Our
best-fitΩ𝑚 values agree with the concordance value within 1𝜎, while
𝜎8 is discrepant at the ∼2 and ∼1.5𝜎 levels when the known struc-
tures are included and excluded, respectively. From the right panel
in Figure 6, we see that our observed points closely follow a line
of fixed 𝜎8 for Ω𝑚 = 0.27, which consequently shifts 𝜎8 higher to
compensate. Likewise, the best-fit Ω𝑚 of our sample with and with-
out the known structures are very similar, but 𝜎8 is slightly smaller
for the sample without the known structures. However, we note that
a considerable fraction (∼50%) of our high-mass overdensity candi-
dates are very close in redshift/transverse space to known massive
systems. Even with the known structures removed from the sample,
the presence of these close candidates grants substantial power to
the high end of the mass function, which in turn elevates the 𝜎8
parameter.

6 DISCUSSION

We present our Ω𝑚 and 𝜎8 fits as a proof of concept that cosmo-
logical fitting can be done with optical/NIR data at 𝑧 ∼ 1, which to
the best of our knowledge has not been done before outside of the
relatively local universe. As a result of our consistently high number
densities, especially at the high mass end (see discussion in §3.3 and
5), while our best-fit Ω𝑚 is consistent within 1𝜎 with the concor-
dance value, our best-fit 𝜎8 is roughly 2𝜎 higher than the equivalent
concordance value. However, the ORELSE survey was by design
targeted around known large-scale structures, so we would expect to
see more galaxy overdensities per volume than an equivalent field
survey. Though other recent studies such as Abbott et al. (2020)
have found a tension in their derived cosmological parameters due
to disagreements between different mass proxies, we do not share
similar concerns, at least at the high-mass end, since our dynamical
mass estimates are within the error bars of the X-ray, lensing, and
SZ mass measurements found in other studies. However, the issue
in Abbott et al. (2020) was primarily at the low-mass end. To check
if this is potentially an issue for our results, we excluded the two
lowest mass bins in our observational mass function and re-derived
the cosmological parameters. We found no meaningful difference in
our results, with Ω𝑚 and 𝜎8 being entirely within the error bars of
the values we found in §5.

Optical-wavelength mass function studies conducted for the local
universe have recently begun to emerge. Abdullah et al. (2020) de-
rived a cluster mass function using 756 Sloan Digital Sky Survey
(SDSS; Albareti et al. 2017) clusters with masses estimated from the

5 https://lambda.gsfc.nasa.gov/product/map/dr5/params/
lcdm_wmap9.cfm
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Figure 6. We show how the Tinker et al. (2010) halo mass function changes with Ω𝑚 and 𝜎8 at a fixed redshift of 𝑧 = 0.94, which is the median redshift of
our overdensity candidate sample. Each band shows the range covered by 100 < Δ < 200. We plot the cluster mass function from our observational data as the
median of a total of 144 runs over all parameters described in §4 and Table 1. The lower and upper bounds show the 16th and 84th percentile values.

virial theorem. Their sample had a mean redshift of 𝑧 = 0.085 and
a similar mass range to our work. The authors find good agreement
with the Tinker et al. (2008) model, only significantly falling short
at log(𝑀/𝑀�) < 14, suggesting a possible sample incompleteness
which we were able to avoid at the same mass threshold. However,
due to their smaller density uncertainties across the mass range,
Abdullah et al. (2020) were able to recover tighter cosmological con-
straints of Ω𝑚 = 0.310+0.023

−0.027 and 𝜎8 = 0.810+0.031
−0.036, with systematic

errors of±0.041 and±0.035 respectively. Though our sample is at an
order of magnitude higher redshift, our errors are only two to three
times as large as the combined random and systematic errors found
by Abdullah et al. (2020).

