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Abstract

Cir X-1 is a neutron star X-ray binary characterized by strong variations in flux during its eccentric ∼16.6 day
orbit. There are also strong variations in the spectral state, and it has historically shown both atoll and Z state
properties. We observed the source with the Imaging X-ray Polarimetry Explorer during two orbital segments, 6
days apart, for a total of 263 ks. We find an X-ray polarization degree in these segments of 1.6%± 0.3% and
1.4%± 0.3% at polarization angles of 37° ± 5° and −12° ± 7°, respectively. Thus, we observed a rotation of the
polarization angle by 49° ± 8° along the orbit. Because variations of accretion flow, and then of the hardness ratio,
are expected during the orbit, we also studied the polarization binned in hardness ratio and found the polarization
angle differing by 67° ± 11° between the lowest and highest values of the hardness ratio. We discuss possible
interpretations of this result that could indicate a possible misalignment between the symmetry axes of the
accretion disk and the Comptonizing region caused by the misalignment of the neutron star’s angular momentum
with respect to the orbital one.

Unified Astronomy Thesaurus concepts: X-ray binary stars (1811); Polarimetry (1278); X-ray astronomy (1810);
X-ray sources (1822)

1. Introduction

X-ray binaries (XRBs) consist of a compact object with a
stellar companion orbiting it, from which it accretes matter.
Flux and spectral variations in XRBs are thought to correspond
to different accretion configurations. The spectrum of each state
can be interpreted as a superposition of different components
having a different relative flux: typically the accretion disk,
emitting a soft, nearly thermal spectrum described by a
blackbody or a multicolor disk, and a corona of hot plasma,
whose electrons up-scatter the low-energy ambient photons,
generating a hard X-ray component. In neutron star (NS) XRBs
(NS-XRBs), the surface region, where the accreting matter is
stopped, also contributes to the total emission. The interfacing
region, which is coplanar to the accretion disk, is known as the
boundary layer (BL; Shakura & Sunyaev 1988; Popham &
Sunyaev 2001), while the gas layer at the NS surface,
extending up to high latitudes, is known as the spreading layer
(SL; Inogamov & Sunyaev 1999; Suleimanov & Poutanen
2006; Abolmasov et al. 2020). XRBs with a weakly
magnetized NS are classified, according to their tracks on the
hard/soft X-ray color diagram, as Z or atoll sources (Hasinger
& van der Klis 1989; van der Klis 1989).

Cir X-1 is a weakly magnetized NS-XRB characterized by
an eccentric (e∼ 0.45) ∼16.5 day orbit (see, e.g., Kaluzienski
et al. 1976; Schulz et al. 2020), during which its flux and
spectrum change significantly, very different from any other
known XRB. Cir X-1 has historically been shown to go
through all the different states for both Z and atoll sources
(Schulz et al. 2019). On the basis of its spectral characteristics,
it was for a long time suspected to host a black hole, but the
discovery of type I bursts undoubtedly proved that the compact

object is an NS (Tennant et al. 1986; Linares et al. 2010).
During its orbit, the X-ray flux varies by 2 orders of magnitude,
and there are also more irregular decades-long variations (D’Aì
et al. 2012).
An extended emission from a supernova remnant has been

found around Cir X-1 (Heinz et al. 2013) with an estimated age
of 4600 yr, implying that the source is the youngest known
XRB (as reported by Heinz et al. 2013). The young age is
consistent both with the eccentricity of the orbit and with its
irregular variations. Another characteristic that sets Cir X-1
apart from other XRBs is the presence of both radio and—a
unique case identified so far for NS-XRBs—X-ray jets,
indicating the ejection of matter at relativistic speeds. The
X-ray jets are clearly visible on both sides of the receding and
approaching radio jet (Heinz et al. 2007; Soleri et al. 2009).
Their presence, observed by Chandra either as a Doppler shift
of emission lines or by directly imaging a diffuse and elongated
emission, is interesting for comparing this system with black
holes, showing that jets can be produced despite the shallower
gravitational potential of NSs (Fender et al. 2004). The
orientation of the radio jets has been reported to change with
time either because of the precession of the regions from which
they are emitted, where it is well accepted that they must be
close to the compact object, or because of the interaction with
the interstellar matter (Coriat et al. 2019).
Several models have been proposed to account for the

