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We discuss the mass-radius diagram for static neutron star models obtained by the numerical solution of
modified Tolman-Oppenheimer-Volkoff equations in fðRÞ gravity where the Lagrangians fðRÞ ¼ Rþ
αR2ð1þ γRÞ and fðRÞ ¼ R1þϵ are adopted. Unlike the case of the perturbative approach previously
reported, the solutions are constrained by the presence of an extra degree of freedom, coming from the trace
of the field equations. In particular, the stiffness of the equation of state determines an upper limit on the
central density ρc above which the positivity condition of energy-matter tensor trace Tm ¼ ρ − 3p holds. In
the case of quadratic fðRÞ gravity, we find higher masses and radii at lower central densities with an
inversion of the behavior around a pivoting ρc which depends on the choice of the equation of state. When
considering the cubic corrections, we find solutions converging to the required asymptotic behavior of the
flat metric only for γ < 0. A similar analysis is performed for fðRÞ ¼ R1þϵ considering ϵ as the leading
parameter. We work strictly in the Jordan frame in order to consider matter minimally coupled with respect
to geometry. This fact allows us to avoid ambiguities that could emerge in adopting the Einstein frame.

DOI: 10.1103/PhysRevD.93.023501

I. INTRODUCTION

The structure of a neutron star (NS) is strictly correlated
with the equation of state (EoS), i.e. the relation between
pressure and density in its interior [1]. Given an EoS, a
mass-radius ðM −RÞ relation and a corresponding maxi-
mal mass can be derived, in principle, for any NS.
Furthermore the knowledge of these parameters provides
significant information related to the mechanism respon-
sible for NS formation and possible effects on the evolu-
tionary history of their progenitors. For an introduction to
the theory of relativistic stars, see for example [2].
Up to now, the physical properties of matter in strong

gravity regimes have been studied only by considering
theoretical models since it is not possible to produce similar
environments in the laboratory. Due to this situation, there
are more than 100 candidates for the EoS, but only some of

them should be reliable once observational probes fix them.
Consequently, the measurement of NS masses is thus
important for our understanding on the matter behavior
in extreme regimes. Beside these considerations, it is well
known that Chandrasekhar, considering degenerate matter,
fixed a theoretical upper limit for the stability of a non-
rotating NS at 1.44M⊙ [3]. From an observational point of
view, the determination of mass can be achieved with
accuracy only for NSs in binary systems. In particular, the
most accurate mass measurements have been derived for
the binary radio pulsars where values of masses are around
1.35M⊙ [4]. However, for the x-ray pulsar Vela X-1, it has
been measured at a mass of the order 1.86� 0.16M⊙ [5,6]
and, for 4U 1822-371, a mass of the order 2M⊙ [7]. More
massive NSs were discovered, such as the millisecond radio
pulsar J0751þ 1807 with a measured mass of 2.1�
0.2M⊙ [8]. Furthermore, the pulsar PSR J1614 − 2230

[9] has set rigid constraints on various EoSs at strong
density regimes. In summary, the mass of a NS cannot
exceed the maximal mass limit in the range 3.2 − 3.6M⊙
according to general relativity (GR) [10,11]. It is important
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to stress that these limits on maximal mass exclude many
EoS according to the observational data. Therefore, since
different assumptions provided different results, we can say
that the actual mass limit for NS is still a mystery. We need
a more accurate derivation consistent with the observations.
In other words, this state of the art allows us to assume that
the NS mass should be in the range 1.4M⊙ to 6M⊙. This
situation is very unsatisfactory and so there is a severe need
for reliable methods to obtain the NS mass limit; otherwise
we are waiting for more precise observations.
In this paper wewill face the problem of theNSmass limit

adopting fðRÞ gravity. This is a straightforward extension of
GRwhere one relaxes the strict request that the gravity action
is linear in the Ricci scalar R as in the Hilbert-Einstein case.
These models can be seen as simple cases of a more general
class of extended theories of gravity [12–19]. The reason
whywe adopt such an approach is that higher order curvature
corrections can emerge in the extreme gravity regimes inside
a NS [20–23]. The effective pressure related to the curvature
could naturally cure, in principle, some shortcomings of NS
theory that are often addressed by asking for exotic EoSs
[20]. The philosophy of the present paper is to construct
reliable M −R relations solving directly the full modified
Tolman-Oppenheimer-Volkoff (TOV) system equations
[24]. In other words, in our numerical integrations, we are
not imposing arbitrary perturbation methods but solving
numerically the full TOV system. In particular, we take into
account quadratic and cubic corrections to the Ricci scalar
and, in general, power-law fðRÞ models. The aim is to
control precisely how the results deviate from those of GR in
order to see where strong gravity regimes emerge and affect
the M −R relation.
The paper is organized as follows: In Sec. II, we derive

the modified TOVequations for fðRÞ gravity. In particular,
we consider fðRÞ models with quadratic and cubic cor-
rections and generic power law fðRÞ models. Solutions of
stellar structure equations are given in Sec. III. In Sec. IV,
we discuss the results, focusing, in particular, on theM −R
relation. Conclusions and discussion are reported in Sec. V.
Through the paper, we will indicate withR the radius of the
object and with R the Ricci curvature scalar.