Cluster count studies at higher redshifts have traditionally only
been done with X-ray and SZ surveys, though even then mass func-
tion studies have been few. Vikhlinin et al. (2009) derived a mass
function with two cluster samples. The high-redshift sample had
37 clusters derived from the 400 square degree ROSAT serendip-
itous survey (Burenin et al. 2007) and covered the redshift range
0.35 ≤ 𝑧 ≤ 0.90. The low-redshift sample consisted of the 49 high-
est flux clusters detected in the ROSAT All-Sky Survey and was
over 0.025 ≤ 𝑧 ≤ 0.25. Both samples were later observed by the
Chandra X-ray Observatory, providing spectral data that enabled
several high-quality total mass estimators. Cluster masses are esti-
mated using the X-ray luminosity and total mass relation. Both sam-
ples approximately cover the mass range 14 < log(𝑀/𝑀�) < 15.
With the Tinker et al. (2008) halo mass function, the authors find
Ω𝑚 = 0.255 ± 0.043 and 𝜎8 = 0.813 ± 0.013, with respective sys-
tematic errors of ±0.037 and ±0.024. However, the authors find that

the constraints on 𝜎8 do not significantly change when measured
with only the low-redshift sample and then again with the total sam-
ple including the high-redshift data, which the authors argue implies
the 𝜎8 measurement is dominated by the more accurate local cluster
data.

Bocquet et al. (2019) derived cosmological constraints with a
galaxy cluster sample of 365 candidates over the redshift range 0.25 <
𝑧 < 1.75 from the 2500 square degree SPT-SZ survey. Some clusters
in the sample were also supplemented with optical weak gravitational
lensing or X-ray measurements. Through using SZ, X-ray, and weak
lensing mass proxies, the sample is estimated to cover a mass range
of approximately 14.4 < log(𝑀/𝑀�) < 15.3. The authors find
constraints of Ω𝑚 = 0.276 ± 0.047, 𝜎8 = 0.781 ± 0.037 with the
Tinker et al. (2008) halo mass function.

With ORELSE and VMC mapping, we have the advantage of being
sensitive to lower mass ranges than traditional X-ray and SZ survey
studies. X-ray studies, however, will soon enjoy a boon of data with
the ongoing all-sky survey by the extended Roentgen Survey with
an Imaging Telescope Array (eROSITA; Merloni et al. 2012) instru-
ment on the Spectrum-Roentgen-Gamma (SRG) mission, which will
produce on the order of 10,000 detections of the hot intergalactic
medium of galaxy clusters. VMC mapping itself is adaptable to any
similar photometric and spectroscopic dataset, and thus has great
potential when combined with future, larger optical surveys.

Spectroscopic redshifts are tremendously useful for cluster studies
as they provide highly accurate information on where galaxies are
distributed along the line-of-sight, but they have been traditionally
difficult to obtain due to their large time commitment. The Subaru
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Figure 7. We fit for Ω𝑚 and 𝜎8 using a Tinker et al. (2010) halo mass function at 𝑧 = 0.94, with Δ = 200, and using WMAP9 cosmology. The left panel includes
all overdensity candidates in our sample, while the right panel excludes all previously known structures. Because of how the ORELSE survey was targeted, the
previously known structures are among the largest mass overdensities in our sample. We thus attempt to migitate our higher than predicted number densities in
our mass function by excluding them. The white contours in the plot show the 68.3%, 90%, and 95.4% confidence regions. The best-fit values are given by the
likelihood maximum in the grid, and the 1𝜎 uncertainties are given by the 16th and 84th percentiles of the 1D folded likelihood functions. We show the fitted
halo mass functions in Figure 8.

Prime Focus Spectrograph (PFS6; Takada et al. 2014) is an optical
and NIR wavelength spectrograph expected to be ready for scientific
use in 2022. Situated on the 8.2-m Subaru Telescope, PFS is capa-
ble of obtaining spectra of galaxies that were technologically out of
reach before. With a 1.3 degree diameter field-of-view, it is capable
of simultaneous spectral observation of up to 2400 targets. The forth-
coming 100 night PFS cosmology survey aims to sample galaxies
over a redshift range of 0.8 ≤ 𝑧 ≤ 2.4 and a comoving volume of
9ℎ−3 Gpc3, approximately a thousand times larger than ORELSE’s
spectroscopic footprint. The ground-based Maunakea Spectroscopic
Explorer7 is a 11.25-m telescope that will replace the 3.6-m Canada-
France-Hawaii Telescope (CFHT). Construction on the telescope is

6 https://pfs.ipmu.jp/intro.html
7 https://mse.cfht.hawaii.edu/

anticipated to begin in 2023, with full science operations commenc-
ing in August 2026. Its spectrographs can accomodate roughly 3,000
spectra simultaneously. Combined with the telescope’s 1.5 square de-
gree field-of-view, it will be able to obtain many more high-quality
spectroscopic redshifts from the ground with less time than was pos-
sible before.

