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Abstract. In this paper we quantitatively evaluate the impact of com-
putation on the energy consumption on Arm MPSoC platforms, exploit-
ing both CPUs and embedded GPUs. Performance and energy measures
are made on a a direct N -body code, a real scientific application from the
astrophysical domain. The time-to-solutions, energy-to-solutions and en-
ergy delay product using different software configurations are compared
with those obtained on a general purpose x86 desktop and PCIe GPGPU.
With this work we investigate the possibility of using commodity single
boards based on Arm MPSoC as an HPC computational resource for real
Astrophysical production runs. Our results show to which extent those
boards can be used and which modification are necessary to a production
code to profit of them. A crucial finding of this work is the effect of the
emulated double precision on the GPU performances that allow to use
embedded and gaming GPUs as excellent HPC resources.

Keywords: Arm, GPU, MPSoC, HPC, energy-to-solution, Energy De-
lay Product

1 Introduction

In the last decade, energy efficiency has become a main concern in the High Per-
formance Computing (HPC) sector. These systems are built using power hun-
gry high performance systems, and their high energy consumption poses major
hedges for achieving exascale computation. Energy efficiency is both a funda-
mental requirement of large scale platforms and one of the main challenges for
future processors, interconnect and storage design [17]. In fact, the eligibility of a
exascale computing system must not only pass through performance assessment
of its hardware but also of its energy usage.

Commodity single board computers are an interesting case of heterogeneous
systems to be utilized for energy efficiency studies. These are low cost single cir-
cuit board computers that embed CPUs, GPUs, memory, storage, general pur-
pose I/O ports for external devices and expansions (e.g. SD card connects, USB,
PCIe, HDMA, etc). The HPC community is already studing the use of those
low-powered System-on-Chip (SoC) architectures in large-scale HPC systems,
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trying to reach production-ready solutions. Additionally, various companies are
also studying one-board computers equipped with different hardware solutions
and based on Multi-processing System-on-Chip (MPSoC).

This work was done in the framework of ExaNeSt and EuroExa European
funded project aiming at the design and development of a prototype of an exas-
cale HPC facility based on low power Arm SoC and FPGAs as accelerators [13,
14].

Although the performance of these machines has been profiled in the context
of benchmarking tools [19], in this work we study the performance on a real code,
an N -Body solver for astrophysical simulations. Our goal is to investigate the
trade-off between time-to-solution and energy-to-solution when using real full
production runs, and the problems that a developer can face when approaching
this kind of platforms. In doing this study, we analyze the computing capabilities
and the relative power efficiency between the CPU (single-core, dual-core, multi-
core) and the GPU on a MPSoC produced by Rockchip’s Firefly-RK3399. We
further compare these results with a ”standard architecture” based on an Intel
server with a GPGPU.

To our knowledge, this paper provides the first comprehensive evaluation of
a real astrophysics application on single board computers and in particular on
the MPSoC Rockchip Firefly RK3399.

The paper is organized as follows. In section 2 we introduce previous results
in the literature that shaped this work. In Section 3 we describe the code and
we discuss strategies adopted in order to port and optimize a state-of-the-art N -
body code on heterogeneous platforms. In Section 4, we present the single board
MPSoC computers that we have identified for our tests and we discuss our choice
to use the Firefly-RK3399 board. In Section 5 we discuss the methodology we
used to make the performance and energy tests, including some considerations on
our choices of architectures for HPC and the role of double precision arithmetic.
In Section 6 we discuss the performance measurements for all the platforms. Sec-
tion 7 is dedicated to the power consumption analysis including a description of
the experimental setup. Energy measurements results are discussed in Section 8.
Last Sections are dedicated to the conclusions.

2 Related works

SoC devices are experiencing a growing interest because of their versatility, low-
power consumption and their low cost. This is showed, for instance, by the
success of one of the first single board computers: the Raspberry Pi [31]. Today
there exists a large number of alternatives to Raspberry Pi, and various compa-
nies are investing on boards that are equipped with different hardware solutions
and are based on MPSoC architectures (in Section 4 we will present some of
them).

MPSoC integrated circuits are composed of asymmetric multi-core systems
combined with graphic-processing units (GPUs) aiming to optimize the energy-
to-performance ratio. MPSoC are mainly deployed for the mobile market, al-
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though they have been recently utilized in sectors where traditional resources
would not be appropriate or in situations where a standard computing plat-
form would not be suitable: for instance, educational purposes [30, 8], HPC or
Cloud [25, 9, 1], expendable computers [32], sensors networks [15, 20] and Fog
computing [5].

