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ABSTRACT
Gaussian process regression is a widespread tool used to mitigate stellar correlated noise
in radial velocity (RV) time series. It is particularly useful to search for and determine the
properties of signals induced by small-sized low-mass planets (Rp < 4 R⊕, mp < 10 M⊕).
By using extensive simulations based on a quasi-periodic representation of the stellar activity
component, we investigate the ability in retrieving the planetary parameters in 16 different
realistic scenarios. We analyse systems composed by one planet and host stars having different
levels of activity, focusing on the challenging case represented by low-mass planets, with
Doppler semi-amplitudes in the range 1–3 m s−1. We consider many different configurations
for the quasi-periodic stellar activity component, as well as different combinations of the
observing epochs. We use commonly employed analysis tools to search for and characterize
the planetary signals in the data sets. The goal of our injection-recovery statistical analysis is
twofold. First, we focus on the problem of planet mass determination. Then, we analyse in
a statistical way periodograms obtained with three different algorithms, in order to explore
some of their general properties, as the completeness and reliability in retrieving the injected
planetary and stellar activity signals with low false alarm probabilities. This work is intended
to provide some understanding of the biases introduced in the planet parameters inferred from
the analysis of RV time series that contain correlated signals due to stellar activity. It also
aims to motivate the use and encourage the improvement of extensive simulations for planning
spectroscopic follow-up observations.

Key words: methods: numerical – methods: statistical – techniques: radial velocities – stars:
activity – planetary systems.

1 IN T RO D U C T I O N

Over the last two decades, ground and space-based transit surveys
have unveiled the very rich and unexpected variety of distant worlds
orbiting stars of different spectral type, age and activity levels in the
Galaxy. Moreover, starting or upcoming surveys will dramatically
increase the number of planet detections and the variety of the
statistical planetary sample within the next decade. Most of the
currently known exoplanets have been discovered through transit
observations, which alone provide only the size of the planets.
Unless transit timing variations (TTV) are detected (e.g. Agol &
Fabrycky 2017), the planetary masses have to be measured through
the analysis of the radial velocity (RV) time variations of the host
star, induced by the gravitational interaction with the planets.

For transiting extrasolar planets with measured masses, the bulk
densities can be determined, and through the analysis of the plan-
etary mass–radius diagram one can infer the bulk composition and

� E-mail: mario.damasso@inaf.it

structure of observed planets, and compare them with formation and
evolution models. This in turn helps to put reliable constrains on the
different migration mechanisms that have been proposed to describe
the observed architectures of the planetary systems. Moreover,
precise measurements of the bulk density can help in the prediction
of the surface temperature of potentially habitable planets.

One of the most interesting results obtained thanks to the
discoveries made by the Kepler/K2 mission is that the radii of
small, close-in extrasolar planets (R < 4 R⊕ and P < 100 d) follow
a bi-modal distribution (Owen & Wu 2013; Fulton et al. 2017;
Zeng et al. 2017a; Zeng, Jacobsen & Sasselov 2017b). Different
studies have confirmed and strengthened this finding by improving
the precision on the host star radii (Berger et al. 2018; Fulton &
Petigura 2018). A gap located at ∼1.5–2 R⊕ divides a population
of super-Earth/Earth-sized planets from that of sub-Neptunes. This
evidence could be the direct proof that photoevaporation is a major
mechanism responsible for planetary mass-loss, as predicted by
some theoretical studies (e.g. Owen & Wu 2013; Lopez & Fortney
2014). The smallest planets below the gap could have lost the outer
gaseous envelope through an X-UV radiation-driven erosion, while
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those with larger radii could still retain a significant fraction of
volatiles. In this context, the smallest planets are expected to have
the highest bulk densities, indicative of a rocky composition, while
planets above the gap should have lower densities as a consequence
of their H2/He gaseous envelopes (gas dwarfs) or H2O-dominated
ices/fluids (water worlds), according to two of the mainstream
scenarios (e.g. Owen 2019; Wu 2019; Zeng et al. 2019).

The discovery of the ‘radius gap’ for small-sized planets makes
the accurate and precise measurement of their masses a still more
urgent matter. Measuring the masses of small-size, low-mass planets
through the RV method is not an easy task for several reasons.
First of all, currently only few high-resolution and high-stability
spectrographs in use for several years (e.g. HARPS, HARPS-N,
HIRES) are able to provide the RV precision necessary for precise
measurements of the RV amplitude of low-mass exoplanets. The
‘weighing’ of low-mass planets is made an even more complex task
by crucial aspects, such as the observing conditions, the magnitude,
and spectral type of the host star, the orbital period of the planet,
and the level of the stellar activity, which can have a major negative
impact on the analyses (e.g. Dumusque 2016; Fischer et al. 2016;
Dumusque et al. 2017). All these issues must be carefully accounted
for when planning observing campaigns aimed at characterizing
extrasolar planets, and some preparatory, target-tailored analyses are
usually performed to define the best observing strategy to measure
masses with the best precision possible (e.g. Damasso et al. 2018).

In this study we define a framework that could help the selection
of the most promising targets for a spectroscopic follow-up with
chances to provide exoplanet masses with good accuracy and
precision. We investigate reliable scenarios typically faced by teams
involved in characterization studies of exoplanets, and test tools for
data analysis that are presently in the toolbox of every exoplanet
hunter. We use extensive simulations of RV data sets, described
in Section 2, for two types of analyses. In the first part of the
paper (Section 3) we use statistics to investigate how accurately the
planetary signals are retrieved in presence of a quasi-periodic stellar
activity component. Here we consider: (i) systems with only one
planet; (ii) different levels of stellar activity; (iii) stellar rotation
periods Prot close to or well-separated from the planetary orbital
period Porb; (iv) short and long evolutionary time-scales of the
correlated stellar activity signal included in the RV time series; (v)
the case of a survey carried out with only one spectrograph during
one and two observing seasons, in order to simulate a scenario repre-
sentative of on-going and future planet characterization campaigns
such as those focused on Kepler/K2 or TESS targets (the inclusion
of RV measurements collected with more than one instrument
would introduce a higher level of complexity that we decided to
avoid in this work, nevertheless without making our simulations
less realistic). The choice of simulating planets with Porb ∼ Prot

originates from the intrinsic difficulties encountered in separating
the stellar activity from the planetary signal in real RV data sets,
when they have very similar periods (e.g. Vanderburg et al. 2016).

The blind detection of small-amplitude planetary signals is
another challenging aspect related to RV time series affected by
stellar activity. Simulated RV time series, containing signals due to
stellar activity, have been used in previous works to test techniques
for detecting planets (e.g. Feng et al. 2016; Dumusque et al. 2017),
or to apply a variety of methods to estimate the Bayesian evidence
for a range of planetary signals (Nelson et al. 2018). Pinamonti et al.
(2017) studied the efficiency of different period-search approaches
in retrieving small-amplitude planetary signals, making use of
simulated data sets also containing simple modelling of the stellar
activity. In this perspective, we exploit the mock data sets for a
complementary analysis aimed at characterizing features appearing

in the periodograms that can be related to the different properties of
the simulated quasi-periodic stellar activity scenarios. This second
part of our study is described in Section 4. As done by Pinamonti
et al. (2017), the frequency content of each data set is investigated by
means of three common and publicly available softwares: the Gener-
alized Lomb–Scargle periodograms (GLS; Zechmeister & Kürster
2009), the Bayesian Generalized Lomb–Scargle (BGLS; Mortier
et al. 2015), and the FREquency DEComposer (FREDEC; Baluev
2013). The results of this analysis can be useful to interpret the mor-
phology of the periodograms calculated on real data, which usually
are the first to be investigated when searching for planetary signals.

2 SI MULATI ON SET-UP

In this work we aim to explore a number of realistic scenarios
through a statistical analysis of a large number of samples. We
simulated systems consisting of only one planet to keep the size
of the parameter space limited, since the inclusion of additional
planets would require a much larger set of simulations in order to
cover many system architectures and draw statistically meaningful
conclusions. We assume that all the data have been collected with the
same instrument. In what follows, we summarize the main features
that we have taken into account to simulate the RV data sets, and
provide the justification for their adoption.

2.1 Planetary Doppler signals

We simulated planets on circular orbits, which is a reasonable
assumption for low-mass planets with low Porb (Van Eylen et al.
2019). The semi-amplitude of the Doppler planetary signal Kp

was kept fixed to 1 m s−1 for all the cases. The planetary orbital
periods Porb were generated between ∼10 and 20 d, either close
or far apart from the stellar rotation period Prot (see Section 2.2).
Assuming Kp = 1 m s−1 and K-to-mid M dwarfs as host stars,1 the
corresponding planetary masses are in the range 1.5–4.0 M⊕. Using
the relations of Weiss & Marcy (2014) to provide likely estimates
for the planet sizes, this mass interval corresponds to radii in the
range 1.1–1.5 R⊕. This is the interval that includes the first mode of
the bi-modal distribution of close-in planet sizes (Fulton et al. 2017;
Fulton & Petigura 2018). Therefore, we simulated systems that are
particularly challenging for the state-of-the-art high-precision and
high-stability spectrographs that can be accessed nowadays. None
the less, they are among the more interesting scenarios for exoplanet
characterization studies.