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATIONS FOR f ðRÞ GRAVITY

Let us start from the fðRÞ action given by

A ¼ c4

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðRÞ þ Lmatter�; ð1Þ

where g is the determinant of the metric gμν and Lmatter is
the standard perfect fluid matter Lagrangian. The variation
of (1) with respect to gμν gives the field equations [12–19]

dfðRÞ
dR

Rμν−
1

2
fðRÞgμν− ½∇μ∇ν−gμν□�dfðRÞ

dR
¼8πG

c4
Tμν;

ð2Þ

where Tμν ¼ −2ffiffiffiffi−gp δð ffiffiffiffi−gp
LmÞ

δgμν is the energy momentum tensor

of matter. Here we adopt the signature ðþ;−;−;−Þ. The
metric for systems with spherical symmetry has the usual
form

ds2 ¼ e2wc2dt2 − e2λdr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where w and λ are functions depending only on the
radial coordinate r. Within the star, matter is described
as a perfect fluid, whose energy-momentum tensor is
Tμν ¼ diagðe2wρc2; e2λp; r2p; r2psin2θÞ, where ρ is the
matter density and p is the pressure [25]. The equations
for the stellar configuration are obtained adding the con-
dition of hydrostatic equilibrium which can be derived from
the contracted Bianchi identities

∇μTμν ¼ 0; ð4Þ

that give the Euler conservation equation

dp
dr

¼ −ðρþ pÞ dw
dr

: ð5Þ

From the metric (3) and the field equations (2), it is possible
to derive the equations for the functions λ and w in the
form [26]

dλ
dr

¼ 8e2λGπrρ

c2ð2 df
dR þ rR0 d2f

dR2Þ
þ e2λ½ðr2R − 2Þ df

dR − fr2�
2rð2 df

dR þ rR0 d2f
dR2Þ

þ
df
dR þ r½d2fdR2 ð2R0 þ rR00Þ þ rR02 d3f

dR3�
rð2 df

dR þ rR0 d2f
dR2Þ

; ð6Þ

and

dw
dr

¼ 8e2λGPπr

c4ð2 df
dR þ rR0 d2f

dR2Þ

þ e2λ½fr2 þ ð2 − r2RÞ df
dR� − 2ðdfdR þ 2rR0 d2f

dR2Þ
2rð2 df

dR þ rR0 d2f
dR2Þ

; ð7Þ

respectively. In both Eqs. (6) and (7), the prime denotes a
derivative with respect to r for the Ricci scalar RðrÞ.
The above equations are the modified TOV equations

that, for fðRÞ ¼ R, reduce to the standard TOVequations of
GR [27,28]. It is important to stress that, in fðRÞ gravity,
the Ricci scalar is a dynamical variable and then we need a
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further equation to solve the system of equations (5), (6)
and (7). For this aim one needs to consider the trace of the
field equations (2) which takes the form

3□
dfðRÞ
dR

þ dfðRÞ
dR

R − 2fðRÞ ¼ 8πG
c4

ðρ − 3pÞ; ð8Þ

where

□ ¼ 1ffiffiffiffiffiffi−gp ∂
∂xν

� ffiffiffiffiffiffi
−g

p
gμν

∂
∂xμ

�
ð9Þ

is the d’Alembert operator in curved spacetime. It can be
easily checked that for fðRÞ ¼ R, Eq. (8) reduces to the
trace of GR, i.e.

R ¼ −
8πG
c4

ðρ − 3pÞ: ð10Þ

In order to close the system of Eqs. (5)–(8), one needs to
provide an EoS, PðρÞ, relating the pressure and the density
inside the star.
In the next subsection we will take into account two

physically relevant fðRÞ Lagrangians with the aim to
obtain the M −R diagram for NS. We use a fully self-
consistent nonperturbative approach to solve the stellar-
structure equation in their exact form.