MPSoC devices are particularly interesting as they implement heterogeneous
architectures where multi-core CPUs and GPUs are coupled with a unified mem-
ory system (UMS) where expensive copy operations that exchanges data between
the host and the device are not required.

In the last years, GPUs became widely used in scientific programming in
order to accelerate computational demanding applications with extensive data-
level parallelism because they offer high floating-point throughput and memory
bandwidth. In the past, they have had limited device memory, until recently,
when their on-board capacity has grown up to several GBs. Though, in general,
the capacity of a GPU memory is significantly lower than its host memory. For
this reason programmers are obliged to work with two memory spaces and move
data from one to the other memory space with an impact in performances and
energy consumption. This is crucial for applications striving to solve larger and
larger problems. There exists already some solutions to solve this limitation
(e.g. POWER8 with NVLink CPUs with four NVIDIA1), however the UMS of
MPSoC boards may represent an interesting low power and low price solution.

Some authors already analyze MPSoC performance and Energy consump-
tion using standard benchmarks (e.g. HPL, HPCG, DGEMM) [24]. Instead of
benchmarking our target platforms using standard suites tuned to measure peak
performances. Instead, we are probing the platforms by using real scientific ap-
plications and real production runs. In fact, it is well known that, in some case,
codes are able to use only a few percentage of the peak Floating point oper-
ations/second (FLOPs) [16], in particular memory bound codes as numerical
cosmological simulations or data reduction analysis programs.

3 N -body Astrophysical codes

In astrophysics, the N -body problem is the problem of predicting the individual
motions in a group of celestial objects interacting with each other gravitationally.
This applies mainly to the study of the dynamic of star clusters and globular
clusters [27].

The numerical solution of the direct N -body problem is still considered a
challenge despite the significant advances in both hardware technologies and
software development. The main drawback related to the direct N -body problem
relies on the fact that the algorithm requires O(N2) computational cost. There
are some N -body codes designed for real scientific production in astrophysics
using CPUs or GPUs [4, 12, 21, 18, 7, 26]. None of the above has been ported or
optimized for embedded GPUs.

1 https://www.ibm.com/blogs/systems/ibm-nvidia-present-nvlink-server-youve-
waiting/
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Fig. 1: Call graph of Hy-Nbody profiled using gprof tool. The figure shows nodes
and edges above the threshold 0.01.

3.1 The Hy-Nbody code

Our Hy-Nbody code [11] is a modified version of a GPU N -body algorithm [7,
26], based on high order Hermite integration schema [22] using a block time-
stepping.

In our implementation, the GPU is fed by the host CPU with the gravity
equation of data in the form of coordinates, velocities and masses of particles, and
it handles calculating the forces for the data points. Differently from other N -
Body codes, we design the algorithm to fully exploit the compute capabilities of
heterogeneous architectures. The Hermite schema is implemented and optimized
using OpenCL kernels, allowing to test the code on any OpenCL-compliant de-
vice (e.g. CPUs and GPUs). We use a fine grained parallelization approach: the
host code is parallelized with hybrid MPI+OpenMP programming, while the de-
vice code is parallelized with OpenCL. The user is allowed to choose at compile
time if the application uses MPI or OpenMP, or both, or neither. The Hermite
integration is performed on the selected OpenCL-compliant device(s) and all
kernels of the application have been vectorized improving memory bandwidth
and reducing the number of loads/stores.

3.2 Profiling Hy-Nbody

Code profiling reveals that 99% of the time is spent on the Evaluation stage
of the 6th order Hermite integration schema (serial application when I/O is
disabled), as shown in Figure 1.

The floating point operations (FLOPs) of the Hy-Nbody code have been
evaluated through the Performance Application Programming Interface (PAPI)
tool [28], allowing us to estimate the arithmetic intensity (ratio of FLOPs to the
memory traffic) of the Evaluation kernel as I ' 1.5 · 107/N [FLOPs/byte], with
N the number of particles.



SoC HPC 5

Following the Roofline Model2, each kernel is going to be either memory-
bound or compute-bound on a specific architecture, since performance is upper
bounded by both the peak flop rate, and the product of streaming bandwidth
and the flop to byte ratio. The peak performance of a platform can be usually
derived from architectural manuals, while the peak bandwidth, which references
to peak DRAM bandwidth to be specific, is instead obtained via benchmarking.
However, both code profiling and arithmetic intensity estimate suggest that the
Evaluation kernel is compute-bound on every architecture with N ∼ 104 − 105,
which is the typical number of particles assigned to a device during a production
run.