2.2 Stellar activity model

The stellar component in the RVs was simulated as a quasi-periodic
signal, which is described by the kernel with the same name used
in Gaussian process (GP) regression analysis. The quasi-periodic
GP model is often used to effectively correct (mitigate) the stellar
activity term in RV time series that contain signals modulated on
Prot (e.g. Affer et al. 2016; Damasso & Del Sordo 2017; Pinamonti
et al. 2018), and the effective use of GP models in recovering
small-amplitude planetary signals was demonstrated for the case
of synthetic RV time series (e.g. Dumusque et al. 2017). As often

1In this work we do not assume stars of some specific spectral type, since this
information is not crucial for the simulation set-up. In general, we consider a
typical star observed by space-based transit surveys as a representative target,
i.e. a main-sequence star of spectral type between G and M, sufficiently
bright to be selected for high-precision spectroscopic follow-up.
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happens, the stellar rotation period can be measured from space-
or ground-based photometry, or from time series of spectroscopic
activity indicators. A quasi-periodic model can be assumed as a
realistic, even if not necessarily complete, representation of the
stellar activity contribution due to active regions. Our simulations
do not have the same level of detail as those devised by Dumusque
(2016), which also include contributions such as those due to stellar
oscillations, granulation, and supergranulation. None the less, by
injecting a quasi-periodic signal we are simulating a reliable sce-
nario useful for a statistical study, despite being only one of several
possible representations of the stellar component in RV time series.

The quasi-periodic kernel used in our analyses is described by
the following covariance function and hyper-parameters

K(t, t ′)=h2×exp

[
− (t − t ′)2

2τAR
2

−
sin2(

π (t − t ′)
Prot

)

2w2

]
+σ 2

RV(t)×δt,t′ ,

(1)

where K(t, t
′
) represents the covariance matrix element between

observation at time t and t
′
, h is the amplitude of the correlations;

Prot is the stellar rotation period of the star; w is the length-scale
of the periodic component, describing the level of high-frequency
variation within a complete stellar rotation; τAR is the correlation
decay time-scale, that can be physically related to the lifetime of
the active regions (AR); and σ RV(t) is the RV uncertainty at epoch
t (see next section).

We explored two different ranges of Prot, by adopting Prot ∼ 10 d
for active stars and Prot ∼ 20 d for the low-activity sample. This
choice is rather arbitrary but based on the known fact that more
active stars tend to rotate faster (e.g. Stelzer et al. 2016; Mascareño
et al. 2018).

Among the GP hyperparameters, τAR is particularly tricky, as
it is not clear whether in general it carries some real physical
information. This is true especially when a consistency check is
not possible using contemporary photometric observations. For
instance, several examples exist of RV data sets we have analysed
using a quasi-periodic GP model for which estimates of τAR have
values close to Prot (e.g. Damasso et al. 2018; Haywood et al. 2018;
Malavolta et al. 2018; Pinamonti et al. 2018). On the other hand,
other studies cast doubts on this hypothesis, stating that much longer
time-scales solutions should be more physically valid, especially
for M dwarfs (e.g. Perger et al. 2017, and references therein). We
explore here two different regimes for τAR, by simulating rapidly
evolving correlations, τAR ∼ Prot, and stars with activity evolving
over longer time-scales, τAR ∼ 10 × Prot.

As for the amplitude of the stellar signals, h, we investigated two
representative regimes of stellar activity. We defined them on the
basis of the typical scatter observed in the RVs2 for a low-activity
star, h ∼ 3 m s−1, and a high-activity star, h ∼ 15 m s−1 (e.g. Santos
et al. 2000; Suárez Mascareño et al. 2017; Mascareño et al. 2018;
Damasso et al. 2019). In a more general sense, our definition of
low and high stellar activity levels should be intended as relative to
the small semi-amplitude of the planetary signal investigated in this
work, i.e. h � Kp and h � Kp.

2.3 RV uncertainties

We assumed that the RV measurements are collected by a high-
resolution and high-stability spectrograph, as HARPS or HARPS-

2Referring to the measurements collected with the kind of spectrographs
considered in this work.

N, in order to simulate a realistic follow-up campaign in terms of
access to the observing facilities. We took into account the expected
average precision for such instruments3 and for a typical target
eligible for follow-up observations (see e.g. Fischer et al. 2016).
For instance, the RV precision expected with HARPS-N for a K0V
star of magnitude V = 10.5, with 1800 s of exposure taken at air
mass 1.2 and with a seeing of 1.2 arcsec, is σ RV ∼ 1 m s−1.

However, to simulate a more realistic final error budget we
adopted a lower average data precision of 2 m s−1, which is
equivalent to considering an additional noise term ∼1.7 m s−1

added in quadrature to the nominal uncertainty. This can realistically
represent what is expected for fainter targets, and takes into
account possible worsening factors such as the cross-correlation
function (CCF) noise, the rotational broadening of the CCF, and
additional noise dependent on the specific RV-extraction algorithm.
We generated the uncertainty for each data point from a normal
distribution with mean equal to 2 m s−1 and standard deviation
equal to 0.3 m s−1.

2.4 Observing seasons and epochs

We simulated up to two consecutive observing seasons (or
semesters). We analysed the time series with one and two seasons
of observations as two separate cases, investigating the significance
of the retrieved activity and planetary parameters as a function of
the number of measurements.

To make the simulations realistic, the epochs of observation for
the first semester have been generated adopting a typical schedule of
nights with HARPS-N at the TNG telescope in La Palma allocated
to the GTO collaboration4 and to the GAPS/GAPS2 programmes
(Benatti et al. 2016), which are organized in shared risk mode. In
our case, we adopted the real allocated observing time between the
end of 2017 October and the end of 2018 March, consisting in 63
nights. We assumed that the target was visited once per night, and
for each night we generated randomly an observing time from a
normal distribution with mean equal to the midnight of that date
and standard deviation equal to 0.01 d. Then, taking into account
any loss due to bad weather, or Moon contamination constraints, or
technical problems, we assumed a duty cycle equal to 65 per cent5

and randomly drawn 40 out of 63 epochs, which we define hereafter
as the Nepochs,s1 ensemble.

In the case of two semesters of observations, we added 40
additional time stamps to Nepochs,s1. These new time stamps were
randomly drawn from an array of equally spaced epochs delayed
by 365 d with respect of the first semester. As before, the epochs
were randomly shifted around the midnight of the date. Then, each
final data set of epochs used to simulate two semesters consists of
Nepochs, s2 = 80. Fig. 1 shows examples of randomly drawn Nepochs, s1

and Nepochs, s2 time stamps.
This procedure was repeated 50 times, resulting in 50 groups of

simulated RV data sets, both for one and two observing seasons.
Each group is composed of 100 RV time series that share the same
time stamps, with 5000 simulated data sets for each scenario, and
80 000 mock data sets in total. By varying the epochs within each
group, coupled to the randomly drawn values of Porb and T0,b,

3This can be estimated through the on-line exposure time calculators avail-
able at https://www.eso.org/observing/etc/bin/gen/form?INS.NAME=HA
RPS + INS.MODE = spectro and http://www.tng.iac.es/instruments/harps/
4https://plone.unige.ch/HARPS-N/science-with-harps-n
5This duty cycle is the typical percentage of useful time for the GAPS
programme after five years of observations.
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Figure 1. Examples of mock RV data sets used in this work. Upper panel:
Two seasons of data for low activity stars with Prot �= Porb and τAR � Prot.
Lower panel: Two seasons of data for active stars with Prot ∼ Porb and τAR

∼ Prot.

we made the results independent from a particular choice of the
observing sampling, as discussed in B, despite the epochs are drawn
from the same ‘mold’ calendar. A more detailed investigation of the
effects due to different samplings is beyond the scope of this paper.

2.5 Global model and generation of the mock data sets

The final model used to simulate each data set is the sum of one
circular orbit (characterized by semi-amplitude Kb, period Pb, and
time of inferior conjunction T0, b) and a correlated quasi-periodic
signal representing the stellar activity contribution. For each simu-
lated time series, the model parameters have been randomly drawn
from distributions as shown in Table 1, depending on the specific
astrophysical scenario. Then, after injecting the two signals, each
data point of the time series was randomly shifted within its error
bar σ RV(t) (Table 1), using a normal distribution centred on zero
and with σ = σ RV(t). Examples of simulated data sets are shown
in Fig. 1. It is worth noticing that stellar and planetary parameters
used to simulate the one season data sets and the corresponding two
seasons data sets are not the same, since we were not interested
in studying the effect of additional observations on a star-by-star
basis, but only in a statistical sense.

A key point in our simulations is that, in each mock data set,
the stellar activity term was randomly drawn using the sample
function of the GP object implemented in the GEORGEv0.2.1

Table 1. Simulation set-up: how each parameter has been drawn to generate
the total 80 000 data sets simulated in this work.

