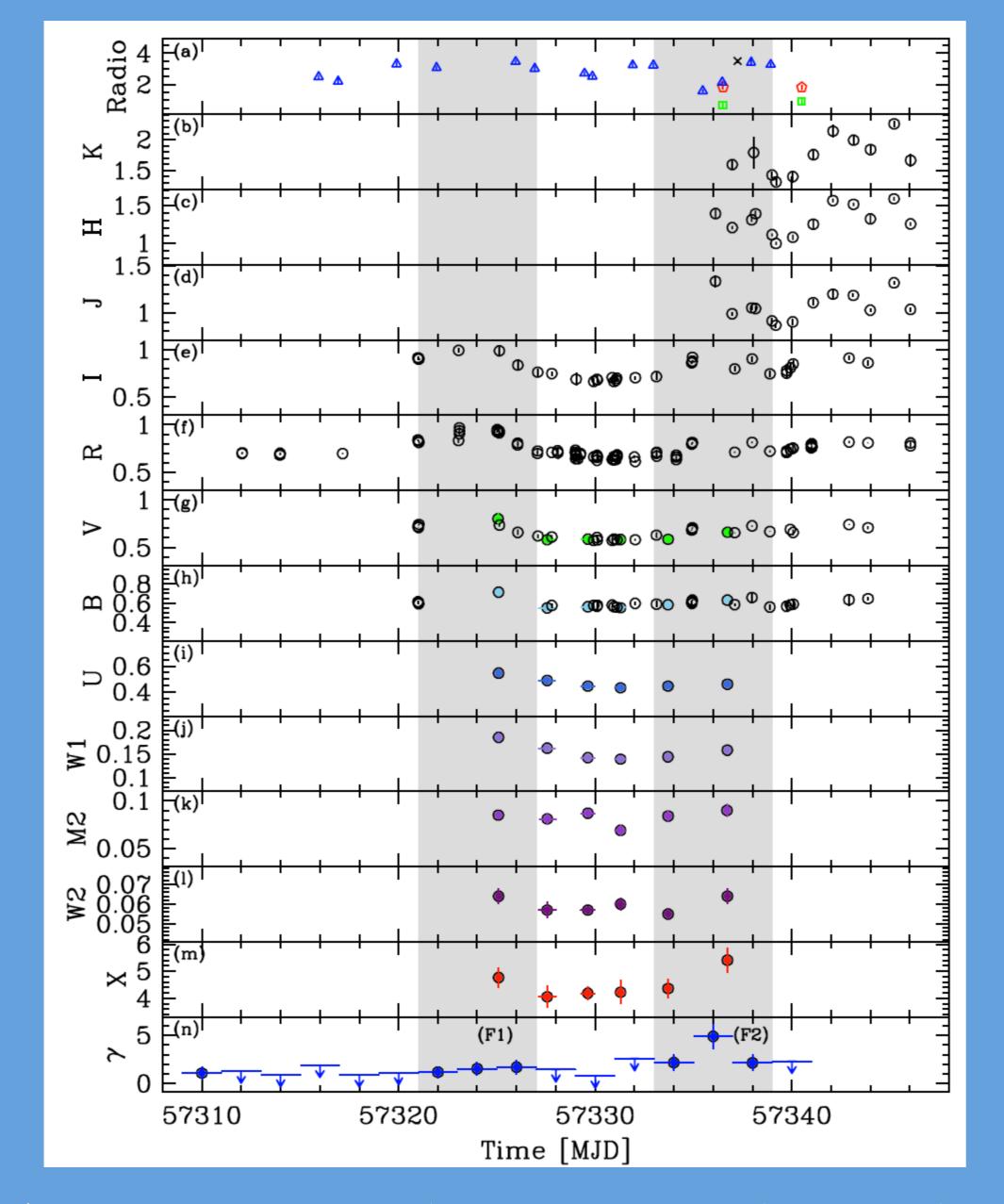


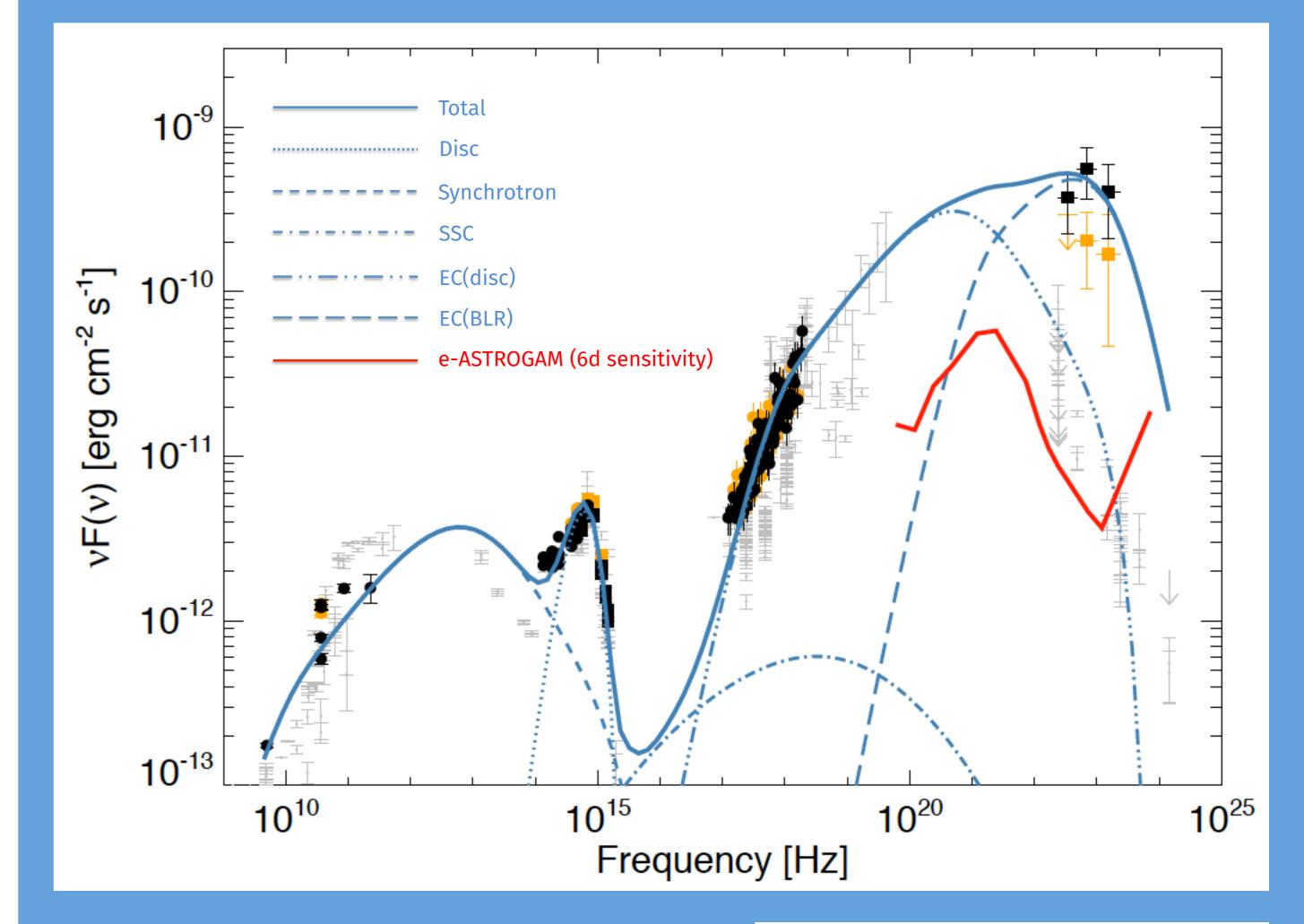
Publication Year	2017		
Acceptance in OA@INAF	2024-01-12T10:01:52Z		
Title	Multi-wavelength observations of the high-redshift blazar 4C+71.07		
Authors	VERCELLONE, STEFANO		
Handle	http://hdl.handle.net/20.500.12386/34527		