4 A single board computer for HPC: Firefly-RK3399

To fully exploit the MPSoC heterogeneous boards for scientific calculations, it
is necessary to use hardware solutions that offers at least: (i) double-precision
floating point arithmetic, (ii) options for high performance I/O and memory
interface, (iii) full support for a parallel programming model as CUDA [23],
OpenCL [3] or OpenACC [10].

The latest Arm MPSoC boards satisfy these requirements as they support 64-
bit floating-point arithmetic precision operations and OpenCL 1.2 specifications.

Those boards are based on the so called Arm big.LITTLE architecture. It
features two sets of cores: a low performance energy-efficient cluster (the LIT-
TLE one), and a power-hungry high-performance cluster (the big one). Big and
LITTLE cores support the same instruction set, so they can run the same bina-
ries and therefore are easily combined within the same system. Even if extremely
promising from the energy efficiency point of view, this kind of heterogeneous
boards are extremely complex to exploit for scientific applications. They require
to design codes that are able to (i) optimize the scheduling of big.LITTLE clus-
ter, (ii) the use of GPUs, (iii) the memory access.

Nowadays, there is a wide variety of single board computers available on
the market each with its own characteristics. We analyzed some of them and
identified the most promising board for our analysis. On the basis of a set of
requirements, our candidate should accomplish:

– at least 4GB of RAM: our software is quite demanding in terms of RAM in
particular as we are willing to test some scientific full production runs;

– OpenCL capable GPU device as our code has been re-design in OpenCL to
exploit heterogeneous platforms;

– commodity hardware with Linux OS support;
– ease of expansion. A single board computer that can be expanded with PCI

or USB devices (e.g. external disks or network cards);
– on-board gigabit Ethernet. This will allow future expansion towards a cluster

of boards.

2 Roofline is a visually intuitive performance model used to bound the performance
of various numerical methods and operations running on multicore, manycore, or
accelerator processor architectures.
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Table 1: A comparison of the Single Board platforms based on the MPSoC that
we identifed for our tests.
Board SoC Arch RAM GPU NET

Raspberry Pi 3 B+
Broadcom BCM2837B0,
Cortex-A53 @ 4x1.4GHz

64-bit 1GB VideoCore IV
1GB
over
USB

Odroid XU4
Exynos 5422
Cortex-A15 and Cortex-A7
42.1GHz&41.5GHz

32-bit 2GB Mali-T628 MP6 1GB

Banana Pi M64
Allwinner A64
Cortex-A53 @ 4x1.4GHz

64-bit 2GB Mali-400 MP2 1GB

Pine A64
Allwinner r18
Cortex-A53 @ 4x1.3GHz

64-bit 2GB Mali-400 MP2 1GB

Asus Tinker Board
Rockchip RK3288
Cortex-A17 @ 4x1.8 GHz

32-bit 2GB
Mali-T760 MP4
OpenCL 1.1

1GB

Firefly RK3399
Rockchip RK33399
Cortex-A53 and Cortex-A72
41.4GHz&22.0GHz

64-bit 2/4GB
Mali-T864 MP4
OpenCL 1.2

1GB

All the boards listed in Table 1 are based on Arm SoC but only a few of
them implement a big.LITTLE architecture and only one has enough memory
to satisfy our requirements: the Firefly-RK3399 board.

The Firefly-RK3399 single board computer has 6 core 64-bit Arm big.LITTLE
SoC architecture. The board contains a cluster of four Cortex-A53 cores with
32kB L1 cache and 512kB L2 cache, and a cluster of two Cortex-A72 high-
performance cores with 32kB L1 cache and 1M L2 cache. Each cluster operates
at independent frequencies, ranging from 200MHz up to 1.4GHz for the LITTLE
and up to 1.8GHz for the big. The SoC contains 2 or 4GB DDR3 - 1333MHz
RAM. The L2 caches are connected to the main memory via the 64-bit Cache
Coherent Interconnect (CCI) 500 that provides full cache coherency between
big.LITTLE processor clusters and provides I/O coherency for the Mali-T864
GPU. The peculiarity of this board is that Mali-T864 is a OpenCL-compliant
Quad-Core Arm Mali GPU.

This board is an Open Source platform with excellent expansion capabilities,
it is equipped with 4 USB2.01 USB3.01 USB3.0 Type-C, a MicroSD (TF) Card
Slot and an HDMI video connector. The network card is a Realtek RTL8211E
10/100/1000 RJ-45 interface and it also has a PCIe Next Generation Form Factor
M.2 connector.

