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Abstract. This lecture is an introduction to cosmological tests with clusters of
galaxies. Here, I do not intend to provide a complete review of the subject, but
rather to describe the basic procedures to set up the fitting machinery to constrain
cosmological parameters from clusters, and to show how to handle data with a
critical insight. I will focus mainly on the properties of X–ray clusters of galaxies,
showing their success as cosmological tools, to end up discussing the complex ther-
modynamics of the diffuse intracluster medium and its impact on the cosmological
tests.

5.1 Introduction

This lecture concerns a classic topic of observational and theoretical astro-
physics: investigating the global properties of the Universe by looking at its
large scale structure. In particular, we are interested in using our knowledge
on the physical properties of clusters of galaxies and their distribution with
mass and cosmic epoch to put constraints on the cosmological parameters,
namely the matter density parameter Ω0 and the dark energy component
(parameter w or, in the simplest case w = −1, the cosmological constant Λ).
Our journey will be a round trip: starting from a simple theoretical approach,
we will build a powerful tool to interpret the data and measure the cosmolog-
ical parameters, but then, we will be forced to go back to theory for a more
complex approach to the physics of clusters of galaxies.

The theoretical starting point (Sect. §5.1) provides a reasonable frame-
work to understand the formation and evolution of clusters, which are the
most massive bound and quasi–relaxed objects in the Universe, in a cosmo-
logical context. The observational part (Sect. §5.2) will focus mostly on X–ray
observations, which offered the most important observational window for this
kind of test for the last 15 years. As often happens in astrophysics, we will
find that the increasing quality of the data sheds light on a situation much
more complex than previously thought. The most recent data, collected in
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the last five years by the Chandra and XMM–Newton satellites, calls for a
much deeper understanding of the physics of baryons in clusters of galaxies,
forcing us to reconsider the basic physical ingredients to make a more robust
connection between clusters and cosmology (Sect. §5.3). This effort is worth,
since clusters are an invaluable tool for cosmology, and they can significantly
constrain the cosmological parameters in a way which is complementary to the
other classic cosmological tests (the Cosmic Microwave Background, hereafter
CMB, and Type Ia Supernovae, SneIa).

5.2 Clusters of Galaxies in a Cosmological Context

5.2.1 What is a Cluster of Galaxies

We start with a simple definition of what is a cluster of galaxies. The simplest
approach is to identify a cluster as an overdensity in the projected distribution
of galaxies in an optical image. The first catalog was indeed a compilation of
galaxy concentrations found by eye in optical images [1]. Today, the quality of
optical images, especially that from the Hubble Space Telescope, are such that
bright (or, in terms of galaxies, rich) clusters of galaxies are among the most
spectacular objects of the extragalactic sky. In Fig. 5.1, first panel, we show an
optical image of Abell 1689, a massive cluster at redshift z = 0.18. The bright,
yellowish galaxies are the massive ellipticals which typically populate the inner
part of rich clusters. In this image it is also possible to see background galaxies
distorted by gravitational lensing.

However, the stars in the cluster galaxies, visible in the optical light, are not
at all the dominant mass component. The X–ray image of Abell 1689 obtained
with the Chandra satellite (second panel of Fig. 5.1) shows the distribution of
hot gas, which is the dominant baryonic component. The total mass, anyway,
is dominated by the non–baryonic component called dark matter (see the
reconstructed distribution in the third panel). To review the properties and
the hypothesis on the nature of the dark matter see [29]. Here we need to know
only that dark matter is collisionless and that it dominates gravitationally
large objects like groups and clusters of galaxies.

To be more quantitative, the composition of a cluster of galaxies is roughly
as follows: 80% of the mass is in dark matter; 17% in hot diffuse baryons,
the so–called IntraCluster Medium (ICM); 3% in the form of cooled baryons,
meaning stars or cold gas. The total mass of clusters ranges from few×1013M�
(small groups) to more than 1015M�. While the baryonic components can be
directly observed (mainly in the optical, infrared and near infrared bands
for the stars and in the X–ray band for the ICM), the dark matter can be
measured only through the effect of gravitational lensing on the background
galaxies or by other dynamical properties of clusters. Needless to say, the total
mass of a cluster is the fundamental quantity we need to know. A useful defi-
nition of the dynamical mass of a cluster will be given after briefly discussing
the physics of gravitational collapse.
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Fig. 5.1. The rich cluster of galaxies Abell 1689 (z = 0.18). The three images show
the three main components in terms of mass. In order of increasing mass fraction,
from left to right: an optical image (stars) taken with the Hubble Space Telescope
(credits ACS Science Team, ESA NASA); an X–ray image taken with Chandra
(showing the diffuse Intra Cluster Medium); the dark matter map reconstructed
from lensing (after [9])

5.2.2 The Linear Theory of Gravitational Collapse

Clusters form through gravitational collapse, which is driven by dark matter.
This is strongly simplifying our problem, since the dark matter, whatever
it is, must behave as a collisionless fluid, and therefore it is not affected by
dissipative processes, unlike the baryons, which are pressure supported, and
experience radiative cooling. Since we are interested in the total mass, we can
neglect, on a first instance, the physical processes affecting only the baryons.

To describe the evolution of a collisionless fluid under its own gravity, we
can use the Eulerian equations of motion describing a perfect fluid assuming
spherical symmetry (continuity, Euler and Poisson equations, see [21]:

∂ρ

∂t
+ ∇ • (ρv) = 0 (5.1)

∂v

∂t
+ (v •∇)v +

1
ρ
∇p + ∇φ = 0 (5.2)

∇2φ = 4πGρ , (5.3)

where ρ is the density field, v is the velocity field, p is the pressure and φ is the
gravitational potential generated by the density field itself. We are interested
in how the density evolves with time. First, we consider small positive density
perturbations with respect to a uniform and static background with density
ρ0, so that we can easily linearize the system of equations. We define our
interesting variable as the overdensity δ ≡ (ρ − ρ0)/ρ0, and assume that the
unperturbed solution is a static background, ρ = ρ0 = const1. We just need a
little algebra to linearize the equations and derive the solution for the density
1 This is not correct since the Poisson equation is not satisfied; however this as-

sumption, called the Jeans swindle, leads to correct consequences.
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contrast in terms if its linear components δk = A exp[−ikr + iωt]. After
defining the sound speed as v2

s ≡ (∂p∂ρ )adiabatic, the solution can be written as
follows:

δ̈k = (4πGρ0 − v2
sk

2)δk , (5.4)

or, in a very familiar way, δ̈ = −ω2δ. The solution is therefore an harmonic
oscillator with dispersion relation ω2 = v2

sk
2−4πGρ0. Note that for dark mat-

ter, vs is substituted by the velocity dispersion of the collisionsless particles
v∗. When ω2 is negative, the solution behaves exponentially. This qualitative
result is largely expected in this extremely simplified situation: in a static
background, the gravitational force is proportional to the overdensity itself,
and the gravitational instability evolves rapidly. The dispersion relation de-
fines a length scale ∼ 1/k for which the perturbation is unstable.