Parameter Low activity High activity

h (m s−1) N (3, 0.52) N (15, 12)
Prot (d) N (20, 1.52) N (10, 12)
τAR (d) N (μProt , σ

2
Prot

) [short τAR]
N (10 × μProt , 102) [long τAR]

w N (0.5, 0.22)

Kb (m s−1) 1, fixed
Pb (d) N (μProt , σ

2
Prot

) [Porb ∼ Prot]
N (13, 1.52) N (18, 1.52)
[Porb �= Prot] [Porb �= Prot]

T0, b (d) N (50, 52)
σRV (m s−1) N (2, 0.32)

package (Ambikasaran et al. 2014) used to define the GP framework.
Once the GP hyperparameters have been drawn, the sample
function returns a randomly drawn list of predictions at the time
stamps of the observations.6 This allows for simulations free from
a particular representation of the stellar activity component given
a set of hyperparameters and, within our working framework, this
procedure makes our results statistically representative of what it
is expected on average for an activity signal described by a quasi-
periodic model.

The general properties of the distributions of the simulated param-
eters are summarized in Table A1. To define the final set of mock RV
time series to be analysed, we adopted selection criteria in order to
avoid overlaps (interchange) between samples with Prot ∼ Porb and
those with Prot �= Porb, so that they represent two distinct groups. We
imposed constraints on |Prot − Porb|: concerning samples with Prot

∼ Porb we considered only those for which |Prot − Porb| < 4 d, while
for samples with Prot �= Porb we analysed only samples for which
|Prot − Porb| > 4 d. This selection resulted in a very low percentage
of rejected samples for the case of active stars (< 1.5 per cent),
while between 6 per cent and 8 per cent of the mock data sets
were removed from the analysis for stars with low level of activity,
ensuring a statistically large number of RV time series.

3 MONTE CARLO FI TTI NG A NA LY SI S

We first analysed the simulated data sets described in Section 2 from
the perspective of someone interested in determining the mass of a
transiting planet, within the framework of GP regression to model
the stellar activity signal. Hereafter we describe the set-up used for
a Monte Carlo (MC) analysis of the simulated RV data sets, then
we summarize the results schematically by distinguishing among
different scenarios.

3.1 Analysis set-up

Conservatively, we assumed that the planet orbital period is known
from the transit analysis with a precision of 0.5 d, and that Prot

can be constrained with a precision of 5 d from photometry
and/or from other activity diagnostics, as those derived from high-
resolution spectra. We fit the planetary signal with a Keplerian with
null eccentricity, and the stellar signal using the same GP kernel
described in equation (1). Our working hypothesis is that the choice

6Details can be found in http://betatim.github.io/posts/Gaussian-processes
-with-george/
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Table 2. Priors used to recover the model parameters through an MC
sampling combined with a GP regression.

Jump parameter Low activity High activity

h (m s−1) U (0, 10) U (0, 30)
τAR (d) U (0, 1000)
w U (0, 1)
Prot (d) U (Prot, sim.−5, Prot, sim. + 5)
Kb (m s−1) U (0, 5)
Porb (d) U (Porb, simul.−0.5, Porb, simul. + 0.5)
T0, b (d) U (0, 100)
σ jit ( m s−1) U (0, 10)

of a quasi-periodic kernel is justified, so that this representation can
be used confidently to model the correlated stellar activity signal
present in the RV time series. We supposed that the amplitude h of
the stellar activity term cannot be well constrained a priori, but it
could be as high as 30 m s−1 for an active star. For the evolutionary
time-scale τAR we adopted a large uninformative prior, since it
is usually difficult to constrain this hyperparameter a priori (an
alternative prior choice is discussed in Section 3.2.2). All these
assumptions are at the basis of our choice of the prior distributions
used in the MC analysis (Table 2).

Our fitting framework includes a constant jitter term σ jit which
is added in quadrature to the uncertainty σ RV(t), and takes into
account any additional source of uncorrelated noise, instrumental,
and astrophysical. Doing this we followed a common practice,
therefore we included σ jit in our analysis even if our simulated
data were built without considering any additional uncorrelated
noise, that is σ jit = 0 m s−1 in the mock RVs by construction. It
is an interesting exercise to explore whether the fitting procedure
results in non-negligible estimates for σ jit and for which scenario
this potentially occurs.

The data analysis was carried out with commonly used and well-
tested tools to perform MC sampling within a GP framework. We
used the open source Bayesian inference tool MultiNestv3.10
(e.g. Feroz et al. 2013), through the pymultinest wrapper for
python (Buchner et al. 2014), with 500 live points and a sampling
efficiency of 0.8, which is a recommended value for the purpose of
parameter estimation. The GP module is the same publicly available
GEORGEv0.2.1 library forpython we used to generate the data
sets.

3.2 Model parameter retrieval

We examined the outcomes of the MC analyses by studying
separately the results for each simulated scenario. To assess their
quality, we used the quantities defined in Table 3. We adopt the
16th, 50th, and 84th percentiles of their posterior distributions as
our statistics.

The results are summarized in Table 4. We remind that, for each
simulated scenario, the quantiles are calculated over all the selected
mock RV time series, and they represent the average expectations
over 50 different realizations of the observing epochs. Hereafter
we discuss separately the different scenarios, as well as highlight
selected interesting outcomes of our analysis.

Case I. Low-activity star; Porb ∼ Prot. Concerning the planetary
term Kb,ratio 50 per cent, which represents the accuracy on the retrieved
value of Kb, it increases by ∼ 20 per cent after a second season
of observations, but the detection significance Kb, 50 per cent/σ

−
Kb

remains unchanged and stays below 2σ (therefore implying a
non-detection) even with two seasons of data. There is evidence

Table 3. Description of quantities analysed in this work and derived from
the MC sampling combined with a GP regression (Section 3.2 and Table 4).

Quantity Description

hratio Ratio between the retrieved amplitude of the activity
term and the corresponding injected value for each
mock RV data set;

Prot, ratio Ratio between the retrieved stellar rotation period in
the activity term and the corresponding injected
value for each mock RV data set;

τAR, ratio Ratio between the retrieved active region
evolutionary time-scale and the corresponding
injected value for each mock RV data set;

σ ratio Average of the ratio between the total error budget in
the retrieved model and the injected uncertainty (at
epoch t) for each mock RV data set (see equation 2);

Kb, ratio 50 per cent Ratio between the 50th percentile of the planetary
semi-amplitude retrieved from each mock data set
(i.e. the best-fitting value obtained for Kb) and the
corresponding injected semi-amplitude;

Kb, ratio 68.3 per cent

Ratio between the 68.3th percentile of the planetary
semi-amplitude Kb retrieved from each mock data set
and the corresponding injected value;

Kb, 50 per cent/σ
−
Kb

Ratio between the 50th percentile of the posterior of
the planetary semi-amplitude Kb and its lower
uncertainty. We assume this parameter to quantify
the significance of the retrieved planetary Doppler
semi-amplitude with respect to a null value.

for a broadening of its distribution towards higher values for the
scenario with long τAR (Kb, 50 per cent/σ

−
Kb

∼ 3 at + 1σ ), for which
the length-scale of the stellar activity correlated signal is longer
than Prot. Concerning the stellar component, with only one season
of data τAR comes strongly overestimated when τAR ∼ Prot. The
accuracy improves after two seasons, even though a tail at longer
τAR persists, as can be seen in Fig. 2. A similar tendency is seen
when τAR � Prot, but the overestimate is smaller and the posterior
distributions for τAR appear more symmetrical. This result can
be partially explained taking into account the small amplitude
of the stellar component, which makes the signal reconstruction
more difficult in presence of activity evolving on short-term time-
scales, especially with a scarce number/sampling of data (cf. with
case III). We show in Section 3.2.2 that a different choice of the
prior on τAR has a positive impact on the accuracy of the retrieved
values.

Case II. Low-activity star; Porb �= Prot. The main outcome is
that, while the detection significance generally stays below 2σ , it
increases to ∼2σ for the case τAR �Prot with two seasons of data,
with the distribution moving towards higher values (Fig. 3). This
result represents a slight improvement with respect the correspond-
ing scenario where Porb ∼ Prot, suggesting that there should be an
effect due to how close the stellar rotation and orbital periods are.
The distribution of Kb,ratio 50 per cent remains unaffected passing from
Nepochs, s1 to Nepochs, s2 observations, and there are no appreciable
differences for the stellar component compared to Case I, especially
for the distributions of τAR that are similar to those in Fig. 2.

Case III. Active star; Porb ∼ Prot. The semi-amplitude Kb is
overestimated by 100 per cent or more when τAR ∼ Prot, even
with Nepochs, s2 data. The overestimate of Kb, 50 per cent decreases
to 20 per cent for the case with Nepochs, s2 data and long τAR,
but with a relative uncertainty of ∼ 66 per cent. The significance
Kb, 50 per cent/σ

−
Kb

, which is ∼1.5–1.6σ in all cases, has narrower
distributions for τAR ∼ Prot, while for τAR � Prot the distributions
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2560 M. Damasso et al.

Table 4. Summary of the main results of the analysis performed with MultiNest (Section 3.2). The estimates are given as 16th, 50th, and 84th percentiles of
the various distributions we have examined.