A. The case f ðRÞ ¼ Rþ αR2ð1þ γRÞ
We first consider here a quadratic form of fðRÞ with

cubic corrections, according to

fðRÞ ¼ Rþ αR2ð1þ γRÞ; ð11Þ
where both α and γ have dimensions cm−2. This class of
models can be related to the presence of strong gravitational
fields and emerge, for example, in cosmology, to achieve
inflation. In particular higher-derivative curvature terms
naturally lead to the cosmic accelerated expansion of
inflation [29]. At a fundamental level, their origin is related
to the effective actions coming from quantum gravity [30]
or from quantum field theory formulated in curved space-
time [31]. They lead to renormalizable models at the one-
loop level. In the extreme gravity regime of NS, also if very
far from the full quantum gravity regime, it is realistic to
suppose the emergence of curvature corrections to improve
the pressure effects. It is important to stress that such a
model cannot be confronted with the Solar System tests of
GR since the quadratic and cubic terms emerge in the
strong gravity regime as discussed above. They cannot be
present at Solar System scales since the only relevant term
in the weak field regime is the linear Ricci scalar R. The
interest of this model, in the present context, is that the
interior of a NS is a natural laboratory where high curvature
regimes can emerge and lead to the M −R relation (see
also the discussion in [20]). In some sense, the interior of a
NS is similar to the conditions of the early Universe.

For this model, Eqs. (6) and (7) take the form

dλ
dr

¼ 4e2λGπrρ
c2½1þ Rαð2þ 3RγÞ þ rαð1þ 3RγÞR0�
þ 1

4r½1þ Rαð2þ 3RγÞ þ rαð1þ 3RγÞR0�
× fe2λ½RαðRðr2 − 6γ þ 2r2RγÞ − 4Þ − 2�
þ 2½1þ 3R2αγ þ 2rαðR0ð2þ 3rγR0Þ þ rR00Þ�
þ 4Rα½1þ 3rγð2R0 þ rR00Þ�g; ð12Þ

and

dw
dr

¼ 4e2λGPπr
½c4ð1þ Rαð2þ 3RγÞ þ rαð1þ 3RγÞR0�
þ 1

4r½1þ Rαð2þ 3RγÞ þ rαð1þ 3RγÞR0�
× e2λ½2þ Rαð4 − Rðr2 − 6γ þ 2r2RγÞÞ�
− 2½1þ Rαð2þ 3RγÞ þ 4rαð1þ 3RγÞR0�; ð13Þ

while the trace Eq. (8) becomes

d2R
dr2

¼ 1

6c4rαð1þ 3RγÞ
× e2λr½c4RðR2αγ − 1Þ þ 8Gπð−3Pþ c2ρÞ�
− 6c4αR0½3rγR0 þ ð1þ 3RγÞð2þ rw0 − rλ0Þ�:

ð14Þ

B. The case f ðRÞ ¼ R1þϵ

Another interesting class is

fðRÞ ¼ R1þϵ; ð15Þ

that are power-law models. If we assume small deviation
with respect to GR, that is jϵj ≪ 1, it is possible to write a
first-order Taylor expansion as

R1þϵ ≃ Rþ ϵR logRþOðϵ2Þ; ð16Þ

which is interesting in order to define the right physical
dimensions of the coupling constant and to control the
magnitude of the corrections with respect to the standard
Einstein gravity. A Lagrangian form like that in Eq. (16)
has been widely tested giving interesting results starting
from the Solar System up to cosmological scales.
Applications have been found in the case of the cosmo-
logical background of gravitational waves [32], or in
comparing the effects of small deviations on the apsidal
motion of a sample of eccentric eclipsing detached binary
stars [33]. Very strong bounds have been worked out from
null and timelike geodesics in case of the Solar System

MASS-RADIUS RELATION FOR NEUTRON STARS IN … PHYSICAL REVIEW D 93, 023501 (2016)

023501-3



[34]. Furthermore, black hole solutions using also the
Noether symmetry approach have been found for this kind
of Lagrangian [35,36]. The interest of these models is
related to the fact that the value of the parameter ϵ can
straightforwardly relate a weak field curvature regime
ðϵ≃ 0Þ to a regime where strong curvature effects start
to become relevant ðϵ ≠ 0Þ. In fact, as shown in [34], the
Solar System constraints give essentially ϵ → 0. This is not
the case for NS where high curvature regimes are very far
from the Solar System weak field limits. In this perspective,
ϵ could be different from zero in NS and then probe
deviations with respect to GR. In this sense, NS could
constitute a formidable test for alternative gravity.
The explicit forms of Eqs. (6) and (7) for the action (16)

take the form

dλ
dr

¼ 8e2λGπrRρ
c2½2Rð1þ εþ ε logRÞ þ rεR0�
þ 1

2rR½2Rð1þ εþ ε logRÞ þ rεR0�
× fe2λR2½r2Rε− 2ð1þ εþ ε logRÞ�
þ 2½R2ð1þ εþ ε logRÞ− r2εR02 þ rRεð2R0 þ rR00Þ�g;

