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Abstract— Within ESA Cosmic Vision 2015-2025 Science 

Program, ATHENA was selected to be a Large-class high 

energy astrophysics space mission. The observatory will be 

equipped with two interchangeable focal plane detectors 

named X-Ray Integral Field Unit (X-IFU) and Wide Field 

Imager (WFI). In order to optimally exploit the detector 

sensitivity, X-ray transparent filters are required. Such filters 

need to be extremely thin to maximize the X-ray transparency, 

that is, no more than a few tens of nm, still they must be able to 

sustain the severe stresses experienced during launch. Partially 

representative test filters were made with a thin polypropylene 

film, coated with Ti, and supported by a thin highly 

transparent mesh either in stainless steel or niobium. 

Differential static pressure experiments were carried out on 

two filter samples. In addition, the roles of the mesh on the 

mechanical deformation is studied, adopting a finite element 

model (FEM). The numerical analysis is compared with 

experimental results and found in good agreement. The FEM is 

a promising tool that allows to characterize materials and 

thicknesses in order to optimize the design. 

Keywords— Optical Profilometry, Stress Analysis, FEA, X-

Ray, ATHENA, X-IFU. 

I. INTRODUCTION 

ATHENA (Advanced Telescope for High-Energy 
Astrophysics) was selected by ESA in the Cosmic Vision 
2015-2025 Science Program as a Large-class astrophysics 
space mission, and it is scheduled to launch by 2030 [1]. The 
space observatory will be equipped with an X-ray telescope 
hosting two interchangeable focal plane detectors named X-
ray Integral Field Unit (X-IFU) [2] and Wide Field Imager 
[3]. X-ray transparent filters are required for both detectors 
to work, optimally exploiting their sensitivity [4-6]. 
Specifically, the X-IFU operates at very low temperatures 
(<100 mK) within a cryostat. For this reason, thermal filters 
are required to reflect infrared (IR) light, to block molecular 
contamination and to dampen the load from radio frequency 
radiation, mainly coming from the telemetry. Filters need to 
be extremely thin to maximize X-ray transparency, just a few 
tens of nm, thus only light materials are employed: a polymer 

coated with a metal. However, the filters are required to 
survive severe launch conditions. Specifically, the X-IFU 
filters are currently planned to be launched in vacuum, 
meaning that they should be able to survive static pressure 
load, which may occur, for instance, during vacuum-venting 
procedures, and dynamic load which are mainly due to shock 
and vibrations.  

Large size filters, made by a sub-micron thick polyimide 
film coated with aluminum, have already been largely used 
in recent space missions such as Chandra [7-8] and XMM-
Newton [9]. Such filters have shown good reliability and 
long-term stability, having survived heavy launch loads, 
while being still in working order and showing no major 
signs of degradation [10]. Previous missions have thus 
indicated as a good solution a polyimide film coated in 
aluminum, to be used as a baseline for the X-IFU thermal 
filters. In addition, the large size of the filters together with 
the high load to be sustained, point towards adopting metallic 
meshes to act as a support for the polyimide film.  

In this paper, to analyze the mechanical behavior of the 
metallic mesh when loaded with a differential static pressure, 
test films made in polypropylene were chosen for practical 
reasons. A set of experiments were carried out to acquire the 
displacement profile of a test filter as a function of the 
applied pressure. Furthermore, the experimental results were 
compared to the FEM numerical model ones to characterize 
the material and optimize filter design.  

II. EXPERIMENTS  

A. Samples 

The tested samples are partially representative of the 
filter that will operate inside the X-IFU cryostat at T = 2 K 
and T = 50 mK (see Fig. 1). Both filters are made of a 
polypropylene stretched foil (BASF Novolen 1302L), with 
thickness < 1 μm, coated with Ti and supported by a metallic 
mesh, mounted on a 2-part custom aluminum frame with 57 
mm inner diameter. The two test samples which differ for the 
mesh material, respectively Nb and 304 SS, are 



denominated: ATHENA-01-03-11 Rev A4-Exception Nb 
and ATHENA-01-03-11-A4 Rev. D57 S/N #2. In Table 1, 
specification of both test filters are reported. 

 

Fig. 1. X-IFU full size test filter representative of TF0 (operating at T = 50 

mK) and TF2 (operating at T = 2K). 

TABLE I.  X-IFU TEST FILTER SPECIFICATIONS 

 Sample 1 Sample 2 

ID ATHENA-01-03-11 Rev A4-

Exception Nb 

ATHENA-01-03-11-A4 Rev. 