Prot ∼ Porb Prot �= Porb

Parameter Short τAR Long τAR Short τAR Long τAR

One observing season
Low-activity star hratio 1.0 ± 0.4 1.1 ± 0.5 1.01 ± 0.4 1.1+0.5

−0.4

Prot, ratio 1.01 ± 0.09 1.00 ± 0.02 1.0 ± 0.09 1.00 ± 0.02
τAR, ratio 10.1+15.5

−8.7 2.7+0.4
−0.711 9.5+16.3

−8.1 2.7+0.4
−0.7

σ ratio 1.2+0.3
−0.1 1.05+0.09

−0.02 1.2+0.4
−0.1 1.06+0.1

−0.04

Kb, ratio 50 per cent 1.2+0.9
−0.5 1.08+0.7

−0.5 0.9+0.7
−0.3 0.8+0.5

−0.4

[1.2+0.9
−0.5, 886 samples]a [1.6 ± 0.7, 910 samples]a

Kb, ratio 68.3 per cent 1.6+0.9
−0.6 1.4+0.9

−0.6 1.2+0.7
−0.4 1.1+0.5

−0.4

Kb, 50%/σ−
Kb

1.6+0.7
−0.1 1.6+0.6

−0.1 1.60+0.71
−0.09 1.7+0.9

−0.2

[1.6+0.56
−0.09]a [1.6+0.5

−0.1]a

Active star hratio 1.0 ± 0.2 1.2 ± 0.3 1.0 ± 0.2 1.3 ± 0.3
Prot, ratio 1.02+0.12

−0.08 1.000 ± 0.004 1.02+0.12
−0.08 1.00+0.07

−0.06

τAR, ratio 1.3+4.7
−0.4 1.3+0.8

−0.3 1.3+7.3
−0.4 1.3+0.8

−0.3

σ ratio 2.2+2.0
−1.0 1.1+0.18

−0.05 2.0+2.1
−0.8 1.11+0.18

−0.07

Kb, ratio 50 per cent 2.14+0.5
−0.4 1.4+0.8

−0.7 1.9+0.6
−0.3 0.9+0.6

−0.3

[2.2 ± 0.4, 1395 samples]a [2.1+0.4
−0.3, 1360 samples]a

Kb, ratio 68.3 per cent 3.0 ± 0.5 1.8+1.2
−0.8 2.6+0.6

−0.5 1.2+0.6
−0.4

Kb, 50 per cent/σ
−
Kb

1.58+0.07
−0.05 1.64+0.3

−0.07 1.6+0.08
−0.06 1.6+0.6

−0.1

[1.58+0.07
−0.05]a [1.54+0.11

−0.06]a

Two observing seasons
Low activity star hratio 1.0+0.2

−0.3 1.1+0.4
−0.3 1.0+0.2

−0.3 1.1 ± 0.3

Prot, ratio 1.00 ± 0.07 1.00 ± 0.01 1.00+0.09
−0.08 1.00 ± 0.01

τAR, ratio 1.5+10.2
−0.5 1.8+1.2

−0.2 1.5+8.1
−0.5 1.7+1.2

−0.7

σ ratio 1.07+0.24
−0.04 1.03+0.05

−0.02 1.05+0.12
−0.04 1.04+0.08

−0.02

Kb, ratio 50 per cent 1.0+0.7
−0.4 0.9+0.6

−0.4 0.8+0.6
−0.3 0.8+0.5

−0.4

[1.1+0.7
−0.4, 955 samples]a [1.4+0.8

−0.5, 917 samples]a

Kb, ratio 68.3 per cent 1.3+0.7
−0.5 1.2+0.7

−0.5 1.0+0.6
−0.3 1.0 ± 0.4

Kb, 50 per cent/σ
−
Kb

1.6+0.8
−0.1 1.7+1.2

−0.2 1.6+0.9
−0.1 1.9+1.5

−0.4

[1.6+0.6
−0.1]a [1.6+0.7

−0.1]a

Active star hratio 0.9 ± 0.1 1.1 ± 0.2 1.0 ± 0.1 1.1 ± 0.2
Prot, ratio 1.00+0.05

−0.04 1.000 ± 0.002 1.00+0.05
−0.04 0.999 ± 0.002

τAR, ratio 1.1+0.3
−0.2 1.1 ± 0.2 1.1+0.4

−0.2 1.1 ± 0.2

σ ratio 1.7+1.7
−0.5 1.03+0.04

−0.02 1.4+1.6
−0.2 1.07+0.12

−0.04

Kb, ratio 50 per cent 1.9+0.5
−0.4 1.2+0.8

−0.7 1.5+0.7
−0.4 0.8+0.5

−0.3

[2.0+0.4
−0.3, 1374 samples]a [1.9 ± 0.3, 1368 samples]a

Kb, ratio 68.3 per cent 2.7 ± 0.5 1.6+1.2
−0.8 2.1+0.8

−0.5 1.0+0.5
−0.4

Kb, 50 per cent/σ
−
Kb

1.5+0.06
−0.05 1.5+0.5

−0.08 1.54+0.10
−0.05 1.7+1.1

−0.2

[1.54+0.06
−0.04]a [1.50+0.08

−0.06]a

aDerived from posteriors related to simulated data sets that satisfy the condition |Prot − Porb| ≤ 0.5 d.

shift towards higher values, i.e. towards slightly more significant
detections. Concerning the stellar component, the hyperparameter
τAR is well recovered after two observing seasons (indicating that
an uninformative prior performs well in these cases), while with
one season of data and for τAR ∼ Prot the distribution of τAR is
skewed towards values larger than unity, but to a less extent than
for quiet stars, confirming that the level of activity determines how
accurately τAR is fitted (as discussed for Case I).

Case IV. Active star; Porb �= Prot. While Kb is overestimated by
100 per cent with only one season of data and for τAR ∼ Prot, it

becomes more accurate for stationary stellar activity (τAR � Prot).
The overestimate observed for short τAR reduces to 50 per cent
by doubling the number of RVs. The detection significance stays
below 2σ , but it begins to increase sensibly for stars with τAR �
Prot and Nepochs, s2 observations, similarly to what is observed for
low-activity stars. As for Case III, the hyperparameter τAR is well
recovered after two observing seasons.

Upper limits as defined by the 68th percentile. Due to the small
amplitude of the planetary signal injected in the simulated data sets,
the posterior distributions of Kb for each single RV data set tend to
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Planet detection in RV with stellar activity 2561

Figure 2. Posterior distributions for τAR, ratio = τAR,retrieved
τAR,injected

for the scenario

represented by a star with low and quickly variable activity (short τAR)
hosting a planet with Porb ∼ Prot. The upper and lower panels show the
results for one and two seasons of data, respectively. The vertical lines
indicate the median of each distribution. The inset plots are a zoomed in
view around τAR, ratio = 1 in logscale, showing that there are very few cases
where τAR is underestimated. Similar results were obtained for the case
Porb �= Prot.

peak typically to very low values close to 0 m s−1. When working
with real planetary systems, in such cases the 68.3th percentile
is commonly used to provide an upper limit for Kb instead of
considering the median of the posterior distribution. Therefore,
for each scenario we analysed the distributions Kb, ratio 68.3 per cent

of the ratio between the 68.3th percentile of the Kb posterior and the
injected semi-amplitude, for each data set. From Table 4 we note
that the 68.3th percentile appears as a more accurate estimate for
Kb than the 50th percentile for low-active stars when Porb �= Prot

and with Nepochs, s2 observations. All things being equal, the same
conclusion is also valid for active stars but only for the cases with
long evolutionary time scales τAR.

The role of the uncorrelated jitter. One issue often debated when
fitting RV time series is how the results for the uncorrelated jitter
σ jit should be interpreted. As mentioned in Section 3.1, we did not
include any uncorrelated noise term when building the simulated RV
data sets, but we use it as a free parameter σ jit in the fitting analysis.
To quantify the relevance of the uncorrelated jitter in determining

Figure 3. Posterior distributions for the planet detection significance
Kb, 50 per cent/σ

−
Kb

concerning the scenario represented by a star with low
and slowly variable activity (long τAR) hosting a planet with Porb �= Prot.
The upper plot shows the result for one season of data, and the lower plot
that for two seasons of observations. The vertical lines indicate the median
of each distribution.

our results, we define the ratio:

σratio =
〈√

σ 2
RV(t) + σ 2

jit

σRV(t)

〉
(2)

for each mock data set and consider the posterior distribution of this
quantity for each simulated scenario (Table 4). For a low-activity
star σ ratio is very close to one, especially for the case with longer
τAR, pointing out that the fitted σ jit is negligible, in agreement with
the injected σ jit = 0. This effect is even more evident after two
observing seasons. Even though the activity term is not well fitted
for the cases with short τAR, the amplitude of the stellar signal is
comparable to the average uncertainty of the RVs, implying that
an additional uncorrelated noise is not required to improve the fit,
which is likely limited by the sampling.

For stars with high activity and short τAR, with Nepochs, s1 data
the fitted σ jit determines a total error budget which is on average
typically twice the uncertainty, increasing nearly up to four times
σ RV(t) at 1σ level. For the sample with long τAR the distribution of
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2562 M. Damasso et al.