However, we are interested in the realistic solution in an expanding back-
ground. This can be obtained by substituting a varying background density
ρ0 = ρ0(t0)R−3(t) in the equations, where R(t) is the scale factor satisfying
the usual Friedmann equation. The expansion of the Universe is conveniently
expressed trough the fractional growth of R(t) which is the Hubble function
H(t) = Ṙ/R. The solution of the linearized problem satisfies:

δ̈k + 2
Ṙ

R
δ̇k +

(
v2
sk

2 − 4πGρ0

)
δk = 0 . (5.5)

The additional term 2 ṘR δ̇k changes considerably the qualitative behaviour of
the solution, depending on the behaviour of R(t). To show a specific example,
we adopt R ∝ t2/3, or Ṙ/R = (2/3)(t/t0)−1, appropriate for an Einstein–de–
Sitter Universe (EdS, Ω0 = 1), to find:

δ̈k +
4
3t

δ̇k −
2

3t2
δk = 0 (5.6)

(note that here we assumed a negligible vs or v∗ as appropriate for Cold Dark
Matter). The growing mode solution is δ+(t) = δ+(ti)(t/ti)2/3. Therefore, in
an EdS Universe, we have the remarkably simple result that the linear growth
of a density perturbation is proportional to the expansion factor (1 + z). One
may wonder why we show the solution for Ω0 = 1, while we are here in this
School to learn that dark energy is the dominant component in the Universe,
while the matter component is Ω0 ≤ 0.3. The fact is that the case for Ω0 = 1
gives simple analytical solutions, an occurrence that contributed substantially
to the success of the EdS Universe until the early 90s, when observational
evidences started to point towards a low matter density, making room for the
debout of dark energy.

More in general, we find that the fastest is the expansion, the slowest is
the linear growth of perturbations. The link between the expansion rate of
the Universe and the rate of collapse of density perturbations is strongest
at the largest scales. This is because large–scale perturbations are the last
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to leave the linear phase, while smaller scales (the one from which galaxies
form, e.g.), collapsed earlier. This, in turn, is a consequence of the shape of
the primordial spectrum of the density perturbations, and it is true in any
cold dark matter (CDM) dominated Universe. We will discuss this aspect in
greater detail later.

5.2.3 Non Linear Evolution of Density Perturbations
and Virialization

Now we have a simple framework which allows us to compute the linear phase
of collapse of a spherical density perturbations in an expanding universe.
However, our final goal is to describe clusters of galaxies, which are definitely
non linear (and non–spherical, but spherical symmetry is too convenient to
be dropped!). In addition, we need to define accurately the total dynamical
mass of a relaxed object. Should we abandon the simple linear treatment to
look for a more complex and computationally heavier approach? Luckily for
us, we can define a relaxed object in terms of the same parameters entering
the linear theory, as shown in the following pages.

Thanks to the Birkhoff theorem, we can ignore what is outside a pertur-
bation, and we can describe a uniform spherical (top–hat) perturbation like a
sub–universe with a density larger than the critical one Ω ≥ 1. Such a universe
would expand and recollapse in a finite time. If we consider a spherical shell
encompassing the overdensity, we can use the Friedmann–Robertson Walker
(FRW) model for the evolution of each shell in a parametric form:

R =
GM

2E0

(
1− cos(η)

)
, t =

GM

(2E0)3/2
(
η − sin(η)

)
. (5.7)

The maximum of the expansion radius defines the turn–around time, which
is the epoch when the shell starts to collapse, after decoupling from the cosmic
expansion. Due to the symmetry of the solution, the time of collapse is twice
the turn–around time. In our spherical approximation, the collapse ends into a
singularity. What is actually happening to a real, non–spherical perturbation,
is that the different shells cross each other and start oscillating across the
center. However, we can bravely assume that, by that time, the perturbation
(meaning all the mass included in the outermost spherical shell) is evolved
into a spherical, self–gravitating virialized halo.

A virialized halo is a region of space where matter is gravitationally bound,
and where a statistical equilibrium between the potential and the kinetic
energy is established. Every mass component participates to the equilibrium:
both the diffuse, ionized gas, the galaxies, and the dark matter particles,
have random velocities described by a maxwellian distribution with the same
temperature. The virialization condition in its simplest form reads 2T+U = 0,
where T = Mtot〈v2〉/2 is the average kinetic energy per particle, and U =
−GM2

tot/Rc is the average potential energy. Energy conservation argument
fix the relation between mass and the characteristic radius Rc of the halo,
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so that the virial theorem effectively establish a one–to–one correspondence
between the total dynamical mass and the virial temperature.

Going back to the linear solution, how can we describe the formation of
virialized halos in terms of the linear solutions? From Fig. 5.2, we learn that
virialization is flagged by the recollapse of the outermost shell. The value of
the linear δ at the time of collapse depends on the cosmic expansion rate, and
therefore on the cosmological parameters. Thus, the linear value of the over-
density can be used as a flag for collapse, providing a simple and convenient
criterion to decide when a perturbation is virialized.

If we assume that the radius of the virialized halo is about half of the radius
of maximum expansion, the reader should be able to derive the actual average
density contrast within the virialized halo with respect to the ambient density,
as well as the linear value of the density contrast at the time of collapse. This
can be left as a useful exercise, in the simple case of an EdS universe (see
[28] for the solution and much more on cosmic structure formation). It turns
out that the linear threshold for collapse in an EdS universe is δc0 = 1.686,
while the actual density contrast of a virialized halo is Δvir = 178. These
numbers, particularly the linear threshold, generalized for different choices
of the cosmological parameters, will be relevant for the following analysis.
One may wonder how few magic numbers can describe a plethora of complex
physical processes. However, as we will see, these numbers allow us to make
several predictions, whose reliability is supported by numerical experiments.
We have many reasons to proceed confidently.

R

Rmax

Rvir

fturn 2fturn f

Fig. 5.2. The evolution with time of a top–hat perturbation. The upper curve
is the expansion of the exterior mass shell, while the closed curve is the solution
which behaves like a closed FRW model. The wavy curve is the radius of a realistic
perturbation which bounces back and virializes after few oscillations (from [28])
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5.2.4 Clusters of Galaxies Reflect the Expansion Rate
of the Universe

As we saw, the expansion rate of the Universe, entering (5.5), affects the evo-
lution of the linear perturbations. It follows that the growth of a perturbation
is slower when the expansion is faster. The Hubble parameter in its general
form writes H(z) = H0[Ω0(1+z)3+Ωk(1+z)2+ΩΛ(1+z)3+3w]1/2, where w is
the ratio between the pressure and the energy density in the equation of state
of the dark energy component [10]. The special case w = p/ρ = const = −1
corresponds to the quantum vacuum energy, aka the cosmological constant.
We find that in a low density Universe the expansion is faster than in the
EdS case, so we expect that clusters form much later for the same initial
conditions. We have a situation more similar to a low density Universe in
the case of a flat Universe with cosmological constant. This last case is the
favorite choice, since today many observational evidences tell us that the
Universe is accelerating (as shown in several lectures at this School), and
in the context of general relativity, this can be explained by the presence of
dark energy.

Therefore, if we set the initial conditions and the cosmological parameters,
we can predict the redshift when virialized halos of a given mass are expected
to form. At this point we can reverse the problem: given a measure of the
initial conditions (the fluctuations in the CMB are providing them at a redshift
z ∼ 1500) and after counting clusters of galaxies at each redshift, we can infer
the expansion rate of the Universe and therefore the cosmological parameters.
Clusters are much more useful for this kind of test than, e.g. galaxies, since
they are the largest virialized structure in the universe, therefore the closest
to the initial linear spectrum of density perturbations and most affected by
the expansion rate.

To play this game, obviously we should not focus on single objects, rather
we should measure the evolution of the number density of clusters with the
cosmic epoch and their distribution with mass. Let’s see this in detail.