Multi-wavelength observations of the high-redshift blazar 4C +71.07


S. Vercellone (INAF/OAB) on behalf of a larger collaboration. A&A, to be submitted

Abstract

The flat-spectrum radio quasar 4C +71.07 has been detected by the AGILE gamma-ray satellite on 2015 October 27-29 and 2015 November 08-10, when it reached a gamma-ray flux of the order of 1.2x10⁻⁶ ph cm⁻² s⁻¹ and 3.1x10⁻⁶ ph cm⁻² s⁻¹, respectively. Because of its relatively high redshift (z=2.172), this blazar shows a prominent accretion disc bump peaking in the ultra-violet band, which makes this source an excellent candidate to investigate not only the jet emission but also the non thermal one. **We investigated its spectral energy distribution by means of almost simultaneous observations covering the cm, mm, near-infrared, optical, ultra-violet, X-ray and gamma-ray energy bands** obtained by the GASP-WEBT Consortium, *Swift*, and the AGILE satellites. **We present the spectral energy distribution of the gamma**-


Observations

Multi- λ light-curves for the observing campaign on 4C +71.07.

Results

Spectral energy distribution for flares **F1** and **F2** of 4C +71.07 (time intervals as reported in the left panel). Orange symbols refer to the first flare (**F1**), while black symbols to the second one (**F2**). Small grey points are archival data provided by *the ASI/ ASDC SED Builder Tool*.

Panel (a): GASP-WEBT 5GHz (black cross sign), 37GHz (blue triangles), 86GHz (red diamonds), and 228 GHz (green squares) data [Jy].

Panels (b)–(h): K, H, J, I, R, V, B bands (open circles, [mJy]).
Panels (g)–(l): Swift/UVOT v, b, u, w1, m2, w2 bands (coloured discs, [mJy]).

Panel (m): Swift/XRT observed 0.3–10 keV flux $[10^{-11} \text{ erg cm}^2 \text{ s}^{-1}]$. **Panel (n):** AGILE/GRID data (E > 100MeV, $[10^{-6} \text{ photons cm}^2 \text{ s}^{-1}]$).

The grey-dashed areas mark the time-interval (F1, MJD 57321.0-

In order to model the SED, we took into account a one-zone leptonic model. The emission along the jet is assumed to be produced in a spherical blob with co-moving

Table 1: Parameters for the second flare (F2) SED model.				
Description	Parameter	Value	Unit	
Pre-break spectral index	α_{l}	2.0		
Post-break spectral index	$\alpha_{ m h}$	4.4		
Minimum e^- Lorentz factor	$\gamma_{ m min}$	20		
Break e^- Lorentz factor	$\gamma_{\rm b}$	750		
Particle density	K	20	cm^{-3}	
Blob radius	$R_{ m blob}$	5×10^{16}	cm	
Broad-line region radius	$R_{ m BLR}$	$6.2 imes 10^{17}$	cm	
Reprocessed % of the irradiating continuum	$f_{\rm BLR}$	1	%	
Blob distance w.r.t. the BH	$z_{\rm jet}$	7×10^{16}	cm	
Magnetic field	B	0.8	G	
Bulk Lorentz factor	Г	15		
Angle w.r.t. the l.o.s.	Θ_0	2	degrees	
Doppler factor	δ	23.6		
Disc luminosity	$L_{ m d}$	2×10^{47}	$erg s^{-1}$	
Disc temperature	$T_{ m d}$	4×10^4	$^{\circ}K$	

radius R_{blob} by accelerated electrons characterized by a broken power-law energy density distribution: $n_e(\gamma) = \frac{K\gamma_b^{-1}}{(\gamma/\gamma_b)^{\alpha_1} + (\gamma/\gamma_b)^{\alpha_h}}$

The above table summarizes the parameters for the second flare

57327.0; **F2**, MJD 57333.0–57339.0) used for accumulating the almost simultaneous SEDs (orange and black symbols, respectively).

(F2) SED model.

Discussion

The SED fit of the second gamma-ray flare (F2) suggest a distance of the emission zone from the central black-hole of about 7x10¹⁶ cm and a total jet power of about 6x10⁴⁶ erg s⁻¹.

We conclude that during the most prominent gamma-ray flaring period the dissipation region is within the broad-line region. Moreover, this class of high-redshift, large-mass black-hole flat-spectrum radio quasars might be good targets for planned γ-ray satellite such as e-ASTROGAM.