Figure 4. Distributions of the posterior Kb,ratio 50 per cent = Kb,retrieved
Kb,injected

for

the scenario represented by a star with low and stable activity (long τAR)
hosting a planet with Porb �= Prot. The results refer to the case of data sets
composed by one semester of observations. The injected planetary signals
have Kb, inj = 1 m s−1 (upper plot), and Kb, inj = 2 m s−1 (lower plot). The
vertical lines indicate the median of each distribution.

σ ratio is much closer to one. Besides the effects of a larger amplitude
of the stellar activity term, this result reveals that there is also
a dependence of the fitted σ jit from τAR. In fact, with only one
season of data τAR is poorly fitted, especially for the cases with
short τAR, and this corresponds to the highest values for σ ratio (with
some influence due to the choice of the prior for τAR). The highest
σ jit correspond to the cases where Prot, ratio is retrieved with less
precision. These results point out that a higher uncorrelated jitter
occurs in presence of a large stellar activity signal, in particular that
higher uncorrelated jitter values can be expected for active stars
with activity changing over short time-scales.

3 .2 .1 SELECTED SCENARIOS W ITH
INJECTED KB > 1 M S −1

Using a lower number of mock data sets, we conducted an
exploratory analysis on some selected scenarios, limited to Nepochs, s1

data, to see how the results change by injecting planetary signals
with semi-amplitudes greater than 1 m s−1. We have simulated
1000 mock RV data sets, corresponding to 10 groups with different
time sampling realizations, each composed of 100 RV time series.

Figure 5. Posterior distributions of the quantity Kb, 50 per cent/σ
−
Kb

for the
scenario represented by a star with low and stable activity (long τAR) hosting
a planet with Porb �= Prot. The results refer to the case of data sets composed
by one semester of observations. The injected planetary signals have Kb, inj

= 1 m s−1 (upper plot), and Kb, inj = 2 m s−1 (lower plot). The vertical lines
indicate the median of each distribution.

We first consider the likely best-case scenario for detecting the
planetary signal, represented by a star with low and stable activity
(long τAR) hosting a planet with Porb �= Prot, by injecting a Keplerian
with Kb = 2 m s−1. In this case we get Kb,ratio 50 per cent = 0.9 ± 0.3
(68.3th percentile = 1.04) and Kb, 50 per cent/σ

−
Kb

= 3.5 ± 1.5.
Compared with the same scenario where Kb, inj = 1 m s−1, the pos-
terior distribution for Kb,ratio 50 per cent appears nearly symmetrical
around 0.9–1 m s−1, while for Kb, inj = 1 m s−1 the distribution
is asymmetric, with the peak shifted towards ∼0.5 m s−1 (Fig. 4).
The typical significance of the detection is twice than for the case
with Kb, inj = 1 m s−1, with a relative uncertainty of ∼ 50 per cent
(Fig. 5).

For the likely worst-case scenario, represented by an active
star with rapidly variable activity (short τAR) hosting a planet
with Porb ∼ Prot, we injected a signal with Kb = 3 m s−1, and
retrieved Kb,ratio 50 per cent = 0.7+0.2

−0.1 (68.3th percentile = 1.01)
and Kb, 50 per cent/σ

−
Kb

= 1.57+0.09
−0.05. While the significance of the

detection does not change with respect to the case Kb = 1 m s−1,
the distribution for Kb,ratio 50 per cent is symmetrical with a median
below 1, pointing out that, even though the semi-amplitude is

MNRAS 489, 2555–2571 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/2/2555/5548793 by C
entro Biblioteche e D

ocum
entazione - U

niversità di C
atania user on 30 January 2024



Planet detection in RV with stellar activity 2563

Figure 6. Posterior distribution of the τAR, ratio = τAR,retrieved
τAR,injected

for the scenario

represented by stars with low and quickly variable activity (short τAR),
hosting a planet with Porb ∼ Prot, and with Nepochs, s1 data. The vertical
lines indicate the median of the distribution. Here we show the result for the
alternative priors on τAR and Prot (Section 3.2.2), which has to be compared
with the upper plot in Fig. 2.

on average underestimated by 30 per cent, it is closer to the true
value.

Finally, we explored the case of a quiet star with short τAR hosting
a planet with Porb ∼ Prot and Kb = 2 m s−1. We get Kb,ratio 50 per cent

= 0.9+0.5
−0.4 (68.3th percentile = 1.09) and Kb, 50 per cent/σ

−
Kb

= 1.9+1.4
−0.3.

These results indicate that the planet is retrieved with higher
precision and increasing significance with respect to the case where
Kb = 1 m s−1.

An interesting result, common to all the three cases analysed
here, is that the 68.3th percentile is substantially equal to the
injected Kb. Looking at Table 4, when Kb = 1 m s−1 the same
situation happens only for the scenarios (i) low-activity stars and
decoupled periodicities, with Kb (68.3th percentile) equal exactly
to 1 m s−1 with Nepochs, s2 data, independently from the value of
τAR; and (ii) active stars, Porb �= Prot, long τAR, and Nepochs, s2

data.

3 . 2 . 2 D E P E N D E N C E O F T H E R E S U LT S O N
T H E C H O I C E O F T H E PR I O R S

In our simulations the only parameter we explored over a sig-
nificantly large scale is τAR, which we have assumed to be
unconstrained from possible ancillary data. As previously discussed
(Section 3.2, case I), the hyperparameter τAR is poorly fitted for
the case of low-activity stars and τAR ∼ Porb, especially with
Nepochs, s1 data, since the distribution of τAR, ratio is bi-modal, as
shown in Fig. 2 (the bi-modality being much less pronounced with
Nepochs, s2 data). In principle this fact may impact the accuracy and
precision of the retrieved planetary signal. Since by adopting that
prior we are assuming to be ignorant about the order of magnitude
(or scale) of τAR, a potentially better choice for the prior is adopting
an uninformative distribution on ln (τAR) within the range [0,6.9]
corresponding to the interval [1,1000] d of the linear scale. To
investigate the effects of changing the prior, we first analysed
with the logarithmic prior 1000 mock data sets with Nepochs, s1 RV
measurements concerning the scenario of low-activity stars, short

τAR, and Porb �= Prot. Moreover, we restricted the range of the
prior on Porb to ±0.05 d to simulate the case of better known
transit ephemeris. From the new analysis we find that τAR, ratio

= 1.3+1.7
−0.6, which represents a significant improvement of the MC

fitting analysis for the stellar component (Fig. 6). However, for
Kb,ratio 50 per cent and Kb, 50 per cent/σ

−
Kb

we do not find any difference
with respect to the original set of priors. This shows that in our
case a more correct fitting of the stellar signal does not improve the
determination of the planetary parameters. We get similar results
when analysing data sets with Nepochs, s2 RVs, finding τAR, ratio

= 1.1+0.7
−0.4, i.e. the stellar activity signal is better represented, but

this does not come with a better statistical result for the planetary
component.

Using the same set of new priors, we also considered the case
with long τAR. We get τAR,ratio = 1.3+0.7

−0.8, which is an improvement
in the ability of retrieving the injected τAR since the median of
τAR, ratio is half that found using the original prior. However, even in
this case there is no improvement for the parameters Kb,ratio 50 per cent

and Kb, 50 per cent/σ
−
Kb

.
Finally, as an additional check we considered the case of low-

activity stars, short τAR, and Porb ∼ Prot, in particular to test
the effects of the tighter prior on Porb. As expected, we found a
significant improvement in fitting the hyperparameter τAR, getting
τAR,ratio = 1.3+2.4

−0.6. For Kb,ratio 50 per cent and Kb, 50 per cent/σ
−
Kb

we do
not find any improvement with respect to the values tabulated in
Table 4.

In conclusion, we find that using a uniform logarithmic prior
on τAR provides more realistic representations for the quasi-
periodic stellar activity signal than adopting a uniform linear prior,
but more accurate values for τAR does not correspond to more
accurate retrieved planetary signals, even restricting the prior on
Porb.

3 . 2 . 3 EX P L O R I N G T H E E F F E C T S O F
ORBI TAL PERI ODS V ERY C LOSE TO
STELLAR ROTATI ON PERI ODS

Here we focus on the scenarios for which Porb ∼ Prot and consider
only the data sets for which the injected values satisfy the condition
|Porb − Prot| ≤0.5 d. We choose the range of ±0.5 d because this is
the interval we have adopted to define the prior for Porb (Table 2).
In this case, values for Porb are sampled within a parameter space
which includes Prot. We are interested in the analysis of those subsets
to assess possible effects on the retrieved planetary signals due to
the very close proximity between the orbital and stellar rotations
periods. We note that the range of 0.5 d is 3–4 times smaller than 1σ

associated with the Porb − Prot input distributions for these scenarios
(Table A1). Results are shown in Table 4 between square brackets.
Typically, they are derived from ∼ 20 per cent of the total samples, a
number which allows a good statistics. The only difference we note
with respect to the results for the total sample is that Kb,ratio 50 per cent

shifts to higher values by an amount of ∼ 50 per cent for the case
τAR �Prot, both for low- and high-activity stars and independently
from the number of observations. This indicates that the fitting
procedure tends to absorb part of the stellar signal in the planetary
component of the model and, not surprisingly, this happens for stars
with the longer evolutionary time-scale τAR, in that the stellar term
has properties closer to those of a circular Keplerian. The result
suggests that alternative recipes to model the stellar activity term
should be considered in addition to GP regression when Porb and
Prot are very close.
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Figure 7. Distributions of the retrieved/simulated period ratios (the injected
periods correspond to Prot) for the cases of active stars, Prot �= Porb, short
τAR, Nepochs, s1 (solid black line), and Nepochs, s2 (dashed red line) data. Here
we show the results for GLS and BGLS algorithms.