5.2.5 Where Cosmological Parameters Enter the Game

We are interested in the statistical properties of the initial conditions, in other
words, to the average value of δ on a given scale. Since the majority of in-
flationary models predict that the fluctuations in the density field ρ should
be Gaussian, we need to know only its variance. To define operationally the
variance on a given scale, we can imagine to smooth the linear field by mea-
suring the overdensity around each point in space within a sphere of radius R
(the top–hat filter function). Since the density field is linear, a spatial scale
is related to a mass scale simply by M = (4π/3)ρ0R

3 where ρ0 is the aver-
age density. If we express the fluctuations field in terms of its Fourier power
spectrum P (k), the variance reads:
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σ2(M) =
1

8π3

∫
W 2(kR)P (k)d3k , (5.8)

where W (kR) is the filter function in the Fourier space. The filter function
corresponding to a top–hat in real space is oscillating due to the sharp edges
(see [28, 29]). Since every mode grows independently from each other in the
linear regime, we expect that 〈δ〉 is proportional to the linear growth factor
D(t). If we call δc the critical value corresponding to the collapse, the epoch
of collapse of an overdensity of a mass M is implicitly defined by the relation:

σ(M)D(zcoll) = δc . (5.9)

The linear growth factor D(z), which we know since it is the solution of (5.5),
can be written in a generic cosmology as follows (see [36]):

D(z) =
5
2
Ω0E(z)

∫ ∞

z

1 + z′

E(z′)3
dz′ , (5.10)

where E(z) ≡ H(z)/H0. In the general case it is not possible to invert analyt-
ically (5.9). Again, since we are still in the theoretical mood, we can assume
the EdS case and enjoy its analytical formulae (as you see, simplicity some-
times attracts theoreticians against any evidence!). Another useful step is to
approximate the linear spectrum of the density perturbations with a power
law, P (k) ∝ kn with n � −1;−2. In this case, from 2(40), σ(M) ∝M−a with
a = (n + 3)/6 > 0. Since the linear growth is D(t) = (t/t0)2/3 = 1/(1 + z),
we easily can invert the condition D(t)σ(M) = δc to obtain the typical mass
which is collapsing at a given epoch:

Mc(t) = Mc0(t/t0)
4

n+3 . (5.11)

Here we meet a fundamental property of any model based on CDM: the hier-
archical clustering. For any σ(M) which is decreasing with mass (which implies
a > 0, or n > −3), more massive objects form at later times. The hierarchical
clustering, i.e. the progressive assembling of larger and larger structures with
cosmic time, is the direct consequence of this property. Actually, the preferred
choice is the spectrum for adiabatic fluctuations in a CDM universe, and it is
the result of a detailed computation involving fluid equations for relativistic
and non–relativistic components in an expanding universe (see the software
CMBFAST, http://cmbfast.org/, by U. Seljak and M. Zaldarriaga). Unsur-
prisingly, a realistic CDM spectrum is not as simple as a power law. The
resulting σ(M) shows a varying slope as shown in Fig. 5.3.

Before ending this section, we remark that few years ago, the hierarchical
clustering hypothesis was not so radicated into cosmological models. Imagine
that we have a kind of dark matter which has no power at all at small scales.
From 2(40), it is easy to see that σ(M) = const below some threshold M <
Mth. As a consequence, all the scales with M < Mth collapse at the same
time. If Mth is large enough, let’s say the scale of a cluster of galaxies, then
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Fig. 5.3. The typical value of the linear fluctuations σ(R) predicted for an Ω0 = 0.3,
ΩΛ = 0.7 Universe compared with the values obtained from observations on different
scales (from Tegmark 2002 [53]. See lectures by W. Percival for constraints from
SDSS, and by R. Caldwell for constraints from the CMB)

clusters form at the same time or even before galaxies. This is the situation we
have when we consider light particles like massive neutrinos as candidates for
dark matter. Now we know that neutrinos give a negligible contribution to the
density of the Universe (see [31]). Given the success of the CDM spectrum in
reproducing observations on several scales (as shown in Fig. 5.3) the common
wisdom is that cosmic structures follow hierarchical clustering, at least as far
as dark matter is concerned (but beware of the baryons!2).

5.2.6 The Mass Function

Now we can predict the typical mass scale which is virializing at a given
redshift. Is this enough to efficiently constrain the cosmological parameters?
2 As a further complication, there are now strong hints that massive galaxies form

earlier than smaller ones, and bright quasars peaks earlier than weaker AGN. This
anti–hierarchical behaviour of the stellar mass component and nuclear activity
could, in principle, be reconciled with the hierarchical clustering of dark matter
halos. But this is a debated issue, known as the hierarchical versus monolithical
controversy. People use to get very aggressive on this topic.
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Not yet: we can work out much better observables which will allow us to
perform efficient cosmological tests. The important step we have to take now
is to derive the mass function. To do that, first we must write the probability
distribution of the fluctuations δ, which we already assumed to be a Gaussian
with dispersion σ:

P (δ) =
1√
2πσ

exp{1
2
δ2/σ2} . (5.12)

Since we are dealing with a linear field, it seems safe to say that the fraction of
mass which is in regions with overdensity larger than a given δ, is equal to the
fraction of volume that, filtered with our top–hat filter of size R, is overdense
above the same threshold. This fraction is simply the integral of the Gaussian
from the overdensity threshold up to infinity. If we set δc(z) = δc0×D(0)/D(z),
we obtain the fraction of mass which is in virialized halos at a given epoch z.
This condition reads:

N(M)MdM =
∫ ∞

δc(z)

P (δ, σ(M))dδ , (5.13)

where N(M) is the number density of virialized halos in the mass range M
and M + dM . Then we can obtain an expression for N(M) simply deriving
the integral on the right hand side with respect to mass:

N(M) =
ρ

M

d

dM

∫ ∞

δc(z)

P (δ, σ(M)) . (5.14)

Our tidy theoretical attitude is rewarded again: the solution is analytic. Leav-
ing the mathematics to the reader, we write the final, famous result, the [42]
(PS) mass function (1974):

N(M) dM =

√
2
π

ρ

M

δc(z)
σ2

dσ

dM
exp

(
− δc(z)2

2σ2

)
dM . (5.15)

Its typical shape is characterized by a power law at low masses, and an
exponential cutoff at large masses. Given its simplicity, its success is often
referred as the Press & Schechter miracle.

5.2.7 Is the Press & Schechter Approach Accurate Enough?

Unfortunately miracles are not allowed in science. You may think that this
approach is just a didactical exercise to understand the basic concepts, while
cosmologists actually use terribly complicated formulae or awfully long numer-
ical computations for the mass function. Well, the truth is that this formula
is still at the core of the majority of the works deriving cosmological parame-
ters from clusters of galaxies. Indeed, many numerical experiments (N–body
simulations) actually support the validity of the PS approach. Clearly, some
differences with respect to the original PS approach were found. Discrepancies
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are mostly due to the many non linear effects which are not included in the
PS formalism. A recent example of a comparison between N–body and the PS
formula is shown in Fig. 5.4. We note that the PS formula tends to underesti-
mate the number density of halos at very high redshift. However, if we consider
that clusters are observed today up to redshifts slightly above 1, we have to
admire the remarkable similarity with the results from the time–expensive,
brute–force approach of N–body simulations.

