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ABSTRACT   

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of 
lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin 
slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like 
INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of 
thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved 
angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application 
of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they 
require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to 
actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the 
concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the 
feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the 
preliminary simulations and the first steps taken in this project. 

Keywords: X-ray mirrors, active optics, thin glass mirrors, thin plastic mirrors 

1. INTRODUCTION 
X-ray optics of the future will need to conjugate very large effective areas and high angular resolutions, for example 
ATHENA, selected for the L2 slot in ESA’s Cosmic Vision 2015–25 with a launch foreseen in 2028, requests an 
effective area of 2 m2 and a HEW (Half Energy Width) < 5 arcsec at 1 keV. The available techniques for X-ray 
astronomical mirror manufacturing have so far privileged either requirement. Thick and stiff mirrors with high accuracy 
figuring and polishing, like Chandra’s, enable an excellent angular resolution (HEW ≈ 0.5 arcsec) but only a low filling 
of the available aperture, since only a small number of mirrors can be assembled. This obviously goes at the expense of 
the effective area that can be reached with a given mass of the optics. A denser mirror nesting, as in the case of XMM-
Newton or Swift-XRT, requires the adoption of thinner mirrors (with thickness on the order of 1 mm or less). This 
clearly yields higher effective areas, but makes the mirrors more flexible and prone to deform, and the angular resolution 
degrades in proportion. Nowadays, wide-aperture optical modules cannot be made of monolithic mirrors, but have to be 
based on the assembly of modular elements (XOU, X-ray Optical Units) obtained stacking thin mirrors. In addition, 
keeping the mass to within acceptable limits for a few meters diameter optics requires lightweight materials like Silicon, 
glass or plastic thin foils.  

The development of lightweight modular optics for ATHENA (formerly IXO and XEUS) at ESA/ESTEC is 
ongoing since 2004, based on the Silicon Pore Optics technology[1]. However, a backup technology for IXO/ATHENA 
optics has been developed at INAF/OAB under ESA/ESTEC contract in 2009-2013 and in parallel at MPE, based on the 
hot slumping of thin glass foils. This approach was already used to build the optics of the NuSTAR hard X-ray 
telescope[2], currently in operation. Owing to the low density of both silicon and glass, and to the small thickness of the 
foils at play, both technologies are suitable to provide the required effective area/mass ratio, and the efforts are 
concentrated on the improvement of the imaging quality. For slumped glass foils[3], this action is still ongoing on two 
main fronts: minimization of the surface roughness and minimization of profile errors. The former is obtained starting 
from highly polished glass substrates, most of them commercially available, and avoiding the surface degradation 
stemming from contact with the moulds used to impart the correct shape to the mirrors, or, if a contact is needed, 
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We explicitly note that a relevant improvement was obtained throughout the demonstrators manufactured (see 
Tab. 1). The typical HEW range of the X-ray optics replicated by Nickel elctroforming was reached with hot slumped 
glasses, but improvements below 20 arcsec HEW will require a more accurate slumping figure. In parallel, a possibility 
to be envisaged is the active correction of the figure at the locations where the error is the largest, i.e., between the ribs. 
In Sect. 4 we will see that quantitative information on the mirror deformation map can be directly extracted from the 
analysis of the intra-focal image, and so offers the opportunity to feed the piezoelectric array with the voltage needed.  

2.1. Thin plastic foil optics 
The possibility to manufacture X-ray optics with a thin plastic foil have been studied in the last years[7] by a 
collaboration between SAO, the Palermo University, INAF/OAPA, and DSRI. The obvious advantage of plastic is that it 
is a lightweight material and very simply to shape. It has also proven to well withstand the deposition of a metallic 
coating and also of a multilayer. Finally, plastics with a good smoothness[10] and good thermo-mechanical properties can 
be selected[8],[9]. Possible geometries explored so far are the cylindrical, the conical and the spiral one. Conversely, 
plastic foils are very easy to deform, so they need to be supported by a stiff, but not over-constraining, integration 
structure (Fig. 3). A first integration approach of cylindrical mirrors has been tried (Fig. 3, left). The integration process 
makes use of a figured mandrel to form cylindrical or conical shells from coated foils. The plastic foil is hold against the 
mandrel surface by vacuum chuck: the foil is then held inside grooves of the spokes of a supporting wheel. Epoxy is 
cured while foils are still inside the mandrel. An evolution of this process does not make use of epoxy resin but simply 
constrains the foil mechanically with vertical pins defining the outer geometry (Fig. 3, right). The surface tightness of the 
foils can be tuned to improve the azimuthal profile. 

 
Fig. 3: (left) A thin plastic foil optic with tungsten coating mounted on the spokes of a spider structure. The mandrel used for 
integration is also visible in the background[8]. (right) A second integration concept, in which pins constrain the surface without using 
epoxy resin[9]. 

The angular resolution achieved in X-rays has been directly tested at the 35 m long XACT facility[17]. Following 
the first integration approach, prototypes of cylindrical mirror shells with 8 m focal lengths have reached a FWHM of 30 
arcsec in focus (Fig. 4, left): the daisy shape of the focal spot denotes a major impact of roundness errors in the figure. A 
finite element modeling shows that a similar effect can be expected from thermal stress, especially near the spokes (Fig. 
4, right). The second integration concept has returned better results in terms of FWHM at 0.27 keV (13 arcsec), even if 
the HEW is worse (1.9 arcmin) as a result of surface scattering and mid-frequency slope errors.   

In addition to a further development of the integration concept to improve the shape of plastic foils, a viable 
possibility is the application of piezoelectric actuators to correct the slope defects where they have the maximum 
amplitude, as highlighted by the FEM analysis. Also in this case, the observation of the intra-focal image yields useful 
indications on the real shape of the mirror, which can be used to return a feedback to the voltage matrix. 
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Fig. 10: View of the 35 m long XACT facility, at INAF/OAPA. 

5. CONCLUSIONS  
We are taking our first steps in active X-ray optics for astronomical applications. Our approach is the activation of 
lightweight X-ray optics already developed in INAF/OAB with slumped glasses, and in UNIPA on plastic foils, using 
commercial piezoelectric components, the metrology tools already available, and the existing test facility at 
INAF/OAPA. Finite Element Modeling has shown which model of piezoceramic component is suitable for the shape 
correction of integrated, slumped, 0.4 mm thick glass foils. The deposition of the electrical contacts on the rear side of 
the glass mirrors is also being realized. Feedback on the actual shape imparted by the piezoelectric array will be provided 
in X-ray full-illumination, in situ and real time, in intra-focal setup, at the XACT facility. FEM analysis is ongoing to 
extend the simulation to a mirror with a measured profile error, and to determine the optimal piezoceramic array 
geometry. Piezoceramic actuators will be purchased and characterized soon. 
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