3 . 2 . 4 EF F E C T S O F N E G L E C T I N G TO MO D E L
THE STELLAR ACTIVITY WITH A G P
RE GRESSION

Here we consider the case where the stellar activity is fitted by
including only the uncorrelated jitter term in the global model,
to explore the effects of using a simpler model than the GP
regression, as is often done when dealing with real systems. We
focus the attention to the scenario corresponding to a quiet star
with Prot �= Porb, since fitting the activity with a correlated-noise
model (like the GP regression) is expected to be more convenient
and effective a priori for active stars. We analysed a subset of
N = 500 RV data sets for each scenario with Kb, inj = 1 m s−1

(short and long τAR; Nepochs, s1 and Nepochs, s2 RV measurements), and
compared the Bayesian evidences of the models with and without
the GP term. Table 5 shows the results for the difference of the
logarithm of the Bayesian evidences for the two models, �lnZ
= lnZGP+1 planet-lnZ1 planet, and lists the values of Kb, ratio 50 per cent

and Kb, 50 per cent/σ
−
Kb

derived from using the model without GP and
uncorrelated jitter only. We assume that �lnZ ≥5 denotes strong
evidence in favour of the GP + 1 planet model (see e.g. table 1

Table 5. Model comparison analysis, with or without a GP quasi-periodic
kernel included in the global model. Here we consider the case of quiet stars
with Prot �= Porb. The values of Kb, ratio 50 per cent and Kb, 50 per cent/σ

−
Kb

are
derived from fitting the model without using GP. σ jit, no GP/σ jit, with GP is the
ratio between the values of the fitted uncorrelated jitter without and with the
GP term included in the model. �lnZ = lnZGP+1 planet-lnZ1 planet.

One season of observations

Short τAR Long τAR

Kb, ratio 50 per cent 0.95+0.87
−0.35 0.98+0.68

−0.41

Kb, 50 per cent/σ
−
Kb

1.6+0.6
−0.1 1.6+0.5

−0.1

median σ jit, no GP/σ jit, with GP 2.3 3.6
median �lnZ 2.2 5.2

number of data sets for which �lnZ >5 28 per cent 51 per cent
median σ jit, no GP/σ jit, with GP 2.3 3.6

Two seasons of observations

Short τAR Long τAR

Kb, ratio 50 per cent 0.86+0.58
−0.35 0.74+0.53

−0.26

Kb, 50 per cent/σ
−
Kb

1.6+0.7
−0.1 1.6+0.5

−0.08

median σ jit, no GP/σ jit, with GP 3.6 4.9
median �lnZ 6.7 20.9

number of data sets for which �lnZ >5 57 per cent 85 per cent
median σ jit, no GP/σ jit, with GP 3.6 4.9

in Feroz, Balan & Hobson 2011). With N = 40 measurements the
use of the GP regression can be considered generally unnecessary
for short values of τAR, since only ∼ 30 per cent of the samples are
better fitted by a GP+1 planet model. With N = 80 measurements
the GP + 1 planet model provides a better fit in ∼ 60 per cent of the
cases. However, comparing with Table 4, we see that Kb, ratio 50 per cent

and Kb, 50 per cent/σ
−
Kb

are in agreement with those obtained fitting
a GP + 1 planet model. For the case of long τAR, the evidence
is by far in favour of the GP + 1 planet model, in particular with
N = 80 measurements, as also confirmed by the fact that a σ jit five
times larger is required if a GP term is not included in the model.
This is expected, since the activity term is more stable over time
and easier to characterize. None the less, within the framework of
our simulations, even in this case the use of the GP regression does
not bring better results than a simpler model in terms of planetary
semi-amplitude.

4 PE R I O D O G R A M A NA LY S I S

Here we present the results of a blind statistical analysis performed
on a large sub-sample of the simulated data sets, using different pe-
riodogram algorithms commonly used to investigate the frequency
content of RV time series. The goal of this section is to examine
and characterize some statistical properties, described in Table 6,
of periodograms for RV data sets containing quasi-periodic stellar
activity signals.

As done by Pinamonti et al. (2017), the data sets were analysed
with softwares that calculate the frequency content in time series:
the Generalized Lomb–Scargle periodograms (GLS; Zechmeister &
Kürster 2009); the Bayesian Generalized Lomb–Scargle (BGLS;
Mortier et al. 2015); and the FREquency DEComposer (FREDEC;
Baluev 2013). GLS performs a simple sinusoidal fit of the data,
weighting them on the measurements errors. BGLS generalizes
this approach taking into account Bayesian probability. FREDEC
performs a multifrequency analysis of the data, decomposing a
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Planet detection in RV with stellar activity 2565

Table 6. Description of quantities analysed in this work to characterize the performances of the GLS, BGLS, and FREDEC algorithms to search for periodic
signals in the mock RV data sets (Section 4, Tables 7 and 8).

Quantity Description

NFAP<1 per cent, NFAP 1−10 per cent Number of solutions detected with FAP < 1 per cent and 1 per cent < FAP < 10 per cent, respectively,
relative to a total of 1000 examined periodograms.

CProt ≡ completeness Prot (per cent) Ratio between the number of data sets with the highest peak in the periodograms (i) with FAP <

1 per cent, and (ii) within ±10 per cent of the injected Prot, and the total number of the analysed data sets.
The same quantity is calculated for the first harmonic Prot/2.

CPorb ≡ completeness Porb (per cent) Same as for CProt , but for the injected orbital period Porb.
R ≡ reliability (per cent) Ratio between the number of data sets with the highest peak in the periodograms (i) with FAP < 1 per

cent, and (ii) within ±10 (per cent) of the injected Prot, and the number of analysed data sets with highest
peaks in the periodograms having FAP < 1 per cent. We calculated the same ratio for the first harmonic of
the stellar rotation period Prot/2 (indicated between brackets in Tables 7 and 8).

time series into a number of sinusoids. The algorithm first selects
candidate frequencies, then computes the statistical significance for
each frequency tuple, providing as solution the most significant
multifrequency combination. We refer the reader to the indicated
references for more details about each algorithm.

Contrary to the analysis described in Section 3.2, here we assume
that nothing is known a priori about the signal content in the
RV time series. This part of the work should be considered an
extension of the comparative analysis discussed in Pinamonti et al.
(2017), in that here we analysed more thoroughly the performances
of the algorithms on data sets containing a realistic description
of stellar activity RV signals. To assess the detectability of the
simulated planetary signals, we can adopt the K/N ratio, defined as
in Dumusque et al. (2017)

K/N = Kb

RVrms
×

√
Nobs, (3)

where Nobs = 40, 80 are the number of observations for the one
and two seasons cases, respectively. We see from Table A1 that
K/N is generally well below the K/N = 7.5 threshold proposed by
Dumusque et al. (2017), making planet detection a very challenging
task.

The GLS periodograms are computed using the code imple-
mentation in the ASTROPY2.0.2 library for PYTHON3.5. The
false alarm probabilities (FAP), or p-values, are computed with a
bootstrap with replacement analysis using 10 000 RV mock data
sets. The BGLS periodograms have been calculated with an IDL
version of the publicly available PYTHON code,7 developed for the
analysis discussed in Pinamonti et al. (2017). The FAPs for the
Bayesian periodograms are computed as described in Pinamonti
et al. (2017). The analysis with FREDEC has been carried out
with the publicly available C++ version of the code.8 The FAPs
associated with the output frequency tuples are computed with the
built-in function of the code.

We computed periodograms for subsets composed of 1000 mock
RV data sets, one for each of the 16 different simulated scenarios
described in Section 2. To ease the automatic identification of the
main periodicities in the time series, we calculated the periodograms
exploring periods longer than 5 d. This cut helps avoiding the daily
aliases in the spectral window, which would be discarded in a real
single-target analysis. Moreover, this threshold should not affect
the retrieval of the injected signals, since no values of Prot ≤5 d or
Porb ≤5 d have been simulated. For the sake of robustness of period

7https://www.astro.up.pt/exoearths/tools.html
8https://sourceforge.net/projects/fredec/

detection, we set the upper limit of the period search interval to half
the time span of the data, in order to ensure at least two full cycles
for every test frequency.