D57 S/N #2 

Film 
material 

Polypropylene stretched foil (BASF Novolen 1302L) 

Film 

thickness 

~ 600 nm 

Film 

Coating 

~ 40 nm thick Titanium coating 

Mesh specs Honeycomb with pitch 2.0 mm and wire width 30μm  

Nominal transmission 97% 

Mesh 

material 

Niobium 

Young Modulus 105 GPa 

Poisson coefficient 0.397 

Stainless steel AISI 304 

Young Modulus 210 GPa 

Poisson coefficient 0.3 

Mesh 

thickness 

50 μm 60 μm 

Filter frame Two parts style Aluminum alloy 6061 anticorodal 

 

B. Experimental setup 

The experimental setup comprises a custom micro-
positioner, a filter holder, and an optical measuring system 
(see Figs. 2), with the aim of applying a static differential 
pressure and measuring sample deformation. The custom 
micro-positioner uses a pair of stepper motor micro-slides to 
allow control of the worktable speed and acceleration in the 
x and y axes. The filter holder is mounted directly on the 
worktable of the micro-positioner, which is controlled 
through a G-code user interface. The use of a sealing O-ring 
on the filter holder allows to apply a static pressure to the 
back part of the filter, by means of an air inlet hose 
connected to pressuring device. The pressuring device works 
with a Stevino column (1 mm reading accuracy equivalent to 
0.1 mbar resolution) where a pre-determined amount of 
water is introduced plus a valve to expel air from the system. 
A schematic representation of the experimental setup is 
shown in Fig. 2a, while a picture of its realization is shown 
in Fig. 2b. The test filter deformation is measured by 
scanning its surface along a diameter. The pressure is 
gradually increased with steps of about 1 mbar and kept 
constant for all the duration of an acquisition. 

The optical confocal sensor is a micro-epsilon® DT 
2421/2422. The optical device comprises: the sensor along 
with its lens, the controller and the optical fiber. The 
measurement is based on the projection of a polychromatic 
light (white light) on the target surface. The sensor lenses are 
designed to use controlled chromatic aberration to focus each 
light wavelength at a specific distance. The sensor itself will 
then receive the light reflected from the target surface and 
transfer it to the controller. A spectral analysis follows and 
data stored in the controller are used to calculate distances. 
This system allows a very good resolution, thanks to the 
small beam spot diameter (see Table 2). However, 
measurement deviations may occur if the measured structure 
is of a similar size to the beam spot or if the maximum tilt 
angle is exceeded. 

 

Fig. 2. In (a) schematic representation of the experimental setup; in (b) 

picture of the optical confocal acquiring system and of the micro-

positioner. 

TABLE II.  OPTICAL MEASURING SYSTEM SPECIFICATIONS 

Optical Sensor model 2405-10 
Measuring range 10 mm 

Start of measuring range 

approx. 
50 mm 

Spot diameter 16 μm 

Linearity (displacement measurement) ≤± 2.5 μm 

Linearity (thickness measurement) ≤± 5 μm 

Resolution 60 nm 

Thickness measurement min target 

thickness 
0.5 mm 

Max. tilt ±17 ° 

Outer diameter sensor 54 mm 

 

The scans of two test filters were performed under a 
static pressure going from 1 to 10 mbar. The scan speed used 
is a trade-off between duration and accuracy of the measure, 
a reasonable value was found to be 1 mm/s. In Fig. 3 a 
comparison between the profile of samples 1 and 2 at the 
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same pressure level (9 mbar) is shown, plotting the filter 
deflection (along the z-axis) as a function of the scanline 
distance (along the diameter).  

The plot in Fig. 3a is affected by the presence of high 
spikes when the laser passes over the mesh bar edge. This is 
due to the marked difference in emissivity between the Ti 
coating of the film and the Nb mesh mar. The laser beam 

diameter (16 m) is almost half the bar width, when the laser 
spot approaches the bar there is a multiple surface reflection, 
due to the very different emissivity, generating a spike. For 
this reason, an accurate measure of the mesh bar width and 
thickness can be made only for the stainless steel mesh, 
where the difference in emissivity with the Ti coating is less 
pronounced. More effort is needed to overcome this issue on 
the Nb mesh. 

 

Fig. 3. Filter profile acquisition with a differential static pressure of 9 
mbar for (a) Nb mesh and (b) AISI 304 mesh. 

In Fig. 4 a plot compares the experimental maximum 
deflection, measured at the center of the filter, for both 
samples, as a function of the differential pressure. 

 

 

Fig. 4. Experimental deflection measured at the center of the filter at 
different differential pressures for the Nb and steel mesh. 