There are different RAM and storage sizes available, and we decide to test
the 4GB of RAM and 16GB of High-Speed eMMC configuration.

The Board is installed with Ubuntu 16.04 LTS Linux distribution and OpenCL
1.2.

The host hardware we used to develop and validate the application and to
compare with the MPSoC device, is a workstation with one Intel Core i7-3770x4
running at 3.40 GHz and one Nvidia GeForce-GTX-1080 graphics card in the



SoC HPC 7

Table 2: The main characteristics of the board used in the test and of the Desk-
top.

Platform Firefly-RK3399 Board Desktop

Rockchip RK3399 ASUS P8B75-M LX

CPU Arm A72x2 + A53x4 64-bit Intel i7-3770x4 64-bit

GPU Arm Mali-T864 NVIDIA GeForce-GTX-1080

RAM 4GB DDR3 16GB DDR3

OS Ubuntu 16.04 LTS Ubuntu 18.04 LTS

Compiler gcc version 7.3.0 gcc version 7.3.0

OpenCL OpenCL 1.2 OpenCL 1.2

PCI Express (16) bus. The workstation runs a Linux Ubuntu SMP kernel version
4.15.0-20 generic and graphics card driver NVIDIA 390.48. In Table 2 we describe
the main characteristic of the MPSoC platform used in our tests.

5 Considerations and methodology

The big.LITTLE architecture has been conceived for mobile devices where appli-
cations are developed and optimized in order to stick to low energy consumption
for routinely workloads and to benefit to more performant cores on demand. At
odds, a scientific code is designed to work on homogeneous core sets and to
steadily extract maximum performance from them. Our application is in fact
conceived to run on homogeneous platforms and typically operate by dividing
the workload on even units. Executing these equal work units on an asymmetric
system is expected to degrade the overall performance due to load imbalance.

In our case, we limit the load imbalance binding the OpenMP threads to a
defined CPU cluster, setting explicit core affinity. We use Linux taskset com-
mand to choose the affinity. This way, we avoid performance degradation due
to the thread migration from a cluster to the other and we measure the perfor-
mances and energy of each one of the two CPU clusters homogeneously. Anyway
our code is designed to maximize the performance, so we cannot benefit of the
cluster migration features for energy saving.

While ARM cores does not have frequency throttling ability, in our experi-
ments we freeze the frequencies at a given level using the performance scaling
governor, in order to prevent the dynamical scaling of the cores frequencies dur-
ing runtime. Furthermore, to stabilize the results and to average possible system
fluctuation, each run of the code is repeated 10 times and the results presented
later in the paper are always the averaged values. Errors are reported explicitly
when greater than 1%.

On the MPSoC architectures GPUs, the global and local OpenCL address
spaces are mapped to main host memory. This means that explicit data copies
from global to local memory and associated barrier synchronizations are not
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necessary. Thus, using local memories as a cache can waste both performance
and power. For this reason, specific Arm-optimized version of all kernels of Hy-
Nbody has been implemented in which the local memory is not used.

5.1 Floating point arithmetic considerations

The Hermite 6th order integration schema requires double precision (DP) arith-
metic in the evaluation of inter-particles distance and acceleration in order to
minimize the round-off error. Full IEEE-compliant DP-arithmetic is efficient in
market available CPUs, but it is still extremely resource-eager and performance-
poor in other accelerators like gaming or embedded GPUs. The theoretical best
case for DP performance is 1:2 SP, simply because it involves computing with
double the number of bits as FP32. However, this ratio can me much lower for
many devices3.

As an alternative, the extended-precision (EX) (or emulated double precision)
numeric type [29] can represent a trade-off in porting Hy-Nbody on devices not
specifically designed for scientific calculations. An EX-number provides approx-
imately 48 bits of mantissa at single-precision exponent ranges. Hy-Nbody can
be compiled using DP, EX or single precision (SP) arithmetic (user-defined at
compile time).

The energy E and the angular momentum L of the N-body system during
the simulation are constant quantities and we use them to evaluate the effect of
the arithmetic on the accumulation of the round-off error. The stability of the
computation is verified with an error lower than 10−8 for DP and EX, while SP
calculations do not conserve neither E nor L, and therefore we do not consider
them suitable for real scientific full production runs. Since in this work we are
interested in benchmarking real scientific cases, we do not include any SP result.