We defined the parameters described in Table 6 as figure of
merit for assessing the performances of the algorithms. In the
case of FREDEC, we considered for the purpose of computing the
completeness C and reliability R all the significant solution tuples
with at least one of the output periods within 10 per cent of the
input period, even in the presence of additional output periodicities.
In the following, we present some major outcomes of the analysis,
selected from the complete list of results shown in Tables 7 and 8.
First, we organize the discussion into subgroups according to the
different simulated scenarios (e.g. different stellar activity levels),
then focusing on the comparison among the algorithms. This way
of presenting should allow for an easier identification, and therefore
better exploitation of the results.

We note that for all the cases with Prot ∼ Porb we do not report
the completeness CPorb for the orbital period. In fact, we do not
consider this as an informative quantity for our purposes, since the
input periods Prot and Porb used to build the data sets are too close
to be disentangled by a periodogram analysis.

4.1 Dependence of the algorithm performances from the
stellar activity properties

Case I. Low-activity stars. In general, the reliability R decreases
(or does not improve) passing from Nepochs, s1 to Nepochs, s2 data,
independently from the values of τAR, except for BGLS (cases with
long τAR). Instead the fraction of significant signals NFAP<1 per cent

increases considerably with two semesters of measurements, and
this implies that the algorithms find a larger number of false positives
when more RVs are available. In general, the completeness for
Porb (CPorb ) and the reliability are higher for the cases with long
τAR, both for Prot ∼ Porb and Prot �= Porb. This is not surprising,
in that a quasi-periodic activity signal with long τAR is expected
to approach a periodic signal over the time span considered here,
therefore a sinusoid (or a combination of sinusoids) can fit the data
more efficiently.

Case II. Active stars. As for case I, we note that in general the
performances, in terms of completeness and reliability, are higher
when τAR is longer (see Fig. 7 showing retrieved/injected ratio
distributions for cases with short τAR). In absolute terms, this
behaviour is more clear than for low-activity stars with Nepochs, s1

data, where R is high and close to 100 per cent for GLS and
FREDEC and > 90 per cent for GLS, including the term for the
first harmonic of Prot the calculation. This is not surprising, since the
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Table 7. Summary of the main results of the analysis performed on the periodograms calculated with GLS, BGLS, and FREDEC (Section 4) for the cases
where Prot ∼ Porb. The statistics concerns the peaks detected with an FAP < 1 per cent. The results are given as 16th, 50th, and 84th percentiles of the parameter
distributions.

Prot ∼ Porb

Short τAR Long τAR

Parameter GLSa BGLSa FREDECb GLSa BGLSa FREDECb

One observing season
Low-activity star NFAP<1 per cent 24.0 per cent 7.1 per cent 27.1 per cent 50.5 per cent 9.0 per cent 47.1 per cent

NFAP 1−10 per cent 33.1 per cent 17.7 per cent 23.0 per cent 21.2 per cent 16.6 per cent 18.0 per cent

CProt (CProt/2)c (per cent) 12.4 (1.0) 2.0 (1.6) 12.8 (1.3) 42.5 (6.1) 4.1 (3.1) 40.4 (4.1)
R (+Prot/2)c (per cent) 51.5 (+ 4.0) 28.4 (+ 22.4) 54.6 (+ 4.4) 84.1 (+ 12.1) 45.9 (+ 35.3) 88.1 (+ 8.7)

Active star NFAP<1 per cent 23.0 per cent 83.2 per cent 27.9 per cent 72.8 per cent 90.3 per cent 66.6 per cent

NFAP 1−10 per cent 40.0 per cent 7.9 (per cent) 30.7 per cent 11.5 per cent 4.9 per cent 15.6 per cent

CProt (CProt/2)c (per cent) 5.1 (0.4) 22.2 (3.3) 8.8 (0.6) 66.5 (6) 76.4 (7.2) 64.8 (1.5)
R (+Prot/2)c (per cent) 22.3 (+ 1.7) 26.7 (+ 4.0) 37.6 (+ 1.8) 91.3 (+ 8.3) 84.6 (+ 8) 97.3 (+ 2.2)

Two observing seasons
Low activity star NFAP<1 per cent 47.9 per cent 45.7 per cent 36.5 per cent 74.4 per cent 58.2 per cent 56.0 per cent

NFAP 1−10 per cent 31.7 per cent 20.2 per cent 35.0 per cent 16.2 per cent 16.9 per cent 30.9 per cent

CProt (CProt/2)c (per cent) 14.6 (1.1) 10.3 (1.5) 15.8 (1.5) 54.7 (5.5) 37.1 (3.4) 49.1 (2.5)
R (+Prot/2)c (per cent) 30.5 (+ 2.2) 22.5 (+ 3.3) 52.6 (+ 3.8) 73.5 (+ 7.3) 63.7 (+ 5.9) 88.0 (+ 4.5)

Active star NFAP<1 per cent 45.8 per cent 95.9 per cent 33.5 per cent 89.4 per cent 97.7 per cent 65.8 per cent

NFAP 1−10 per cent 34.6 per cent 1.9 per cent 42.7 per cent 5.6 per cent 1.1 per cent 28.9 per cent

CProt (CProt/2)c (per cent) 5.1 (0.4) 8.9 (1.3) 12.9 (0.6) 60.2 (4.5) 49.2 (3.9) 63.6 (1.1)
R (+Prot/2)c (per cent) 11.2 (+ 0.9) 9.3 (+ 1.4) 43.9 (+ 1.5) 67.4 (+ 5.1) 50.4 (+ 4.0) 96.7 (+ 1.7)

aThe false alarm probability (FAP) has been evaluated through a bootstrap with replacement.
bThe FAP is the one provided by the code.
cThe percentage in parenthesis is related to the first harmonic of Prot. For FREDEC, this percentage corresponds to the number of data sets for which only
Prot/2 is found as significant peak in the periodogram, while Prot is not.

stellar activity signal is stronger and more influenced by the value of
τAR. Passing from short to long τAR, a great relative improvement in
detecting correct signals is also observed for data sets with Nepochs, s2

RVs, which is higher than that observed for low-activity stars.
Case III. Low-activity versus active stars for short τAR values.

When the stellar activity signal is rapidly evolving, the reliability
R is higher for quiet stars, independently from the number of
observations. One possible explanation is that the simulated Prot

are shorter for active stars (Table 1) and, the sampling being similar
on average for all the cases, it is more difficult modelling strong
and rapidly variable signals, taking into account that τAR is even
shorter for active stars by construction. Moreover, we note that
for active stars a high percentage of data sets with Nepochs, s2 RVs,
patterns are generated that are mistaken for long-term modulations
when fitting the data with single sinusoids, coupled with a larger
range of test periods (Fig. 8). This is the main reason why the
reliability is low. A lower number of spurious long-period signals
is found in simulated data sets with Nepochs, s1 data, but this is also
due to the shorter range of test periods explored by the algorithms.
Analogously to the active star case, R decreases with increasing
number of RVs in low-activity stars, again due to an artificial long-
term modulation introduced in the data. Fig. 8 shows two examples
of simulated data sets for stars with low- and high-activity levels, for
which the algorithms return a peak at a period much larger than the
injected Prot.

Case IV. Orbital period completeness CPorb for data sets with
Prot �= Porb. The results in Table 8 show that the CPorb is in general
less than 3 per cent, and lower than CProt (much lower for stars
with long τAR). For the case of low-activity stars with long τAR

there is a slight improvement passing from Nepochs, s1 to Nepochs, s2

data, since Porb < Prot for construction, and one could expect the

detection in the periodogram to be eased. However, the percentages
of CPorb stay low, and this denote that a simple frequency analysis
of the RVs does not allow to infer the existence of the planetary
signal. For low-activity stars, the combination of the sampling and
internal precision used in our work can prevent higher values for
CPorb .

4 . 2 D I R E C T C O M PA R I S O N O F TH E
A L G O R I T H M PE R F O R M A N C E S

In all the cases discussed in this work, we note that the reliability R
of GLS decreases passing from Nepochs, s1 to Nepochs, s2 data. This
is a consequence of the increased number of significant peaks
NFAP<1 per cent with increasing RV measurements. For low-activity
stars, the decrease in R is accompanied by an increase in the
completeness CProt with an increasing number of RV data, i.e. GLS
retrieves Prot easier despite it results to be less reliable. In almost
all the cases discussed in this work, FREDEC algorithm performs
more reliably than GLS and BGLS, as shown by the values of the
R parameter, i.e. it is less affected by false-positive signals. This is
in line with the results of Pinamonti et al. (2017). Opposite to GLS,
R does not change appreciably passing from Nepochs, s1 to Nepochs, s2

measurements. For those cases where NFAP<1 per cent increases (e.g.
low-active stars with Prot ∼ Porb), this translates to an increased
number of correct detections. In all the cases of active stars with long
τAR, the reliability R is close to 100 per cent, even without including
those cases where only the first harmonic Prot/2 is recovered. For
active stars with short τAR, R is significantly higher for FREDEC,
showing that this algorithm is more effective with quasi-periodic
signals variable over short time-scales, that are difficult to model
with single sinusoids, as done by GLS and BGLS.
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Table 8. Summary of the main results of the analysis performed on the periodograms obtained with GLS, BGLS, and FREDEC (Section 4) for the case where
Prot �= Porb. The statistics concern the peaks detected with an FAP < 1 per cent. The results are given as 16th, 50th, and 84th percentiles of the parameter
distributions.