To improve the PS model, some empirical fitting formulae were proposed
on the basis on N–body simulations [26]. However, this approach is heavy,
because in principle it requires a new simulation every time the cosmological
parameters are varied. The PS mass function has the great advantage that
the cosmological parameters space can be explored rapidly. Finally, I just
mention here that the PS formalism can be extended to give complete merger
histories of single halos [30], conditional probability function of progenitor
halos [8], biased distribution of halos within halos [35], all topics we do not
explore here, but that proved to be very useful in interpreting data. As a final
comment, the PS approach after more of 30 years, is still extensively used
in the large majority of the papers on precision cosmology with clusters of
galaxies.

5.2.8 From the Mass Function to the Distribution of Observables

Let’s take a closer look to the behaviour of the mass function. We identify
two sets of ingredients: the initial conditions (normalization and shape of the
power spectrum) entering σ(M), and the cosmological parameters (Ω0, ΩΛ, w)
entering δc(z) and the overall normalization of the mass function. As you can

M  [ h–1 M  ]

10–1

10–2

10–3

10–4

10–5

1010 1011 1012 1013 1014 1015 1016

M
 2 /ρ

 d
n/

dM

z = 10.07

z =  5.72

z =  3.06

z =  1.50

z =  0.00

Fig. 5.4. The Press & Schechter mass function (dotted lines) tested against N–body
simulations (dots and solid lines, from [50])
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easily see, the exponential cut off at the massive end is where the function
is most sensible at both sets of parameters, through the normalization of the
power spectrum (expressed conventionally as σ8, which is the amplitude of
the spectrum at the scale of 8h−1 Mpc), and the linear growth factor. We can
now see in much more detailed terms the behaviour we already appreciated
qualitatively: the evolution of cosmic structures is slower in a universe with
lower density with respect to and EdS universe; the same for a Λ–dominated,
flat universe. In quintessence models, for higher values of the parameter w,
the growth ceases earlier. If we normalize our mass function in order to have
the same local density of clusters today, the evolution with z appears faster
for Ω0 = 1 than for open or Λ–dominated universes. This is shown visually by
the N–body simulation in Fig. 5.5 (upper panel). Quantitatively, the expected

Fig. 5.5. Top: clusters of galaxies (circles) in an N–body simulation for an EdS
universe (bottom panels) compared with clusters in an open FRW universe, with
statistically equivalent conditions at z = 0. The evolution backward in time of
the mass function is strikingly different [6]. Bottom: the evolution of the number
density of clusters with virial mass M > 5× 1014h−1M� for different choices of the
cosmological parameters [45]
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evolution of the number density of massive clusters (with virial mass M >
5×1014h−1M�) is also shown in Fig. 5.5 (lower panel). Now our observational
side can take over, and note that, after all, an EdS universe is not more
appealing than a low density one since, after all, in the last case we expect
much more clusters at high redshifts. And observers love to find high–redshift
objects.

We are almost ready to handle real data, except for a final, small step,
which consists in a simple change of variables. As you know, in most cases we
do not measure directly the virial mass. What an astronomer typically mea-
sures is the emitted light in a given band. In our case, as we will see shortly,
we will focus on measuring the total luminosity L in the X–ray band and the
virial temperature T of the diffuse gas. Therefore, we prefer to have a predic-
tion for the luminosity or the temperature function. This is straightforward
if we have a relation M–L or M–T . We know, from the virial theorem, that
these relations can be obtained from our spherical collapse model. Once we
have the relationships between the observables and the mass, we can write
the luminosity (XLF) and the temperature (XTF) functions as:

Φ(L)dL = N(M)
dM

dL
dL , Φ(T )dT = N(M)

dM

dT
dT . (5.16)

Enough theory.

5.3 From Observations to Cosmological Parameters

5.3.1 The Observer’s Mood

We can start the second part of this lecture, where we will encounter different
kind of problems. We are about to look at data, therefore we will face reality,
which is always somewhat shocking when coming from the ideal, linear and
spherical world of theory.

As we already know, we need a good measure of the actual number density
of clusters of galaxies as a function of mass and redshift. We also know that
we will get the luminosity or, in the best case, the temperature function of
clusters. This implies that we need to be able to: find clusters, measure with
high accuracy the quantity of interest, and define the completeness of our
survey. Completeness is a key quantity in observational cosmology. A well
defined completeness means that, for the solid angle of the sky covered by our
survey, we are able to detect all the objects with luminosity (or temperature,
or mass) above a given value and within a given redshift. This is mandatory
to compute the volume we actually explore in the survey and, therefore, the
comoving number density. Needless to say, a survey with few objects but a
well defined completeness is way much better than a survey with hundreds of
objects but a poorly defined completeness. Therefore, we need a strategy to
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find as many clusters as possible with a well defined completeness. Which is
the best observational window to do that? Let’s start examining some options.

5.3.2 Optical Band

Searching for clusters in optical images is basically counting galaxies and
looking for overdensities with respect to the background value (see [20] for a
review). In doing this, the optical colors of the member galaxies are a very
useful information. Passive, red galaxies preferentially populate the central
regions of clusters, and they form a well defined color–magnitude relation. A
galaxy selection picking the reddest galaxies in the field, helps in reducing
the contamination by the field galaxies. These techniques can give efficient
clusters detection out to z ≥ 1 (see [22]).

Optical surveys are very convenient to find many cluster candidates. We
remind that clusters are rare objects (especially the massive ones) and there-
fore we need to survey large area to find many of them. The optical band
offers the opportunity to cover wide area with large CCD frames, coupled
to the availability of ground–based telescopes with large field of view. How-
ever optical observations have the drawback of a difficult calibration of the
selection function, and therefore the completeness of an optical survey of
clusters is very hard to define. This is because the detectability of a cluster
depends on the luminosity, the number, and the concentration of its galaxies,
three aspects that can vary from cluster to cluster. In addition, projection
effects cause severe contamination from background and foreground galaxies:
filamentary structures and small groups along the line of sight can mimic a
rich cluster. For the same reason, in the presence of a positive fluctuations of
the background galaxies, moderately rich cluster can be missed.

More troubles when we try to relate the optical light to the total mass. The
total optical luminosity of a cluster is somehow proportional to the total mass.
But we know that the stellar mass in the galaxies represents a tiny fraction
of the total, and usually only the brightest galaxies are detected, so that a
lot of stars in small, undetected galaxies must be accounted for, by assuming
a model for the galaxy luminosity function. So, we should not be surprised
to know that the relation between the total optical luminosity of a cluster
and its total mass is very loose. In order to obtain an accurate measure of
the mass, we may use optical spectroscopy to measure the velocity dispersion
of the galaxies and then apply the virial theorem. However, this requires a
lot of observing time, and obviously it is still affected by contamination from
interlopers. All these problems become more severe at high redshift, as the field
galaxy population overwhelms galaxy overdensities associated with clusters. A
completely different technique is to measure the mass directly through strong
and weak lensing (see, e.g. [13]). This is a very promising tool, but it has its
own problems, like severe projections effects (the lensing depends on all the
mass along the line of sight towards the clusters and on its position) and the
difficulty to obtain clean lensing signal.
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5.3.3 Millimetric Band (SZ effect)

Among the many virtues of clusters of galaxies, there is this peculiar fea-
ture: clusters can be seen as shadows on the cosmic background radia-
tion. This is due to the Sunyaev–Zeldovich (SZ) effect [51]. We know that
most of the baryons in clusters are in the form of very hot, ionized gas.
Photons from the CMB passing through a cluster find many high–speed
electrons and therefore experience Inverse–Compton scattering. In this pro-
cess, the energy is transferred from the electrons to the much colder CMB
photons. Since this process preserves the number of photons, the net re-
sult is that the black–body spectrum of the CMB is slightly distorted and
shifted to larger frequencies by an amount that depends on the tempera-
ture, and on the column density of the ICM. The net effect on the CMB
is the production of a cold spot at low and a hot spot at high frequen-
cies, where the pivotal frequency is about 217 GHz (see [24]). This sounds
very promising, since we have both a spatial and a spectral signature. Ac-
tually, several clusters have been imaged with the OVRO and BIMA ar-
rays [11]. Indeed, the scientific community is making a strong effort to
build instruments that can study both CMB and the SZ effect from the
ground (like AMI, ACT, AMiBA, APEX, SPT), or from space (like the
Planck satellite, whose full–sky survey is expected to detect thousands of
clusters).