6 Computational performances: CPUs and GPUs

First we measure and investigate the CPUs speedup, i.e. the ratio of the serial
execution time to the parallel execution time utilizing multiple cores by means
of OpenMP threads. We run our code varying the number of particles in the
N -body integration for different OpenMP threads, pinning the processes first to
the 4 cores of the Arm Cortex-A53 and then to the 2 cores of the Cortex-A72.

Figure 2 shows the speedup for both Arm Cortex-A53x4 and Cortex-A72x2
CPUs varying the number of OpenMP threads as a function of the number of
particles. As expected, the best performance is achieved when each core handles
one thread. Time-to-solution saturates when the number of OpenMP threads
exceeds the available cores. In the case of Arm Cortex-A53x4, we observe super-
linear scalability that may be due to an optimized use of the caches.

As for the measure of the Mali GPU performance, we first note that, as al-
ready mentioned, we never use the local memory to avoid the cost of memory

3 https://www.geeks3d.com/20140305/amd-radeon-and-nvidia-geforce-fp32-fp64-
gflops-table-computing/
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Fig. 2: Host speedup for DP-arithmetic as a function of the number of particles.
We vary the number of OpenMP threads. Left panels for Arm Cortex-A72x2
and right panels for Arm Cortex-A53x4.

Fig. 3: The ratio between the execution time of EX arithmetic and DP arithmetic
as a function of the number of particles for both Mali-T864 and Nvidia GeForce-
GTX-1080 GPUs.

copy. Following the Arm OpenCL Developer Guide [2], we test the effects of
vectorizing the code increasing the size of work-group. We run Hy-Nbody vary-
ing the work-group size from 4 up to 256 and we measure the execution time
increasing the number of particles from 1024 up to 65536.
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Kernel execution times on the GPU have been obtained by means of OpenCLs
built-in profiling functionality, which allows the host to collect runtime informa-
tion. Despite Arm recommends for best performance using a work-group size
that is between 4 and 64 inclusive, our measurement shows that the execution
time is not driven by any specific work-group size (the execution time is constant
within 3%). The work-group size is not even affecting the energy consumption
so, from now on, we fix the work-group size at 64.

Finally, we measure the DP and EX performance of both Mali-T864 and
GeForce-GTX-1080 and compare it with the SP performance executing a set of
runs varying the number of particles from 1024 to 65536. The DP/FP ratio for
the GTX-1080 is ∼ 1/32 as also discussed by Geeks3D blog, while for the Mali
GPU it is ∼ 1/10 (see Table 3 for more details).

On the other hand the effect on performance of the EX arithmetic is ex-
tremely important. In Figure 3, we present the result of a set of simulations
increasing the number of particles. The effect of the EX becomes evident from
2048 particles and it stabilizes from 4096 particles on. The performance improve-
ment is ∼ 2 for the Mali GPU and ∼ 20 for GTX-1080. For the GTX-1080, tests
has been done using a work-group size of 64, however, differently from Mali
GPU, the size of the work-group significantly affects the execution time; with
EX arithmetic the best performances are obtained for work-group size of 64 and
128.

Fig. 4: The execution time in seconds for different devices as a function of the
number of particles.
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In Figure 4, we compare the time-to-solution in seconds for different devices.
For each device we plot the configuration that optimizes the performances in
terms number of cores, work-group size, DP for CPUs and EX for GPUs. A
summary of the configuration and results is presented in Table 3. We note that,
from a pure performance point of view the Nvidia GPU is the most powerful
device tested while the MPSoC performance is two order of magnitude lower.
That being a somewhat expected result, the key question to be investigated in
the next sections is whether or not such gap is compensated by the lower energy
consumption of MPSoC.

7 Power Consumption measurements

In this section we discuss our work to estimate and compare the instantaneous
power, the total energy consumption, the execution time and the energetic cost
for a simulation using the Hy-Nbody code for the various devices listed in
Table 3.

We also estimate the energy impact of our code in terms of Energy Delay
Product (EDP). The EDP proposed by Cameron [6], is a ”fused” metric to
evaluate trade-off between time-to-solution and energy-to-solution. The EDP is
defined as:

EDP = E × Tw (1)

where E is the total energy consumed during the run, T is the time-to-solution
and w is a parameter to weight performance versus power. Common value of
this parameter are w = 1, 2, 3 (w = 3 was suggested by Cameron), the larger is
w the greater the value of performance.

As discussed in Section 3.2, the Evaluation kernel is the most computational
demanding part of our code, it is strongly compute-bound on every architecture
so it is excellent to make energy tests. Relying on these profiling results, we
measure the energy consumption during the execution of the Evaluation kernel,
in an infinite while loop.