peculiar orbital and state variations of Cir X-1. A dip in the
light curve—followed by a flaring phase—is seen every orbit.
This dip could be caused by a cold absorber; however, this
would work only for high inclinations (D’Aì et al. 2012).
According to Johnston et al. (1999), the eccentric orbit causes
orbital variations in the mass accretion rate, producing the
modulation in the X-ray luminosity. Schulz et al. (2019)
suggested that the companion is a massive supergiant of Be
type, which would imply that Cir X-1 is a high-mass Be XRB.
The available observations until now have not been sufficient
to discriminate among the different models.
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We report the first polarimetric study of Cir X-1 using the
Imaging X-ray Polarimetry Explorer (IXPE), measuring the
new observables of polarization degree (PD) and polarization
angle (PA). With X-ray polarimetry we can discern, from
different polarization signatures, the different emission
mechanisms and the geometry of the regions closer to the
compact object. In the absence of relativistic effects, the PA is
expected to be either parallel or perpendicular to the main
geometrical axis of the component; as a consequence, if two
components (such as a disk and Comptonized region) are
aligned, we expect their PAs to be either the same or
orthogonal. If this is not the case, it can indicate that there is
a geometrical misalignment between them, or that relativistic
effects rotate the polarization plane (e.g., Connors &
Stark 1977; Connors et al. 1980; Dovčiak et al. 2004; Loktev
et al. 2020, 2022).

2. Observations

2.1. IXPE

IXPE (Soffitta et al. 2021; Weisskopf et al. 2022) is the first
observatory combining detectors sensitive to X-ray polarization
in the 2–8 keV energy band with X-ray optics. This mission, a
collaboration between NASA and the Italian Space Agency,
consists of three X-ray polarization sensitive gas pixel detectors
(Costa et al. 2001; Bellazzini et al. 2006, 2007; Baldini et al.
2021) at the focus of three grazing incidence optics. Other than
detecting polarization, IXPE simultaneously detects the energy,
time of arrival, and celestial position of each X-ray detected.

IXPE observed Cir X-1 in two different pointings (2023-08-
02T11:24 to 2023-08-04T23:52 and 2023-08-11T10:17 to
2023-08-13T22:46, joint in ObsID 02002699; see Table 1) to
cover two different parts of the orbit for a net total exposure
time of 263 ks. Neutron Star Interior Composition Explorer
(NICER) and Nuclear Spectroscopic Telescope Array (NuS-
TAR) observations were performed to simultaneously partially
cover the IXPE observation. IXPE data are reduced and
corrected by the standard pipeline running at the Science
Operations Center in NASA/MSFC and were downloaded
from the IXPE public archive at HEASARC.54 In the following
analysis, event-by-event Stokes parameters are calculated
following an unweighted approach (Kislat et al. 2015; Di
Marco et al. 2022a) and computed using IXPEOBSSSIM 30.6.3
(Baldini et al. 2022); they are provided to the user in a
reference frame projected on the sky. We selected the source in
a circular region of radius 90″ centered on the source. Because
of the high brightness of this source, the background is
negligible (see Di Marco et al. 2023a).

The top panel of Figure 1 shows the IXPE light curve during
these observations overlaid with data from the Monitor of All-

sky X-ray Image (MAXI; Matsuoka et al. 2009) telescope.
MAXI is mounted on board the International Space Station and
monitors X-ray sources continuously; therefore, its light curve
allows one to study the flux variations in Cir X-1 over its entire
orbit, even outside the IXPE observation.
To verify possible changes in the accretion flow of Cir X-1,

we study its flux and hardness ratio (HR) variations over the
IXPE observing time. The bottom panel of Figure 1 shows the
IXPE HR, defined as
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The same plots show a division of the overall observations in
three phase intervals, which we will use in the following to
study the polarization along the orbit of Cir X-1: P1 (phase
from 0.21 to 0.22), P2 (phase from 0.22 to 0.36), and P3 (phase
from 0.75 to 0.90). We clearly see during the first observation a
transition from a low-flux hard state to a high-flux soft state.
The IXPE observation starts just when the source is coming out
from the dip, as shown by the MAXI light curve, so that the
low–hard state corresponds to this part of the orbit.
Figure 2 (left) shows the hardness–intensity diagram for the

three phase intervals obtained from the IXPE data. We clearly
see a variation in hardness–intensity between the low–hard and
high–soft states when moving from the first to the second phase
interval. We also see that the HR is, on average, slightly larger
in the third phase interval, when the flux is lower, compared to
the second phase interval. The same effect is also seen in the
color–color diagram (right panel of Figure 2), which shows the
evolution of the source in two colors defined for the low- and
high-energy bands.
Tominaga et al. (2023) studied Cir X-1 for an extended

period and divided (Figure 2 of their paper) the orbit into
different phases: a dip phase, where the X-ray flux is low due to
strong absorption and whose end corresponds to P1 in this
paper; a flaring phase, with rapid changes, corresponding to P2
in this paper; and a stable phase, with a gradual decrease in
X-ray flux, corresponding to P3 in this paper.