Among the positive aspects of SZ observations, we find the absence of
the redshift dimming, which allows one to identify clusters virtually at any
redshift. This means that the selection criteria are essentially equivalent to a
completeness in mass, which is very desirable. However, severe contamination
from foreground and background radio sources is expected. Multi–frequency
observations can help a lot in disentangling the spectral signature of the SZ
effect from the spectrum of radio sources. However, the difficulties in detecting
clusters via the SZ effect are still significant (see [3]). An easy prediction is
that in five years, the SZ effect will be one of the main observational window
to find and study clusters of galaxies.

5.3.4 X–ray Band

At present, in my view, the X–ray band is the most convenient to find and
investigate clusters. Anyway, it is the field in which I spent most of my activity,
and therefore, for a mix of objective and private reasons, since now on, I will
focus mostly on X–ray.

The first thing to say is that clusters appear as strong–contrast sources
in the X–ray sky up to high redshifts, thanks to the dependence of the
X–ray emission on the square of the gas density (see §5). Given the rela-
tively small number of sources, X–ray images of clusters are virtually free from
contamination from foreground and background structures. In other words,
clusters are the second most prominent sources in the X–ray sky (after Active
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Galactic Nuclei), at striking difference with the optical and millimetric bands
where they have to struggle to emerge above other stronger signals. This can
be clearly appreciated in Fig. 5.6 (left) where almost all the point sources in
the image are AGN, while the bright, extended source in the center is a cluster
at z = 0.79. The image has been taken with the ACIS–I detector, covering
a square of 16 arcmin by side. X–ray emission from clusters can be detected
up to redshift larger than one, as shown in Fig. 5.6 (right) where the X–ray
emission (red) from the z = 1.235 cluster RXJ1252 is shown on top of the
optical image.

A flux–limited X–ray survey can provide a sample of clusters with a well
defined completeness, thanks to the fact that the X–ray emission from clus-
ters is continuous (at variance with the optical emission associated to the
single galaxies) and centrally peaked towards the center. Therefore we just
need to establish a robust connection between the X–ray luminosity and the
total mass. A potential problem with X–ray clusters is that the X–ray flux
is sensitive to irregularities in the gas distribution. However, this problem
does not seem dramatic, given that most of the clusters appear smooth and
round, and the theory provides us with a robust connection between the total
mass and the ICM properties. Thus, for the moment, we just need to fully
appreciate the advantages in looking at clusters with X–ray satellites, which
became possible since the 60s thanks to the first X–ray missions leaded by
Riccardo Giacconi. In the spirit of constraining the cosmological parameters,
X–ray surveys of clusters of galaxies had a large success in the 90s, thanks to
ROSAT and other satellites, and provided consistent but sometimes debatable

Fig. 5.6. Left: The cluster MS1137, z = 0.79, in a field observed for 116 ks with the
X–ray telescope Chandra. The cluster is the bright extended source in the center,
while most of the remaining sources are AGN. Right: the X–ray emission from the
z = 1.235 cluster RXJ1252 is shown on top of the optical image taken with the VLT
telescope [46]
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results. For a review of the many surveys with cosmological impact see the
review by [45].

We are now in the era of the XMM–Newton and Chandra satellites. These
two telescopes are mostly performing pointed observations of clusters discov-
ered in the previous surveys. No wide area surveys are currently planned,
given the small field of view of these satellites (nonetheless, some serendipi-
tous surveys are underway with both of them). These pointed observations are
bringing to us many beautiful images, along with many uncomfortable news
that we will discuss in §3. Before stepping further, let’s remind the basics of
X–ray emission from the ICM.

5.3.5 The X–ray Emission from Clusters of Galaxies

We know that most of the baryons in clusters are in the form of hot plasma.
This plasma is optically thin and it radiates by free–free (bremsstrahlung)
emission. It is in collisional equilibrium, therefore its typical temperature is set
by the large dynamical masses of clusters (1014− 1015M�) to be in the range
of 10–100 millions K (corresponding to 1–10 keV). This implies that most of
the emission is in the X–ray band. The total X–ray emissivity due to thermal
bremsstrahlung is obtained by integrating over the distribution of speeds of
the plasma electrons, and, after a further integration over frequencies, it can
be written as (see [43]):

dL

dV
= 1.4× 10−27 T 1/2 n2

e Z
2 ḡB erg s−1cm−3 , (5.17)

where Z is the atomic number of the ions and ḡB is the velocity–averaged
Gaunt factor averaged over frequencies. First, we notice the dependence of
the total emissivity on the square of the electron density. This is the main
reason why clusters are high–contrast sources in the X–ray sky, and also why
superposition or confusion effects due to smaller background or foreground
halos, are less important than in the optical band, where the total luminosity
scales linearly with the (stellar) mass. We also note the weaker dependence
on the temperature (T 1/2).

Another contribution to the X–ray luminosity comes from the line emission
due to heavy ions. This contribution is generally negligible in terms of total
emission, since at temperatures larger than 5 keV, almost all the heavy nuclei
are fully ionized. However, the line–emission contribution is increasing at low
temperatures, and starts to be relevant below 2 keV. This aspect is important
when studying the production of metals in cluster galaxies and their diffusion
into the ICM. A typical X–ray spectrum of a cluster, with the typical Iron
line at 6.7 keV rest–frame, is shown in Fig. 5.7 (right).

Equation (5.17) gives the luminosity per unit volume, therefore, the total
luminosity must be obtained by integrating up to the virial radius. In the
simplest assumption of isothermality (kT = const at any radius in the cluster),
the only relevant quantity is the square of the electron density n2

e(r), which
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Fig. 5.7. The spectrum of MS2137 observed with ACIS-I onboard of the Chandra
satellite. MS2137 is a bright X–ray cluster at z=0.313, with an average temperature
of about 5 keV

is generally assumed proportional to the gas density ng. In general the gas
density profile is described with the so–called β–model [12], which consists in
a flat central core and a steep decrease in the outer regions:

ng ∝ 1/(1 + (r/rc)2)3β/2 , (5.18)

where rc is the core radius, and the parameter β ∼ 0.5–1 can be interpreted
as the ratio of the specific energy of the dark matter particles (often measured
through the galaxies velocity dispersion) over the gas temperature. Given the
steep slope outside the core, and the n2

g dependence of the luminosity, only
the central regions (few core radii) are clearly detected in the X–ray images.
The outer regions are hardly detected even with present–day satellites. Ob-
servers often prefer to quote all the quantities within the observed radius,
which is typically half or less than the virial one.