In order to minimize the inaccuracies in estimating the current consumed
by the CPU and the GPU while running the kernel, we apply two different
methodologies, one for the Firefly KR-3399 and one for the Intel desktop with
Nvidia GPU.

The Firefly RK-3399 board has been powered by a DC power supply (a
Keysight E3634A) to avoid the power draw by the AC-to-DC transformer, which
makes the readings more noisy and spread out. After booting up the platform, we
measure its stable current while the system is in idle. This gives us the Ibaseline
consumption by the system.

Ideviceimpl,baseline is the current consumed by the system running a given code
implementation using a particular device (CPU or GPU).

Ideviceimpl is the current that we are interested in:

Ideviceimpl = Ideviceimpl,baseline − Ibaseline (2)
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Ideviceimpl,baseline and Ibaseline are the mean values over a range of three minutes.
The energy consumed by a given implementation of the kernel (energy-to-

solution) is
Edevice

impl = V × Ideviceimpl × T device
impl (3)

where V and T device
impl are the voltage and the kernel running time (time-to-

solution averaged over ten runs), respectively (voltage is constant, namely V =
12 Volt).

On the Intel desktop we set the frequency governor to performance level
and the electric power draw is measured by means of a power meter (Yokogawa
WT310E).

After booting up the platform, we measure the watts hours consumed in
idle during a period of three minutes, giving us the Wbaseline of the system.
W device

impl,baseline is the electric power drawn by the system running a given code
implementation using a particular device (CPU or GPU) over a period of three
minutes (∆T3). The power drawn by the dedicated GPU (Nvidia GeForce-GTX-
1080) is also monitored by a current probe (Fluke i30ss).

The watts hours (energy-to-solution) that we are interesting in are:

W device
impl = (W device

impl,baseline −Wbaseline)× T device
impl /∆T3 (4)

where T device
impl is the kernel running time (time-to-solution averaged over ten

runs).

7.1 Experimental setup

Fig. 5: Experimental setup at the Astronomical Observatory of Trieste - elec-
tronic laboratory.

To measure the current consumption of the devices under test, two simple
setups were used, depending on the power supply type of the device.
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– Devices powered by Direct current:
• Benchtop Laboratory Power Supply, Keysight model E3634A;
• Benchtop Multimeter, Hewlett Packard model 34401A;
• AC/DC Current clamp, Fluke model i30s;
• Digital Storage Oscilloscope, Keysight model MSOX3024T.

The benchtop laboratory power supply was set at the nominal supply voltage
for the system and the multimeter was connected in series to measure the
current flow. The output used in our test is the mean value of 450 measure-
ments taken at each run with a sample rate of 2,5 Hz (1 sample every 400
msec). The oscilloscope was used to measure the dynamic behaviour of the
current consumption taken by means of the current clamp. These devices
were used just to monitor that the measurements are taken under almost
constant load.

– Devices powered by Alternate current (mains supply):
• Digital Power Meter, Yokogawa model WT310E;
• AC/DC Current clamp, Fluke model i30s;
• Digital Storage Oscilloscope, Keysight model MSOX3024T.

In this case, the systems were powered by their own power supply and the
measurements were taken at the 230V mains input. The Power meter inte-
grates the total power used during the chosen time period. Also in this case,
the oscilloscope and the current clamp were used to monitor the dynamic
behaviour of the current consumption, but this was possible only with a lim-
ited subset of the tests, since only the auxiliary power supply input of the
GPU could be intercepted. The discrete GPU is also supplied by the PCIe
connector and thus the measurements taken with the current clamp are not
reliable.

Table 3: The main characteristics of the configuration used in the test including
the arithmetic’s capacity of the accelerators. The last two columns are the device
energy measured in [Watt/h]. The Ebaseline is the idle energy on 3 minutes of
evaluation and the Edevice

impl is the energy for 3 minutes of Hy-Nbody kernel
continuous execution.

Device
Core

Arithmetic DP/FP EX/FP
Ebaseline Edevice

impl

Workgroup [Watt/h]

i7-3770 4 DP 1 3.95 6.92

Arm A53 4 DP 1 0.15 0.23

Arm A72 2 DP 1 0.15 0.34

Arm Mali-T864 64 EX 1/10 1/54 0.15 0.29

GeForce-GTX-1080 64 EX 1/32 5/8 3.95 8.40

4 Arm Optimized
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8 Energy results

Energy-to-solutions and time-to-solutions are obtained running the Evaluation
kernel using both DP and EX arithmetic using 65536 particles. That number
of particles has been chosen in order to keep busy the device for a reasonable
amount of time and therefore to make robust measurements.