ð17Þ

and

dw
dr

¼ 8e2λGPπrR
c4½2Rð1þ εþ ε logRÞ þ rεR0�
−

1

2r½2Rð1þ εþ ε logRÞ þ rεR0�
× fe2λR½r2Rε − 2ð1þ εþ ε logRÞ�
þ 2½Rð1þ εþ ε logRÞ þ 2rεR0�g; ð18Þ

while the trace equation is given by

d2R
dr2

¼R02

R
þR0

�
λ0−

2

r
−w0

�

−
e2λR½c4Rð1−εÞþ8Gπð3P−c2ρÞþc4Rε logR�

3c4ε
:

ð19Þ

In the framework of these models, let us now discuss the
stellar structure for these models with the aim to achieve the
M −R relation for some physically relevant EoS.

III. THE STELLAR STRUCTURE EQUATIONS

Let us consider dimensionless variables for solving the
system of equations (5)–(8). We set the definitions
x ¼ r=rg, R̂ ¼ Rr2g, p ¼ P=P0, ρ̂ ¼ ρ=ρ0, where
rg ¼ GM⊙=c2, P0 ¼ M⊙c2=r3g and ρ0 ¼ M⊙=r3g, where
rg ¼ 1.48 × 105 cm. By the substitution R0 ¼ q, the trace

equation for R is lowered by an order of derivation, and the
full set of equations is reduced to a system of first-order
ordinary differential equations, which can be expressed as

λ0 ¼ F1ðλ; w; w0; R; q; q0; p; xÞ;
w0 ¼ F2ðλ; λ0; w0; R; q; q0; p; xÞ;
R0 ¼ F3ðq; xÞ;
q0 ¼ F4ðλ; λ0; w; w0; R; q; p; xÞ;
p0 ¼ F5ðw0; p; xÞ: ð20Þ

In such a way, we can deal with the stellar structure
equations under the standard of dynamical systems (see
also [21]).
The requirement of asymptotic flatness for the metric

implies that λ → 0, w → 0, R → 0 for r → ∞. The boun-
dary value problem (BVP) can be reduced to an initial value
problem (IVP) by imposing initial conditions at the star
center x ¼ 0 such that the function asymptotically has the
needed behavior. For the pressure, the condition is simply
pð0Þ ¼ pc, where pc is determined by the chosen EoS once
the central density ρc is fixed. For the remaining functions,
the problems deserve some considerations: first of all, we
notice that the natural initial conditions for λ and the Ricci
scalar are λð0Þ ¼ 0 and R0ð0Þ ¼ 0. On the other hand, it is
worth pointing out that the potential function w appears in
Eqs (5)–(8) only through its first and second derivatives w0
and w00. This means that its initial value wð0Þ can be defined
up to an arbitrary constant. Once the full solution is
obtained, the value of w at the star center can be shifted
a posteriori such that w → 0 asymptotically.
The most critical point for the numerical solutions

concerns the value of the Ricci scalar at the center. In
the classical version of the shooting method, the right initial
value of R0 is given by the root of the function
FðR0Þ ¼ yðR0; xmaxÞ − RbðxmaxÞ, where yðR0; xmaxÞ is
the value of R at the boundary of the domain obtained
with the initial condition R0, while RbðxmaxÞ is the imposed
boundary condition (BC). Once they are provided with an
initial guess for R0, algorithms for root searching, such as
the Newton method for quadratic convergence, give the
initial values, if they are not too far from the solutions.
The implicit assumptions of the shooting method how-

ever are that the function yðR0; xmaxÞ, and in turn FðR0Þ, is
defined for any R0; moreover the classical computation
requires us to determine numerically the derivative dy=dR0

at each iteration.
In our case, this approach has not been possible for two

reasons: first of all, for some initial guess values of R0,
smaller than the right one, the function R at some distance
x > xcrit becomes negative, leading to unphysical solutions
for the system of equations (5)–(8). Additionally, the
numerical computation of the derivative dy=dR0 at xmax
becomes time consuming and strongly ill conditioned,
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depending critically on the choice of the step size for R0.
The latter problem originates because of the diverging
behavior of the negative R-function at values progressively
higher than xcrit.
We thus implemented a different method as follows: we

first define for R0 an initial guess interval Rmin
0 ≈ R0=5 and

Rmax
0 ≈ 5R0, where R0 ¼ 8πðρc − 3pcÞ is the GR value.