As we know, X–ray detectors onboard of the Chandra and XMM satellites
are CCD cameras, which read the collected photons every few seconds, record-
ing both the position and the energy (with a reasonable error of few percent).
Therefore X–ray astronomy has the big advantage of recording images and
spectra at the same time. High resolution X–ray spectroscopy is still feasible
through gratings, however the energy resolution of the CCD is good enough
to our purposes of measuring the temperature of the baryons.
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Once we obtain the baryon density from the X–ray surface brightness, and
the temperature of the gas, we can measure the total mass simply by applying
the condition of hydrostatic equilibrium:

M(< r) = −kBTR

Gμmp

(dlog(ρg)
dlog(r)

+
dlog(T )
dlog(r)

)
, (5.19)

where μ is the mean molecular weight (μ ∼ 0.6) and mP is the proton mass
(see [45]). Here we let the temperature free to change with the radius. Of course
this equation is particularly simple in the isothermal case. In general, the
masses obtained in this way are pretty close to that obtained simply through
the virial theorem T ∝M2/3. On the other hand, it is well known that clusters
do have a temperature structure, which is often well described by a mild
decrease outwards (see [57]), and, in more than half of the local clusters, a drop
of about a factor of three in the very inner regions (the cold core, see [38]). The
temperature profile is quite important, but its measure is increasingly difficult
at increasingly high redshifts. Indeed, we need a lot of photons in order to
measure the temperature in several concentric regions (at least one thousand
for each independent spectrum), and to obtain the deprojected temperature
profiles. For this reason, virial masses of distant clusters are often derived
assuming isothermality.

Our framework allows us to relate the basic X–ray observables, luminosity
and temperature, to the dynamical mass. We already know that luminosity is
more affected by the details of the gas distribution, while the M–T relation
appears more stable since it is directly based on the virial theorem. But we
also know that luminosity is much easier to measure, since we need much less
photons to measure a luminosity, and therefore we can observe many more
clusters within a given amount of telescope time. A shortcut is to build phe-
nomenologically the L–T relation, fitting the data with a formula of the kind:

Lbol = L6

( TX
6keV

)α
(1 + z)A

( dL(z)
dL,EdS(z)

)2

1044h−2ergs−1 , (5.20)

where α is measured to be about 3, while the evolutionary parameter A is
more uncertain and varies between 1 and 0 (see [17, 55]). Once the relations
between the X-ray observables and the mass are established, we can compare
the observed XLF and XTF to our predictions. For a review of the X–ray
properties of X–ray clusters, see the book by [46].

5.3.6 Measuring Ω0 from the Observed
X–ray Luminosity Function

The luminosity function seems easy to measure: first we count all the clusters
in our survey, then we measure their flux just counting the photons from each
cluster. We also have to know the redshift of each cluster with a good approx-
imation, in order to compute luminosities. The redshift can be obtained with
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an optical spectroscopic follow–up on a limited number of member galaxies, or
with photometric techniques. As noted before, shallow X–ray surveys allows
us to measure the luminosity with good accuracy, and to scan a wide area of
the sky. Once we have a flux limited sample with measured luminosities, we
build the XLF by adding the contribution to the space density of each cluster
in a given luminosity bin ΔL:

φ(LX) =
1

LX
Σn
i=1

1
Vmax(Li, flim)

(5.21)

where Vmax is the total search volume defined as:

Vmax =
∫ zmax

0

S[f(L, z)]
( dL(z)

(1 + z)

)2 c dz

H(z)
, (5.22)

where S(f) is the sky coverage, which depends on the flux (since the sensitivity
of a survey can vary across the surveyed region of the sky), and dL(z) is the
luminosity distance.

Remember that we expect to get information on the cosmological param-
eters both from the shape of the XLF and from its evolution with redshift. To
begin with, the shape of the local XLF is well understood thanks to several
different surveys giving consistent values, and it is shown in Fig. 5.8 (upper
panel). This allows already to get some information from the data at z = 0,
by finding the parameters which minimize the χ2 computed on the binned
luminosity function from (5.21), or by a maximum–likelyhood approach using
the unbinned data (see [5]).

However, when only local data are used, we find a lot of degeneracy among
cosmological parameters. Lower Ω0 can be compensated by higher spectrum
normalization σ8 (see Fig. 5.8, lower panels). To break this degeneracy we
can use the evolution with redshift. The evolution of the XLF is still debated:
there is a hint of evolution at the very bright end, but for the typical L∗
clusters and less luminous ones, there is no evolution almost up to z ∼ 1 (see
discussion in the review by [45]. In other words, most of the clusters, if we
exclude the brightest ones, are already in place at high redshift. We know
what does it mean, at least qualitatively: the matter density parameter Ω0 is
significantly lower than 1.

Our group, few years ago, applied this cosmological test to the RDCS
survey [44], which is the deepest sample of X–ray selected clusters. This choice
provide a good leverage in terms of cosmic epoch, but necessarily, given the
relatively small solid angle surveyed with respect to shallower surveys, does
not probe well the high luminosity end. The results, published by [4, 5] are
shown in Fig. 5.9, where we used also data from the EMSS survey [21]. In
these Figures we notice that some degeneracy is still present also when fitting
the XLF in the high redshift bins. We also notice that the constraints on the
cosmological parameters Ω0 and σ8, are weakened when the parameters α and
A, describing the slope and evolution of the L–T relation, are allowed to vary
within the observational uncertainties.
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Fig. 5.8. Upper panel: the local X–ray luminosity function of clusters of galaxies
from different samples computed for an EdS Universe with H0 = 50 km s−1 Mpc−1

[45]. Lower panels: the local X–ray luminosity function of clusters of galaxies from
RDCS (filled circles) and BCS (open circles) for different σ8 and different parameter
α for the slope of the L–T relation [4]
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Fig. 5.9. The X–ray luminosity function of clusters of galaxies in three different
redshift bins: z=0.3–0.6 (EMSS data); z=0.25–0.50 and z=0.50–0.85 (RDCS). For
each model and at each redshift, different curves refer to different evolutions for the
L–T relation [4]

The uncertainties on the cosmological parameters are better shown in
terms of confidence contour levels, where we can also evaluate the effects
of the uncertainties associated to the parameters describing the L–T relation.
5In Fig. 5.10 we show how the confidence contours in the Ω0–σ8 space dance
around when the slope and evolution of the L–T relation (parametrized by α
and A like in (5.20)), but also the normalization of the M−T relation (param-
eter β), are allowed to vary. The displacements of the contours are at more
than 3 σ, therefore we are learning uncomfortable news: the uncertainties on
the properties of the ICM are affecting the cosmological tests at a significant
level.

The situation is getting worse when we investigate the dark energy pa-
rameter w. While the density parameter Ω0 is well constrained by clusters,
w is hardly constrained at all. Recent works trying to constrain dark energy,
combine constraints from both SneIa and clusters, to significantly improve
the constraints on w due to the complementarity of the two tests in the Ω0–w
space (see Fig. 5.11).
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Fig. 5.10. Confidence contours in the density parameter Ω0 and the normalization
of the density fluctuations spectrum σ8 from the fit of the high–z XLF for different
choices of the parameters describing the physical relations L–T (α and A) and M–T
(β; [5])

5.3.7 Measuring Ω0 from the Observed X–ray Temperature
Function

At this point you may ask: since our theoretical framework seems quite suc-
cessful, why do we have such large uncertainties in the relations between L
and T ? Not only we showed that the relation between mass and luminosity
is reasonably understood on the basis of the spherical collapse, but we also
mentioned a possible shortcut through the direct measure of the L–T relation.
Well, we knew that something wrong were lurking somewhere... However, be-
fore worrying too much, let’s give a try to the XTF, which is based only on
the more robust M–T relation. Indeed, the M–T relation relies directly on
the virial theorem and it is observed to have smaller scatter with respect to
that observed in the L–T relation.