For each device we estimate both the Ebaseline and the Edevice
impl , i.e. the

energy for 3 minutes of Hy-Nbody kernel continuous execution. Our energy
consumption measurements are reported in Table 3. Not surprisingly, the most

Fig. 6: Energy-to-solution (in Joule) as a function of time-to-solution (in second)
for DP (left panel) and EX (right panel) arithmetic. Blue symbols for Arm-A53x4
CPU, red symbols for Arm-A72x2 CPU, green symbol for Arm Mali-T864, violet
symbols for Intel-i7x4 CPU and orange symbol for Nvidia GeForce-GTX-1080.
Triangle up for 1 OMP thread (serial calculation), circle for 2 OMP threads,
diamond for 4 OMP threads, pentagon for GPUs with work-group size of 64.

energy consuming devices are the i7 and the Nvidia GPU that absorb more than
twenty times the Firefly-RK3399.

Time-to-solution and energy-to-solution results are plotted in Figure 6 for
both DP and EX arithmetic.

The most effective device, both in terms of time-to-solution and energy-to-
solution, is the dedicated Nvidia GeForce-GTX-1080 GPU. Regarding CPUs, the
time-to-solution scales linearly with the number of cores exploited, and saturates
when the number of OpenMP threads exceeds the available cores, as expected.
Multi-core implementation is always the most effective solution, both in terms of
time-to-solution and energy-to-solution. It is worth noting that dual-core Arm-
Cortex A72, running at 1.80 GHz, is 4 times more power-efficient than the single-
core Intel-i7, running at 3.40 GHz. Moreover, CPUs do not benefit at all of the
EX arithmetic. Indeed, their performances degrade when using EX (note that
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right and left panels in Figure 6 have different x-scales): for this reason on
Figure 7 we plot the ”best results” in terms of computational performances,
namely DP arithmetic for CPUs and EX arithmetic for GPUs.

When using EX arithmetic, the performances are improving dramatically for
the GPUs.

Fig. 7: Energy-to-solution (in Joule) as a function of time-to-solution (in second)
for best configuration i.e. DP for CPUs and EX for GPUs. On the left panel we
plot the energy-to-solution for the running kernel excluding the energy baseline,
on the right panel we plot the total electric power drawn by the system running
the kernel. Symbols and lines are the same as described in Figure 6.

As we are also interested in the total energy impact (including boards base
line), this is the real energy consumption of the platforms when making com-
putations. In Figure 7 we present the best cases plot for the total energy (right
panel). The effect of the higher baseline is affecting mainly the computations
on i7 and GPGPU, while the CPUs and GPUs on the Firefly have roughly the
same power consumption and energy behaviour.

Finally we compare our devices in terms of EDP. In Figure 8 we plot the
EDP for 3 values of the w parameter comparing the different devices. For the
CPUs we vary the number of cores involved in the calculation, while for GPUs
we fixed the of work-group size (no significant energy difference has been noticed
modifying the work-group size).

As expected, for CPUs the EDP factor is a function of the cores used, the
most is the occupancy of the CPU the best is the energy impact. When per-
formances are highly valued, the Intel processors and the GTX-1080 GPU are
the devices with best trade-off between time-to-solution and energy-to-solution
(in particular the GTX-1080 GPU), even if their instantaneous power is higher
than the Firefly-RK3399 board.
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Fig. 8: EDP as a function of time-to-solution (in second) for double-precision
arithmetic varying the weight of the execution time (w = 1, 2, 3). Symbols and
lines are the same as described in Figure 6.

Fig. 9: EDP as a function of time-to-solution (in second) for emulated double-
precision arithmetic varying the weight of the execution time (w = 1, 2, 3).
Bottom-left is better. Symbols and lines are the same as described in Figure 6.

On Figure 9 we measure the EDP when using the EX arithmetic. In this
case both the Mali GPU and the GTX-1080 are favoured in terms of energy and
computing time as also shown in Figure 7.

As final remark, we have also measured the efficiency of the AC power supply
of the Firefly-RK3399 board provided by the vendor. The AC power supply
efficiency is ' 85% in idle, while is ' 91% at full workload.