Looking at Fig. 4 the unexpected result is that the Nb 
mesh deflection seems smaller than the steel mesh one, 
despite the Young modulus of Nb is expected to be almost 
half the steel one. However, from the graph it is also clear 
that for pressures above about 7 mbar, the two curves cross, 
indicating how at higher differential pressures the trend 
could reverse, in agreement with what one would expect. We 
have currently not applied a pressure larger than 10 mbar to 
prevent the risk of plastically deforming or damaging the 
filter. 

A possible explanation for this uncharacteristic behavior 
at low pressures could be due to a different pre-stress in the 
films, glued to the mesh, during the manufacturing process, 
which could impact the overall structural stiffness. 

III. NUMERICAL MODEL 

A static non-linear numerical model, simulating the 
deformation of the filters due to the differential pressure, was 
developed. Due to the thin geometry of the mesh, shell 
elements were adopted for discretization. Exploiting the 
structural symmetry, only a quarter of the filter was modeled, 
thus reducing computational cost. The perimeter of the mesh 
was simulated adopting an encastre to reproduce real 
conditions applied to the test filter (zero displacement and 
zero rotation). The pressure was applied gradually on the 
mesh bars, step by step, in order to avoid convergence issues. 
A preliminary convergence study was performed to fine tune 
the model. The discretization of the model was refined near 
the encastre due to stress intensification in these areas, as 
shown in Fig. 5. A total of 13200 S4R 4-node doubly curved 
thin shell elements were used to discretize a quarter of the 
mesh. Materials were modeled using a Young modulus (E) 

of 210 GPa and a Poisson coefficient () of 0.3 for the AISI 

304 mesh, a E of 105 GPa and a  of 0.397 for the Nb mesh. 
In Fig. 5, the side and top view of the Nb mesh filter at 10 
mbar of differential pressure, along with a legend of the von 
Mises stress, are shown. Because of the boundary conditions, 
where the mesh is attached to the frame, the deformation 
profile of the mesh external boundary starts flat (see encastre 
in Fig. 5), thus the stresses intensify in the mesh bar 
connected to the frame. As can be seen from the 
magnification on the right in Fig. 5b, the center of the filter is 
not affected by very high stresses. Still in the top view, the 
position of the maximum stress is located between a 30° and 
a 40° angle with the horizontal direction, and the 
magnification on the left shows how steep the stress gradient 
is in the mesh bars.  

 

 

 

Fig. 5. Von Mises stress distribution over the Nb mesh with magnification 

of the boundary and center parts; in (a) side view, in (b) top view. 

In Fig. 6, the side and top view of the steel mesh filter at 
10 mbar of differential pressure, along with a legend of the 
von Mises stress, are shown. Similar considerations on the 
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stress distribution as what already detailed for the Nb mesh 
filter hold. The only differences regard the augmented von 
Mises stress level reached by the steel mesh and the 
subsequent smaller deflection, due to the enhanced stiffness 
of the material. 

 

Fig. 6. Von Mises stress distribution over the AISI 304 mesh; in (a) side 

view, in (b) top view. 

In Fig. 7, a plot to compare the modeled and experimental 

curves for both Nb and steel mesh is reported. As expected, 

the simulation indicates that the steel mesh exhibits a stiffer 

behavior than the Nb one. The best fit looks good for the 

steel mesh, with just a slight difference from the 

experimental data. For what concerns Nb, the difference is 

more marked, since the FEM analysis was run on the mesh 

alone and cannot take into account any pre-stress on the 

film, which, from the experimental data, could very well be 

present in this case.   
 

  

Fig. 7. Comparison between experimental and numerical results for the 

mximum deflection of both the Nb and steel mesh as a function of the 
differential pressure. 

 

IV. CONCLUSIONS 

The focal plane detector named X-Ray Integral Field 
Unit (X-IFU) to be equipped on the space observatory 
ATHENA needs specific filters able to maximize X-ray 
transparency. Filters need be extremely thin (just a few tens 
of nm) and still be able to sustain the severe stresses 
experienced during launch, plus they must survive any static 

pressure load which may occur during vacuum-venting 
procedures.  

In this paper, the mechanical behavior of pre-assessment 
filters, made of a polypropylene film coated in Ti and 
supported by a metallic mesh, was tested by loading them 
with a differential static pressure. A set of experiments were 
carried out, by measuring the filter deflection as a function of 
the applied differential pressure with an optical confocal 
sensor. 

Separately, the role of the Nb or steel mesh on the 
mechanical deformation was studied, adopting a finite 
element model (FEM). The numerical analysis results were 
then compared with the experimental ones and found in good 
agreement for the steel mesh, further raising interesting 
questions over potential pre-stress of the film supported by 
the Nb mesh. Future numerical analysis should be performed 
over the global system mesh plus film, under varying 
conditions. 
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