When using the XTF, the price to pay, as we know, is that it is much
more difficult to assemble a complete sample of clusters with temperatures

Fig. 5.11. Confidence contours (1–3 σ levels for two degrees of freedom) in the Ω0–
w plane obtained from SNeIa only [37] sample, left panel) and SNeIa plus REFLEX
(right panel, from [48])
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measured with reasonable errors. However the XTF is considered to be more
effective in constraining cosmological parameters. The first good news is that
the constraints from the XTF are similar to that from the XLF. The con-
straints obtained from the XTF point towards Ω0 ∼ 0.3 for a flat universe
(see [14]), providing at the same time significant constraints on the normal-
ization of the power spectrum (see [39]). In Fig. 5.12 we show the results from
[15]. We notice the tight constraints, but, again, also a significant degeneration
in the σ8 –Ω0 space.

An additional problem comes from a parameter which we considered, so
far, pretty robust: the normalization of the M–T relation. It has been noticed
that the value of β found in N–body simulations is higher than the observed
one. This can be due to several effects (see [7]), but the net result is that
the uncertainties on this parameter introduce uncertainties in the constraints
from the XTF in the same way as the L–T parameters are weakening the
constraints from the XLF (see, e.g. [25]).

It is clear at this point that the main uncertainties comes from the poor
understanding of the scaling relations between the ICM observables and the
mass, both from the theoretical and the observational points of view. A de-
tailed investigation of the effects of such uncertainties is given in [40]. They
conclude that the cosmological constraints from XLF and XTF, both the local
and the evolved ones, are reliable and consistent with each other, but that the
statistical errors on the cosmological parameters are larger than previously
thought. The buzzword now is: we need to improve the quality of the data
on single clusters to better understand the physics of the ICM. But why did
clusters prove to be such a difficult topic, after being the best candidate for
the most friendly objects in the Universe?

Fig. 5.12. Left: Fit to the evolved temperature function. Right: confidence
contours in the Ω0–σ8 space (from [15])
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5.4 New Physics and Future Prospects

5.4.1 Something is Missing: New Physics for the Clusters Baryons

Why do we have such a poor understanding of the L–T relation? From (5.17),
assuming ne ∝ ρtot (in other words, that the baryons follow the total matter
distribution), and integrating over the volume, we obtain L ∝ T 2 (without
including line–emission). This is the L–T relation predicted in what is called
the self–similar scaling [27]). As long as the baryons are distributed in the
same way of the total mass, each X–ray observable scales like some power of
the mass. Another way to say this, is that small clusters are the mass–rescaled
version of massive clusters.

So far, we reasonably expected that the thermodynamics of the ICM, be-
ing dominated by dark matter, is driven by gravitational processes, like shocks
and adiabatic compression occurring during the virialization phase and the
subsequent growth in mass by accretion. This self–similar behaviour is also
supported by N–body hydrodynamical simulations which do not include radia-
tive cooling. But the observed slope of the L–T relation is much steeper then
predicted (α ≥ 3 rather than 2 or lower when line emission is included) and
it constitutes the first strong evidence of something wrong in the self–similar
picture. That’s why when performing the cosmological tests, we avoided this
inconsistency by varying the parameters of the ICM scaling relations.

However, we learned that thawing the thermodynamic parameters intro-
duces large uncertainties in the cosmological constraints. Obviously, we would
appreciate a lot to have a physical basis for the observed scaling relations,
in order to better control the uncertainties due to a poor description of the
ICM thermodynamics. The first step is to invoke a physical process that leads
naturally to an L ∝ T 3 scaling, in other words, a process which implies a
progressive decrease of the X–ray luminosity at low mass or temperatures,
as shown in Fig. 5.13 (top). How can we obtain this? We know that we can
efficiently decrease the predicted luminosity by imposing a lower density in
the central regions of the clusters. To do that, we simply need to add an ex-
tra pressure, or some extra amount of energy in the center of clusters. Extra
means in excess with respect to the energy acquired through shocks and adia-
batic heating. This extra energy does not translate in an higher temperature;
what happens, is that the pressure increases, and the gas distribution gets
puffier, readjusting itself in the dark matter potential well. A useful quantity
to describe such behaviour is K ≡ T/n2/3. This is the normalization of the
equation of state of the ICM, which is that of a perfect gas, p = Kρ5/3. We re-
mind that the entropy is S = Nln(K). The entropy is also a very convenient
thermodynamic variable, since it is constant during adiabatic compression,
and it changes only in the presence of radiative cooling or shock heating.
For this reason, another way of describing the break of the self–similarity in
clusters, as shown by [41], is to plot the entropy as a function of the cluster
temperature, as shown in Fig. 5.13 (bottom).
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Fig. 5.13. Top: the L–T relation for groups and clusters showing the steeper slope
with respect to the self–similar model L ∝ T 2 (continuous line). Bottom: the
entropy ramp, showing the higher entropy in low temperature systems with respect
to the self–similar model [58]

The desired effect is obtained by giving about half or 1 keV to each gas
particle. The effect is small in rich clusters, where the virial temperature is
around 10 keV, and the energy budget is largely dominated by gravity, while
it is increasingly large at lower temperatures, when the extra energy starts
to be a significant fraction of the gravitational energy scale. In this way we
solved the problem from the point of view of the thermodynamics (see, e.g.
[54]). Of course, the real problem starts now: which is the physical mechanism
responsible for the energy (or the entropy) excess?

We have two obvious candidates which can inject energy associated to non–
gravitational processes: the prime candidate is feedback from star formation
processes, whose effects are testified by the presence of heavy elements in the
ICM. The second candidate is feedback from nuclear activity in the clusters
galaxies. Actually, the interaction of AGN jets and the ICM has been directly
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observed. The most spectacular example is the Perseus cluster, where jets from
the central AGN (visible in the radio emission) is pushing the ICM creating
two large symmetric cavities towards the center ([18, 19]; see Fig. 5.14). Chan-
dra and XMM added other surprises: the presence of cold fronts ( [32, 54]) and
of massive mergers strongly affecting the dynamical equilibrium. To this, we
must add the puzzling discovery by XMM that the ICM in the central regions
never cools down by more than a factor of 3 with respect to the virial tem-
perature, despite the cooling time is much shorter than the age of the cluster.
Again, another evidence that some homogeneous process heats the gas.

Today, we see clearly that the Chandra and XMM satellites changed our
perspective of clusters of galaxies. If in the ROSAT era the main goal was to
find as many clusters as possible with the aim of constraining cosmology, in
the Chandra/XMM era the goal is to observe with much better spatial and
spectral resolution the clusters previously discovered. The physics of the ICM
is much more complex than expected and this forces us to reconsider all the
relations between the X–ray observables and the dynamical mass. This aspect
may cast some doubts on the use of X-ray clusters of galaxies as cosmological
tools. One can also think to reverse the argument: the physics of the ICM
is much more interesting, so let’s investigate the evolutionary properties of
clusters to understand the effects of feedback processes onto the ICM, and
don’t worry about cosmology.