9 Conclusion and future developments

The energy footprint of scientific applications will become one of the main con-
cerns in the HPC sector. SoC technology is specifically designed to optimize the
energy-to-performance ratio. In this work, we begin to explore the impact of
the software design of a scientific application on its energy-to-solution and time-
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to-solution footprints exploiting low-cost SoC-based platforms. We compare the
relative power efficiency between the CPU (single-core, dual-core, multi-core)
and the GPU on SoC using a real scientific application.

The code we used is conceived to minimize the MPI communications, so that
we could evaluate the impact of the computation, on both GPUs and CPUs, on
the power consumption. Given the negligible role of networking and the absence
of I/O, our results are sufficiently robust for the discussion and the conclusions
that we present. Hence, they can be considered representative of arithmetic-
intensive scientific codes with a small need of MPI communication.

Furthermore, the effectiveness of EX arithmetic to exploit commercial gaming-
class GPUs in scientific calculations is also a significant outcome of this work
that may have a general interest.

Therefore, we identify an application able to exploit both the CPUs and
GPUs, and then we study the electric power consumption at specific instant
during a run.

We use the Firefly-RK3399 Arm MPSoC based board that meets the require-
ments identified to successfully run a scientific HPC code in particular: 4GB of
RAM and excellent expansion capacity. The results obtained with this board are
compared with the ones from a general purpose x86 desktop and PCIe GPGPUs,
the Nvidia GeForce-GTX-1080. We deliberately use a consumer grade desktop
and a commodity GPGPU to compare ”similar” platforms (single boards com-
puters are not designed to compare with high-end HPC servers).

We analyze how to optimize our code to benefit of heterogeneous platforms
with a big.LITTLE architecture and integrated GPU. This is complicated mainly
by two problems: the efficient scheduling of the algorithms on big.LITTLE ar-
chitecture and the use of full double precision arithmetic in order to provide real
scientific results. The first affects the way a developer can run a HPC code on
the MPSoC, the latter involves the efficient use of consumer grade GPUs.

Our results show that even if the energy consumption of the single board
computers is orders of magnitude lower that the one form a desktop (and then
also lower than a server), when evaluating the energy-to-solution of an HPC
designed core, the best device seems to be the Nvidia GeForce-GTX-1080 at
least for this specific code. However, also the low power Mali embedded GPU
performs much better even of the i7, as also demonstrated by the EDP analysis.

Even if not comparable with the GPGPU, the overall single board computer
(CPUs and GPUs) is extremely promising both in terms of performances and
energy consumption, in particular if applications will be able to use at the same
time the two CPU clusters and the associated GPU. This requires to re-engineer
the applications completely.

Furthermore, a crucial finding of this work is the effect of the emulated dou-
ble precision on the GPU performances. Our tests using DP arithmetic have
demonstrated the poor results of those devices. This is not an unexpected be-
haviour, since consumer grade GPUs (and also MPSoC Mali GPUs) are not built
for high performance DP. This is because they are targeted towards games and
game developers. So vendors commonly do not cram DP compute cores in their
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GPUs. However the introduction of EX arithmetic highly improves the perfor-
mance filling the gap with the SP capability and opening the path for a success
full and cheap use of those devices also on HPC area.

In conclusion, we have shown that SoC technology is emerging as a promising
alternative to ”traditional” technologies for HPC, which are more focused on
peak-performance than on power-efficiency. That being especially true when a
significant effort was spent in re-engineering the computaitonal parts and the
communication schemes, since it is expected that to achieve small enough times-
to-solution a large number of low-power-consumption devices will be needed.

How a more complex communication pattern may affect the time-to-solution
and energy-to-solution is not a focus of this preliminary work, although that is
obviously a major point in HPC. We leave this to a forthcoming work in which
we use different, more complex codes that implements a large variety of different
algorithms. For instance, a tree-code - suited for a different class of problems than
a direct N-Body - would challenge quite differently both the cache hierarchy and
the interconnect. Also, on one hand, the implementation of tree-related routines
for a GPU are far more efficient than a simple vector-based series of instructions,
and on the other hand the execution pattern of more complex codes that include
more physical modules, will change heavily the role balance between CPU and
GPU.

This analysis has been done using an Astrophysical code, however our results
are valid also for any computing intensive code that requires double precision
arithmetic: in practice the majority of codes in science. Furthermore, the use of
EX arithmetic to exploit commercial GPUs is an important result that opens to
the possibility to use gaming GPUs also for HPC.

Our future plan is to assess the energy footprint of other aspects of this
application, such as network and I/O and compare clusters of MPSoCs with
HPC resources, where multi-node MPI communication becomes an important
aspect of a simulation.
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