Then we use a bisection method over the given interval,
which allows us to get progressively closer to the right
value of R0 through subsequent interval subdivisions. The
iteration stops when a further interval subdivision does not
produce appreciable change at RðxmaxÞ. The needed accu-
racy in the determination of R0 depends on the form of
fðRÞ and its variable parameters. In the case of
fðRÞ ¼ Rþ αR2ð1þ γRÞ, we found that, for all consid-
ered values of α, the fine-tuning needs to be very tight,
independently of the value of γ.
However, the bisection procedure over the initial interval

of R0-values allows us to achieve a precision as high as
desired, which is in fact limited only by the numerical
accuracy of the integration routines. In general, a few tens
of iterations are required leading to the determination of R0

with a precision of order ΔR0=R0 < 10−7. For the
Lagrangian fðRÞ ¼ R1þε, on the other hand, as ε gets
progressively closer to zero, the results become much less
sensitive to R0; namely, R0 ¼ kRGR

0 , with k of the order 2,
gives the same stellar masses and radii. In this case we
considered the value R0 ¼ 1=2ðRmin

0 þ Rmax
0 Þ. The adimen-

sional NS radius is defined by the condition pðxnsÞ ¼ 0; for
x > xns the integration is continued in vacuum for the
metric potentials λ and w, and for the Ricci scalar R.
To check the accuracy of the results, we tested both a

GearM ¼ 2method and fourth-order Runge-Kutta method
with adaptive step size and accuracy control of the
functions during the integration of the set of above differ-
ential equations (see [37] for details); we found no
significative differences between the two methods.
Finally, the gravitational mass is obtained a posteriori
by using a Gauss-Legendre quadrature rule for the integral

Mgrav ¼ ρ0r3g

Z
xns

0

4πx2ρðxÞdx; ð21Þ

where xns is the adimensional NS radius, while ρðxÞ is
obtained by computing the inverse of the function pðρÞ of
the EoS.

IV. RESULTS

As previously mentioned, the stellar structure equations
require us to specify the EoS relating the matter pressure
and density. From a mathematical point of view, the EoS is
the algebraic relation needed to close the system. There is
however an important point to keep in mind that has been
surprisingly little discussed in literature, namely the

maximal density ρc at the center of the star which can
be used in numerical simulations.
Depending on the stiffness of the EoS, the maximum

implementable value of ρc is given by the need to preserve
the physical condition TrðTÞ ¼ ρcc2 − 3Pc > 0 for the
trace equation. In the standard TOV system or in the
perturbative approach, TrðTÞ does not appear explicitly in
the equations of the stellar structure. However in the exact
treatment, TrðTÞ represents the source term in the right-
hand side of the trace equation differential operator [see
Eq. (8)]. Values of ρc violating its positivity lead to
unphysical results. As a consequence, the top-left extension
of the branches of M −R diagrams is limited by the
maximum achievable value of ρc preserving the positivity
of the energy-matter tensor for a given EoS. This limits of
course the possibility to investigate the stability of compact
stellar structures up to arbitrary central density values. In
this paper, we used the analytical representation of EoS
with different stiffnesses as reported in [38–40] (labeled as
BSk19, BSk20 and BSk21) and the SLy EoS reported in
[41]. The maximum allowed central densities in units of
1015 gr=cm3 are ρc ¼ 2, 1.25, 1.35, 1.7 for EoS BSk19,
BSk20, BSk21 and SLy, respectively.

A. Results for f ðRÞ ¼ Rþ αR2

We first considered quadratic fðRÞ gravity as reported in
Eq. (11) with γ ¼ 0 and progressively increasing values of
α. Note that it has to be α < 0 because of the adopted sign
convection of the metric signature [see Eq. (3)]. Adopting
negative α, we are avoiding ghost modes and instability
behaviors [42]. An example of the radial behavior of the
metric potentials λ and w, the Ricci scalar R and the
pressure P is shown in Fig. 1.
The M −R diagrams obtained for the four different