In my view, the investigation of cosmology and of the ICM physics must
proceed together. Actually, this is what is happening: if you go through the
literature in the last six years, you discover indeed that there is still a strong
interest in cosmological tests with clusters, which is supported by a growing
amount of works on the ICM. It must be noticed in addition, that under-
standing the problem of the non–gravitational heating of the ICM by ener-
getic feedback from star formation or nuclear activity, is a key issue in cosmic
structure formation. Actually, feedback is the holy grail of structure formation
today! If you go to a conference on galaxies, clusters, or anything on cosmic
structure formation, you will hear everywhere the word “feedback”. So, rather
than saying that clusters became less interesting in a cosmological perspective,

Fig. 5.14. From left to right: AGN activity creating cavities in the ICM of the
Perseus cluster ([18];[19]); cold fronts in Abell 2142 [33]; an ongoing massive merger
in 1E 0657–56, the bullet cluster [34]
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I prefer to say that clusters became even more important to understand both
structure formation and cosmology.

5.4.2 A Simpler Cosmological Test

There is not enough space here to describe the most recent progress in the
understanding of the ICM thermodynamics. However, I want to mention an-
other cosmological test that appears to be simpler than that discussed so far.
Instead of relying on the knowledge of the dynamics of clusters, we can fo-
cus on a much simple quantity: the baryonic fraction fB. We simply need to
measure the total mass, and count all the baryons in the form of stars and
ICM. From semianalytical models and numerical simulations, we expect that
the physics of the ICM does not affect fB if measured at a radius where the
gravity dominates; therefore, it should be close to the cosmic value ΩB/Ω0. In
other words, the baryons are allowed to behave wildly and decouple from the
dark matter distribution in high density regions, but on large scales they are
not displaced differently from dark matter. The virial radius is expected, then,
to include a closed region where the average composition does not change dur-
ing the evolution of the cluster. It is straightforward to see that the measure
of fB and the knowledge of ΩB from nucleosynthesis or from the CMB [49]
gives a straightforward measure of Ω0 (see [59]).

But this is not all: for the same reasons, the baryonic fraction should not
evolve with redshift. However, the actual measure of fB does depend on the
angular distance. The mass of baryons is recovered by measuring the flux and
by knowing the physical size of the cluster. The relation between the measured
flux SX and the mass of gas reads as:

SX = LX(1 + z)−4/(4πd2
ang) ∝M2

gasθ
−3
c d−3

ang/d
2
ang . (5.23)

On the other hand, the total mass depends on the angular distance as
Mtot ∝ θcdang. It follows that fB = Mgas/Mtot ∝ d

3/2
ang. Thus, we have two

advantages here: the value of the baryon density gives Ω0, while its apparent
evolution is depending on the cosmological parameters through dang. There-
fore, the cosmological test consists in requiring no evolution in the observed
fB. Any apparent evolution in the baryonic fraction is the smoking gun of
wrong cosmological parameters. It is important to perform this test on a red-
shift range as wide as possible (see Fig. 5.15, left).

This is not a dynamical test, but rather a geometrical test, and it is more
sensitive to ΩΛ (see [2]). However, we notice that the scatter in the bary-
onic fraction from cluster to cluster is somewhat larger than we would like,
given the starting assumption of a universal value for fB for all clusters at
all epochs. This is probably due to the fact that the dynamical masses and
the baryonic fraction measures are still affected by complexities in the ICM
physics (see [23]). However, this kind of test is very promising, and it becomes
very powerful when combined with CMB or SNeIa test, as shown in Fig. 5.15
(right).
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Fig. 5.15. Left: fB measured for a sample of high–z clusters in an EdS cosmology
(dots) and in a flat Λ universe (empty diamonds, from [16]). Right: constraints in
the w–Ω0 plane obtained by combining baryonic fraction in clusters and CMB [2]

5.4.3 Future Prospects for Precision Cosmology with Clusters

We are approaching the end of our brief introduction to cosmological tests
with clusters of galaxies. A clear way to summarize it, is the cosmic triangle
shown in Fig. 5.16. Each side represents one of the three main parameters: the
mass density, the cosmological constant, and the curvature. Contours levels
perpendicular to one side mean that a particular test is efficient in constraining
that parameter. Cosmological tests based on clusters are mostly sensitive to
Ω0, while geometrical tests like CMB and SNeIa are more sensitive to the
curvature and ΩΛ. Roughly speaking, CMB can constrain Ω0 + ΩΛ, while
SNeIa Ω0−ΩΛ, mainly because of the different redshift range, 0.5–2 for SNeIa
and 1000 for CMB. Obviously, the combination of the three tests is very
powerful, but its application requires a good understanding of all the different
systematics.

This picture is still valid after recent observations by Chandra and XMM
showed that the physics of clusters is more complicated than expected. The key
questions on the future of precision cosmology with clusters of galaxies are: do
we need a new, large, all–sky survey of clusters? Or should we first understand
better the physics of the ICM? Therefore, which is the best instrument we
should build next? I think that the best answer is that a new, medium–depth
all–sky survey of clusters is needed for both aspects. First, a large survey can
help in obtaining strong constraints on the cosmological parameters, providing
at the same time large samples to investigate the relationship between X–
ray observables and the dynamical masses. A second crucial aspect, is that
a large survey would discover new clusters, especially at high redshift. This
is mandatory to provide targets for the future X–ray missions, which will
provide sensitive, narrow–field instruments to investigate the physics of the
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Fig. 5.16. The cosmic triangle [53], see http://wwwphy.princeton.edu/ steinh/).
The complementarity of the three classic cosmological tests is clearly shown

ICM. Without a new wide survey, we will run out of clusters to observe!
Several proposals of medium–size mission have been circulated so far, but at
present there are no planned large–area surveys of the X–ray sky. The future
of X–ray cluster astrophysics largely depends on this.

5.5 What to Bring Home

At the end of this introduction, we should be aware that clusters of galaxies
constitute a cosmological tools to significantly constrain Ω0 and the spectrum
of primordial fluctuations, through tests based on dynamics or on geometry.
X–ray observations offer the best tool to measure mass and collect complete
sample of clusters. Main results points towards a flat Λ–dominated Universe
(Ω ∼ 0.3 and ΩΛ ∼ 0.7, or w = −1) and a normalization of the fluctuations
power spectrum consistent with that measured from CMB for a CDM Universe
(σ8 � 0.8).

If someone wants to start the business of cosmological tests with clusters,
she/he just needs basic programming skills to put in a simple code all the
formulae we discussed, and a good X–ray observer among the collaborators,
in order to have access to a well defined, complete survey of clusters. However,
one must know that this game was played a lot starting from the 90’s, when
it was realized that clusters constitute one of the most powerful cosmological
tools. At present, in 2006, most of the best X–ray clusters surveys have been



5 Cosmological Parameters from Galaxy Clusters 155

exploited in this sense. Therefore, if you want to start the business, you bet-
ter have something smart in mind, mainly a way to deal with any possible
systematics or with a better treatment of the effects of the poorly known
thermodynamics of the ICM.

However, a noticeable contribution would be given by supporting the sci-
entific case of future X–ray missions to obtain new data, in the form of a wide
and complete sample of clusters. Larger samples indeed, will allow to study at
the same time the thermodynamics of the ICM and the evolution of clusters as
a population. Finally, one should not have the feeling that the physics of the
ICM is now the hot topic at the expenses of precision cosmology, which should
rely only on tests based on SNeIa and CMB. As a general comment, I would
like to stress that clusters are probing a different cosmic epoch with respect
to CMB, and a different physics with respect to SNeIa, therefore they will
always be a complementary and useful test for cosmology. The complex ICM
physics, instead of being an obstacle, must be seen as a further opportunity
to learn about structure formation in the Universe.
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