Photometric redshifts are less accurate than spectroscopic red-
shifts, but they generally have more uniform spatial distributions and
thus enable more complete mapping of the density field of galaxies
when combined with spectroscopic redshifts. Photometric redshifts
complete to deeper magnitudes will be in no short supply with up-
coming all-sky surveys. The ground-based Large Synoptic Survey
Telescope (LSST; Ivezić et al. 2019) is an optical survey expected
to begin operations by 2022, with the aim of uniformly observing
18,000 square degrees of the sky 800 times over 10 years. Its six-band
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Figure 8. We plot the best-fit Tinker et al. (2010) halo mass functions with the
parameters found in Figure 7. The solid line follows the best-fit parameters,
while the shaded region shows the maximum variation among the 1𝜎 ranges
for Ω𝑚 and 𝜎8.

photometry will yield photometric redshifts for billions of galaxies.
The European Space Agency mission Euclid8 is a space telescope
operating at optical and NIR wavelengths planned to launch in 2022.
It will measure the redshifts of galaxies out to 𝑧 ∼ 2 over its nom-
inal six-year mission. Its wide survey component will cover 15,000
square degrees of sky. Its deep survey will reach two magnitudes
deeper in three fields with an area totaling 40 square degrees.

A methodology with high purity and completeness such as VMC
mapping will be able to take full advantage of this wealth of high-
quality data and yield promising results for optical/NIR cluster cos-
mology in the decades to come.

7 SUMMARY AND CONCLUSION

With the extensive photometric and spectroscopic dataset from the
ORELSE survey and Voronoi tessellation Monte-Carlo mapping, we
have derived the first observational cluster mass function at optical
and NIR wavelengths outside of the relatively local universe.

Our original methodolgy in Hung et al. (2020) recovered 51
previously known structures and found 402 new overdensity can-
didates over the redshift range 0.55 < 𝑧 < 1.37 and mass range
10.2 < log(𝑀/𝑀�) < 14.8. However, we had for the most part set
aside the issue of separating blended structures in favor of the most
general case of finding any overdensity in the data. As the cluster mass
function reports the number density as a function of mass, we needed
in this paper to take caution with what candidates in our sample were
single structures or not. In total, we had five independent parame-
ters that affected the numbers and masses of candidates we obtained

8 https://sci.esa.int/web/euclid/

from the same dataset. We also limited our sample to the mass range
13.6 < log(𝑀/𝑀�) < 14.8, which is where we had purity and com-
pleteness estimates from our tests with mock catalogs. We had 144
unique sets of values for the five overdensity candidate parameters,
where the median total number of overdensity candidates was 241
and the median redshift was 𝑧 = 0.94. We derived the cluster mass
function through treating our overdensity candidates sample with a
Monte-Carlo scheme and applied purity and completeness correc-
tions as functions of redshift, mass, and spectroscopic fraction.

We compared our observational mass function to the Tinker et al.
(2010) halo mass function, set to 𝑧 = 0.94 to match the median
redshift of our sample, and using Δ = 200 and WMAP9 cosmol-
ogy. We find cosmological constraints of Ω𝑚 = 0.250+0.104

−0.099 and
𝜎8 = 1.150+0.260

−0.163. While our Ω𝑚 value agrees with the concordance
value within 1𝜎, our 𝜎8 value is high by approximately 2𝜎. This
discrepancy is a consequence of our inflated observed number densi-
ties, brought about because ORELSE was designed to be targeted at
known large-scale structures. In an attempt to mitigate this, we fitted
for Ω𝑚 and 𝜎8 again after removing all previously known structures
from our sample, which gave us constraints of Ω𝑚,𝑛𝑘 = 0.240+0.139

−0.077
and 𝜎8,𝑛𝑘 = 1.070+0.133

−0.157, dropping the discrepancy in 𝜎8 to roughly
1.5𝜎.

The Ω𝑚 and 𝜎8 constraints we present here are meant to be taken
as a proof of concept that pure optical/NIR cluster abundance can be
a viable cosmological probe at moderately high redshifts. Though it
has limitations when applied to data obtained through a biased survey
strategy, our methology has strong potential when combined with the
several large optical surveys on the horizon, which will yield many
more photometric and spectroscopic redshifts than what was possible
to obtain before. Along with advancements in X-ray surveys which
will offer complementary results for investigating cluster evolution,
we can expect cluster-based constraints to grow into an even more
powerful cosmological probe in the near future.
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