EoSs here considered are instead shown in Fig. 2, together
with the solution of the classical TOV (α ¼ 0).
Independently of the EoS, as jαj increases, the following
behavior can be observed: the masses at lower central
density are higher; then the branch crosses the classical GR
solution and for ρc > ρcritc , MfðRÞ < MGR. The value of ρcritc

depends on the EoS, and it is approximatively 0.6 × 1015 <
ρcritc < 1 × 1015 (Fig. 3). The results reported in Figs. 2 and
3 are obtained for values up to jαj ¼ 20. Further higher
values produce additional counterclockwise rotation of the
M −R traces, until getting a saturation for jαj > 100.
There is an anticorrelation between α and the required value
of the Ricci scalar R0 at the NS center simultaneously
satisfying the asymptotic condition R → 0. This can be
qualitatively understood also looking at the trace of the
field equations in quadratic fðRÞ gravity, which can be
written as

□Rþm2ðRþ χTÞ ¼ 0; ð22Þ
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where m2 ¼ − 1
6α is an effective mass, χ ¼ 8πG

c4 and, in
vacuum, the R-function exponentially decays approxima-
tively as e−mr. The higher the value of jαj, the higher is the
distance at which the Ricci scalar asymptotically goes to
zero. A function obeying the condition R0ð0Þ ¼ 0 and the
asymptotic zero-value condition at large radii needs to be
smaller at r ¼ 0 when the exponential-decay constant m
decreases.

B. Results for f ðRÞ ¼ Rþ αR2ð1þ γRÞ
Let us improve now the above considerations by taking

into account fðRÞ models with a nonzero cubic correction
term with γ ≠ 0 in the Lagrangian (11). It is also evident
that the higher the value of jαj, the higher must be the value
of jγj in order to see appreciable deviations from quadratic
fðRÞ gravity. We discuss here the case jαj ¼ 0.5 as an
example, showing the results in Fig. 4 for the case of a SLy
EoS. For positive and progressively increasing values of γ,
the behavior of the traces in the M −R diagram is similar
to that of the quadratic fðRÞ form at increasing values of
jαj: higher masses and radii below a certain central density
ρc and inversion of the trend above it. These results can be
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understood by keeping in mind the definition of fðRÞ in
Eq. (11), where the cubic term αγR3 is negative for γ > 0
(being α < 0 because of the adopted signature).
Thus, positive γ-values provide a further decrease

of the value of the Lagrangian density fðRÞ in the same
fashion as the quadratic coefficient jαj does. This negative

contribution unavoidably reflects in the M −R relation
both for the quadratic and quadratic plus cubic corrections
in R.
At the opposite, negative γ-values produce a clockwise

rotation of the M −R trace. This can be seen indeed in
Fig. 4 for the case γ ¼ −10. We found however that if from
one side γ can take arbitrarily negative values, this is not
true in the opposite case. For instance, for the case jαj ¼
0.5 and γ ¼ 20, here discussed, we were not able to find
converging solutions matching the required asymptotic
behavior. As outlined above, the critical maximum value
of positive γ-values depends however on the simultaneous
choice of α. As an example, the combination jαj ¼ 5γ ¼ 20

gives rise to a converging solution which is however almost
indistinguishable from the case with γ ¼ 0.
In general, we can say that for each value of jαj, there is a

critical positive value γcrit above which solutions are not
allowed. More specifically, for 0≳ γ ≳ γcrit quadratic and
cubic forms of fðRÞ provide very similar results, while for
γ < 0 it is possible to go beyond values where modifica-
tions of the M −R relation are more evident. In the
perturbative approach both positive and negative values
of γ were considered [20].
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C. Results for f ðRÞ ¼ Rþ ϵR logR

Finally, we report the results for the model given in
Eq. (15). Although the field equations given in Sec. II B are
presented for clarity using the Taylor expansion for fðRÞ of
Eq. (16), it is worth noticing that we actually solved the

stellar structure equations using the exact form
fðRÞ ¼ R1þε. Similarly to Fig. 1, we show, in Fig. 5, an
example of the radial behavior of the functions λ, w, R and
P. The reason why we considered the case ε ≪ 1 can be
better understood by looking at the M −R diagram
presented in Fig. 6. For jεj < 0.01 a significant deviation
is observed with respect to the classical TOV; at first sight,
it is noticeable that the traces in the diagram present a self-
similar behavior for increasing values of jεj. The results of
physical interest (higher masses and radii) are obtained for
ε < 0, while, in the case of positive values of ε, the traces
are blended with respect to the classical TOV solution. Note
that in this case there is no pivoting around some critical
central density, unlike what was found in the case of
the polynomial form of fðRÞ. Actually the resizing of the
action fðRÞ ¼ R1þε reflects in a resizing of the traces in the
M −R diagrams. In the case of EoS BSK20 and BSK21,
NS masses larger than 3M⊙ can be easily achieved; these
values must also be considered as lower limits on the NS
mass, which can be even higher for fast rotating objects.