2.2. NICER

NICER (Gendreau et al. 2016), mounted on board the
International Space Station, observed Cir X-1 during part of the
IXPE observations. ObsIDs 6689030104 (right at the end of the
first IXPE observation) and 6689030203 (during the second
IXPE observation; see Table 1) were used to study the spectral
components of Cir X-1 (see Section 3). NICER consists of 56
coaligned concentrator X-ray optics, each with a silicon drift
detector at its focus, and, although it does not have imaging
capabilities, it has a large collecting area in the energy interval
of 0.2–12 keV. These observations were obtained in the

Table 1
Observational Data Used in This Paper, Reporting for Each Mission the Observation IDs, Live Time, and Start and End Times of Each Observation

Mission ObsID Live Time (s) Start Time End Time

IXPE 2002699 263,000 2023-08-02T11:24 2023-08-04T23:52
2023-08-11T10:17 2023-08-13T22:46

NICER 6689030104 305 2023-08-05T00:22 2023-08-05T00:35
6689030203 4325 2023-08-13T00:27 2023-08-13T20:57

NuSTAR 30902037002 12,000 2023-08-04T21:51 2023-08-05T09:01
30902037004 15,000 2023-08-12T14:31 2023-08-13T01:26

54 https://heasarc.gsfc.nasa.gov/docs/ixpe/archive/
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framework of GO Cycle 5 (proposal 6189); data were
processed with the NICER Data Analysis Software v010a
released on 2022 December 16 provided under HEASOFT
v 6.31.1 with the CALDB version released on 2022 Octo-
ber 30.

2.3. NuSTAR

NuSTAR (Harrison et al. 2013) consists of two focal plane
modules (FPMA and FPMB) providing broadband X-ray
imaging, spectroscopy, and timing in the energy range of
3–79 keV with an angular resolution of 18″ (FWHM) and
spectral resolution of 400 eV (FWHM) at 10 keV, and it is the
only observatory employing multilayer X-ray optics capable of
focusing hard X-rays. We used the Cir X-1 observations at the
end of the first IXPE observation (ObsID 30902037002) and
during the second one (ObsID 30902037004; see Table 1),
performed in the framework of GO Cycle 9 (proposal 9212).

NuSTAR data were processed using the standard Data
Analysis Software (NUSTARDAS v2.1.2 from 2022 February
12) provided under HEASOFT v 6.31.1 with the CALDB
version released on 2023 April 4. The source was selected
from a circular 150″ radius region centered on the source
position; the background was extracted in a similar region but
in a position of the field of view out of the source.

3. Spectroscopic Analysis

Aiming to constrain the spectral model and understand the
different components, we analyzed NICER (in 1–10 keV) and
NuSTAR (in 3–25 keV) data; the ObsIDs are those reported
above and were selected to overlap and have a short duration,
so that there would be no HR variations. Previous spectral fits,
such as in the broadband BeppoSAX spectra (Iaria et al.
2002, 2005), reported the presence of two components: a
blackbody disk and a Comptonization component. However,
the temperature of one of the components—the disk—has been
reported to be low (∼0.5 keV; Iaria et al. 2008), so the disk is
not expected to contribute significantly to the IXPE
energy band.
We attempted to fit the continuum with the two components

reported in the literature: diskbb (Mitsuda et al. 1984;
Makishima et al. 1986), associated with the disk or NS surface,
and comptt (Titarchuk 1994), associated with the Comp-
tonization in the BL/SL. We saw an excess in the residuals
around 6 keV, associated with a broad iron line due to
reflection from the disk, and around 1.7 keV, associated with
a silicon line, suspected to be an instrumental NICER feature
due to an incorrect calibration of the response, which becomes
visible at the high flux observed from Cir X-1. To estimate the
absorption from the interstellar medium, we set the abundances

Figure 1. Evolution of the X-ray properties of Cir X-1. (Top) Rate obtained by MAXI (2–20 keV) and IXPE over two orbits binned in 180 s time bins. (Bottom) HR
obtained from IXPE (Equation (1)) during the observations binned in 500 s time bins. There is a clear change in state from the hard to the soft at the beginning of the
IXPE observation; based on this, we divide the analysis into the three phase intervals indicated in the plots by the colored regions.
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