V. DISCUSSION AND CONCLUSIONS

Neutron stars have a main role in relativistic astrophysics
for several reasons. They are the most stable compact
objects of the Universe (apart from black holes) where
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matter reaches extremely high field regimes. Also, they are
very important in order to understand the final stages of
stellar evolution. It is important to point out that the
extreme field regimes in NS cannot be achieved in any
ground-based lab so they have acquired a crucial role also
in nuclear and particle physics. Due to this feature, under-
standing the EoS working in a NS has a twofold meaning:
from one side, it can give information on the state of matter
in these compact objects; on the other side, it is relevant at
an astrophysical level to understand the global behavior of
stars in the final stages of their life. Also, NSs could be
extremely important to test alternative theories of gravity,
due to the huge gravitational field acting on them.
The aim of this paper is to show that the M −R relation

of NSs can be consistently achieved by extended theories of
gravity as fðRÞ gravity. In particular, we proposed some
physically relevant fðRÞ models and modified the TOV
equations accordingly. In the stellar structure equations,
new terms related to curvature corrections come out and
lead the evolution of the M −R relation. Physically, these
terms assume the role of a sort of curvature pressure
capable of leading the mass and the radius of the star
[20]. Specifically, we reduced the stellar structure equations
to a dynamical system and integrated it numerically putting
in evidence the role of curvature corrections into the
integration. The resulting M −R diagrams strictly depend
on the value of the curvature corrections, the sign of the
correction parameters, and the chosen EoS. We dealt with
these terms as corrections to the GR in order to control
deviations with respect to the standard Einstein theory.
This point deserves a further discussion according to the

numerical results presented in the above figures. Let us
consider first Fig. 2, where the M −R relation is reported
for several values of the parameter α and different EoSs.
The GR value is for α ¼ 0 while α ≠ 0 represents correc-
tions with respect to GR. Clearly the increasing of α in
modulus gives rise to a sort of stretching-blending rotation
of the M −R relation slope around a fixed M −R point
that sits in the intervals ð1–1.2ÞM⊙ and (11–12.5) km. This
means that the magnitude of the gravitational corrections
alters the structure of the NS thanks to the further curvature
pressure-density terms present in the TOV equations (see
also [20]). In some sense, given a EoS, curvature correc-
tions relevantly result in shaping the stellar structure and
determining the M −R relation. Specifically, the stretch-
ing-blending rotation depends on the effective pressure
related to the curvature corrections in Eq. (6) and, in
particular in Eq. (12). Increasing the parameter α means
that the original M −R relation of GR is affected by a
further pressure term that modifies the effective mass of the
star and consequently its radius. However, also the effective
density results are modified by the curvature corrections.
Then the net effect is the stretching-blending rotation
around M and R values where curvature corrections are
not so relevant (see Fig. 2). It is important to stress again

that the stretching-bending effect is due to the curvature
corrections and not to the change of the standard mat-
ter EoS.
Similar considerations hold also for theM − ρc diagrams

(Fig. 3) where the total mass of the NS is given as a function
of the central density ρc. Also in this case we have a
stretching-blending rotation around given values of mass
and density (GR values) depending on the absolute value of
α. If we also insert the cubic correction, led by the
parameter γ, the trend is similar (see Fig. 4).
The case of R1þϵ gravity is totally different. In this case,

as we can see from Fig. 6, different values of the parameter ϵ
scale the M −R relation so that larger stable structures, in
terms ofmass and radius, are achieved also if slight variation
with respect to the value ϵ ¼ 0 is considered. This fact could
be extremely relevant in order to address extremely massive
NSs as revealed by some observations [20]. Specifically,
while for the quadratic and cubic models, the M −R
relation is only modified (stretching-blending rotation) just
changing the stability region of NS with respect to GR, here
the curvature pressure and density give rise to a scaling law.
This is quite obvious due to theR1þϵ model, but the physical
consequences are relevant since extremely massive and
large objects can be achieved, as one can see from Fig. 6. In
such a case, the breaking of GR behavior, related to ϵ ≠ 0,
gives rise to a new stability branch for NS allowing extreme
objects. We stress again that this phenomenon is strictly
related only to the effective curvature quantities and not to
the change of the standard matter EoS.
It is important to stress that we never used exotic matter

but only realistic EoSs. This point is crucial since we
adopted always the Jordan frame so that the gravity sector
results were corrected while the matter sector was unaf-
fected. In such a way, the geodesic structure was not altered
and standard EoS can be assumed. On the contrary, if we
were adopting the Einstein frame, we would have the
standard gravity sector but a nonminimal matter sector. In
such a case, geodesic structure results were altered and it
could be dangerous to adopt a standard EoS. In other
words, as it is shown in detail in [43], the conformal
transformations have the effect of shifting the nonminimal
coupling [in our case f0ðRÞ−1] from the gravitational to the
matter sector and then the meaning of quantities like
gravitational potentials, pressure, matter density and mass
results are more complicated and have to be accurately
discussed. In summary, we develop our calculations in the
Jordan frame considering it as the “physical” frame and
avoiding the ambiguities that could emerge in the Einstein
frame (see, for example, [44,45]). The same approach is
adopted also in [46,47].
As an example of these considerations, we can see that,

qualitatively, the behavior of the traces in the M −R
diagrams with respect to GR is the opposite with respect
to that reported by [48] for the same form fðRÞ ¼ Rþ αR2

(see our Fig. 2 and Figs. 1 and 2 in [48]). The only
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possibility to explain these crucial differences relies on
the fact that computations in [48] were performed in the
Einstein frame, while in our paper we work in the Jordan
frame. The only way to compare exactly the results is to
compare the behavior of the M −R diagram under
conformal transformations assuming the same EoS. This
will be the topic of the next project. Finally, the results of
this work will be extended to magnetic as well as rotating
neutron stars.
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APPENDIX: ANALYTICAL REPRESENTATIONS
OF EQUATIONS OF STATE

Here we report the functional form of the EoSs that we
used in the paper to solve numerically the stellar structure
equations. The pressure can be parametrized as a function
of density. Let us denote with ξ ¼ logðρ=g cm−3Þ the
dimensionless density and with ζ ¼ logðP=dyn cm−2Þ
the dimensionless pressure. We used the SLy equation as
reported in [49] for nonrotating NS configurations. It is

ζ ¼ a1 þ a2ξþ a3ξ3

1þ a4ξ
f0ða5ðξ − a6ÞÞ

þ ða7 þ a8ξÞf0ða9ða10 − ξÞÞ
þ ða11 þ a12ξÞf0ða13ða14 − ξÞÞ
þ ða15 þ a16ξÞf0ða17ða18 − ξÞÞ; ðA1Þ

where the parameters ai for SLy EoSs are given in Table I.
For BSk19, BSk20 and BSk21, following [38], we

adopted the analytical form

ζ ¼ a1 þ a2ξþ a3ξ3

1þ a4ξ
fexp ½a5ðξ − a6Þ� þ 1g−1

þ ða7 þ a8ξÞfexp ½a9ða6 − ξÞ� þ 1g−1
þ ða10 þ a11ξÞfexp ½a12ða13 − ξÞ� þ 1g−1
þ ða14 þ a15ξÞfexp ½a16ða17 − ξÞ� þ 1g−1

þ a18
1þ ½a19ðξ − a20Þ�2

þ a21
1þ ½a22ðξ − a23Þ�2

: ðA2Þ

The values of parameters ai are given in Table II.

TABLE II. Numerical values of ai parameters for Eq. (A2).

ai

i BSk19 BSk20 BSk21

1 3.916 4.078 4.857

2 7.701 7.587 6.981

3 0.00858 0.00839 0.00706

4 0.22114 0.21695 0.19351

5 3.269 3.614 4.085

6 11.964 11.942 12.065

7 13.349 13.751 10.521

8 1.3683 1.3373 1.5905

9 3.254 3.606 4.104

10 −12.953 −22.996 −28.726
11 0.9237 1.6229 2.0845

12 6.20 4.88 4.89

13 14.383 14.274 14.302

14 16.693 23.560 22.881

15 −1.0514 −1.5564 −1.7690
16 2.486 2.095 0.989

17 15.362 15.294 15.313

18 0.085 0.084 0.091

19 6.23 6.36 4.68

20 11.68 11.67 11.65

21 −0.029 −0.042 −0.086
22 20.1 14.8 10.0

23 14.19 14.18 14.15

TABLE I. Values of aiðSLyÞ parameters for Eq. (A1).

i aiðSLyÞ i aiðSLyÞ
1 6.22 10 11.4950

2 6.121 11 −22.775
3 0.005925 12 1.5707

4 0.16326 13 4.3

5 6.48 14 14.08

6 11.4971 15 27.80

7 19.105 16 −1.653
8 0.8938 17 1.50

9 6.54 18 14.67
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