Prot �= Porb

Short τAR Long τAR

Parameter GLSa BGLSa FREDECb GLSa BGLSa FREDECb

One observing season
Low activity star NFAP<1 per cent 19.1 per cent 8.5 per cent 23.0 per cent 42.4 per cent 10.9 per cent 38.5 per cent

NFAP 1−10 per cent 35.5 per cent 18.6 per cent 25.6 per cent 26.7 per cent 17.8 per cent 23.2 per cent

CProt (CProt/2)c (per cent) 7.8 (2.7) 1.2 (2.2) 8.7 (2.5) 33.9 (6.3) 5.2 (3.2) 32.1 (4.6)
CPorb (per cent) 1.6 1.4 2.3 1.6 0.9 2.3

R (+Prot/2)c (per cent) 49.2 (+ 14.1) 30.4 (+ 25.3) 44.8 (+ 6.5) 83.8 (+ 14.9) 54.9 (+ 29.4) 86.2 (+ 10.4)
Active star NFAP<1 per cent 24.8 per cent 84.3 per cent 31.8 per cent 69.7 per cent 90.3 per cent 64.2 per cent

NFAP 1−10 per cent 36.0 per cent 8.6 per cent 29.8 per cent 15.2 per cent 4.9 per cent 17.7 per cent

CProt (CProt/2)c (per cent) 5.6 (0.3) 18.1 (2.7) 8.7 (0.5) 62.3 (6.5) 74.0 (7.9) 60.8 (2.6)
CPorb (per cent) 0.8 3.0 1.3 0.5 2.7 1.4

R (+Prot/2)c (per cent) 25.9 (+ 1.2) 25.0 (+ 3.1) 31.1 (+ 1.6) 90.0 (+ 9.3) 84.9 (+ 8.8) 95.6 (+ 4.0)

Two observing seasons
Low activity star NFAP<1 per cent 46.9 per cent 45.7 per cent 38.1 per cent 71.6 per cent 57.8 per cent 54.7 per cent

NFAP 1−10 per cent 30.9 per cent 20.4 per cent 33.4 per cent 18.2 per cent 16.0 per cent 30.5 per cent

CProt (CProt/2)c (per cent) 8.2 (0.8) 5.7 (1.1) 12.5 (1.1) 52 (7.1) 38.6 (3.7) 46.2 (3.2)
CPorb (per cent) 1.3 0.9 2.9 2.2 1.2 5.2

R (+Prot/2)c (per cent) 20.2 (+ 1.6) 14.3 (+ 2.4) 38.1 (+ 2.1) 75.8 (+ 10.0) 68.8 (+ 6.4) 87.4 (+ 4.0)
Active star NFAP<1 per cent 48.0 per cent 95.2 per cent 34.8 per cent 88.4 per cent 98.0 per cent 65.5 per cent

NFAP 1−10 per cent 29.2 per cent 2.2 per cent 40.0 per cent 5.9 per cent 1.0 per cent 28.2 per cent

CProt (CProt/2)c (per cent) 4.8 (0.3) 7.4 (0.8) 11.7 (0.5) 59 (5.6) 48.5 (3.8) 63.3 (0.8)
CPorb (per cent) 0.3 0.6 0.6 0.1 0.4 0.3

R (+Prot/2)c (per cent) 10.5 (+ 0.6) 8.4 (+ 0.9) 34.5 (+ 1.1) 66.9 (+ 6.3) 49.9 (+ 3.9) 96.6 (+ 1.2)

aThe false alarm probability (FAP) has been evaluated through a bootstrap with replacement.
bThe FAP is the one provided by the code.
cThe percentage in parenthesis is related to the first harmonic of Prot. For FREDEC, this percentage corresponds to the number of data sets for which only
Prot/2 is found as significant peak in the periodogram, while Prot is not.

Concerning BGLS, we note that for low-activity stars and
Nepochs, s1 measurements, CProt and R are much lower than for GLS
and FREDEC, indicating lower performance in retrieving the stellar
signal, both for short and long time-scale τAR. At the same time,
BGLS is particularly sensitive to the first harmonic Prot/2, which
is detected more often with respect to the number of significant
signals NFAP<1 per cent, that is less than the corresponding for GLS
and FREDEC. This is due to the definition of the FAP for the BGLS
algorithm, which is based on the relative probabilities of the peaks in
a periodogram (Pinamonti et al. 2017). When less data are available,
several signals are retrieved with similar probabilities, determining
high-FAP values. This feature is relaxed for Nepochs, s2 data.

For active stars in general, BGLS finds more significant signals
(NFAP<1 per cent is much higher than for GLS and FREDEC), but
the reliability R is comparable to, or even lower than that of the
other algorithms. This implies that BGLS finds more false-positive
signals in these cases.

5 SU M M A RY

In this work we presented the results of a statistical analysis of
an extended sample of simulated RV data sets9 including stellar
activity and planetary signals, devised as representations of realistic

9The simulated data sets are freely available for testing other analysis tools
and methods, upon request to the authors.

measurements for typical spectroscopic exoplanet surveys, in terms
of state-of-the-art instrumentation and observing sampling. We
simulated different levels and variability time-scales of the stellar
activity RV term, assumed as quasi-periodic correlated signal,
with two goals: (i) testing the performances of widespread RV
modelling techniques in retrieving Doppler signals of small semi-
amplitude caused by low-mass planets (Section 3.2), and (ii)
exploring the properties of periodograms calculated with three dif-
ferent algorithms, in order to statistically characterize and compare
their performances as a function of the stellar activity properties
(Section 4). By pursuing the first goal, we assume that the existence
of the planet is already demonstrated. This is the case of planets
discovered with the transit technique, for which a mass estimate is
pursued.

As for the second goal, since we assume that nothing is known
a priori, both for the stellar activity and planetary signals, that
is a problem of blind search, that we have already dealt with in
Pinamonti et al. (2017) for different scenarios. As done in that
work, we tested the performances of the GLS, BGLS, and FREDEC
algorithms for a blind search of planetary signals in presence of
stellar activity with well-defined properties. Our mock data sets
represent a hard challenge for these algorithms as the injected
Doppler signal, which is consistent to what is expected for terrestrial
planets, is small compared to the activity signal. Based on our
results, there is no unique algorithm which out-performs the others
in this case, and the discussion has been necessarily focused on
how the stellar signals are recovered. However, within the same
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Figure 8. Examples of mock RV data sets spanning two seasons for which
the injected active regions evolutionary time scale τAR is close to the stellar
rotation period. (Plot a: Low-activity star with Prot �= Porb. Plot b: active
star with Prot ∼ Porb). When searched for periodicities using algorithms
that fit a sinusoid or a linear combination of sinusoids, the periodograms
of such data sets show the main peak ranging between ∼10 and 20 times
Prot.

general framework we defined in this work, new simulations can
be devised to move the focus on planetary signals, for instance by
increasing their semi-amplitude, or considering more precise RVs,
or simulating very-low activity stars.

We analysed specific cases and presented the results schemat-
ically, in order to provide quick references to those interested in
modelling RV time series for planetary studies. Tables 4, 7, and 8
contain the results for all the addressed scenarios. Among them, we
highlight the following outcomes:

(i) generally, the data sets containing more stable activity signals
(Prot � τAR) are easier to model, with improved performances in
retrieving planetary signals;

(ii) the correlation time-scale τAR is not always well recov-
ered. When not much data are available (e.g. one semester of
observations) it can be easily overestimated, especially in the
case of stars with low and quickly variable activity. A tendency
towards overestimation is also seen for active stars, but this is less
pronounced. This result should be kept in mind when interpreting
the fitted values for τAR astrophysically, in particular when there
are no ancillary data available for supporting the reality of long
correlation time-scale observed in the RVs;

(iii) the 68.3th percentile appears as a more accurate estimate for
Kb than the 50th percentile for low-activity stars when Kb, inj = 1
m s−1, Prot �= Porb and with two semesters of observations. Same
happens for the selected scenarios with Kb, inj > 1 m s−1 discussed
in Section 3.2.1;

(iv) for stars with low-activity levels and Prot �= Porb, Bayesian
model comparison shows that in general the use of the GP regression
provides a significantly better fit to the data, especially with observa-
tions spanning two semesters, but this does not always correspond
to a better identification of the planetary semi-amplitude, in the
studied case of small-amplitude signals;

(v) the different algorithms for periodogram analysis studied in
Section 4 follow similar behaviours depending on the hyperparam-
eters of the stellar activity model, being most effective when the
star is quiet and τAR is long;

(vi) highly variable stellar activity (short τAR) affects signifi-
cantly the performances of algorithms to search for periodic signals,
especially for active stars. Their reliability, as defined in Table 6, is
not very high due to the presence of a significant number of false-
positive signals that does not decrease after increasing the number
of measurements;

(vii) in the cases with strong and highly variable stellar ac-
tivity, which produces the most complex signal structures, the
multifrequency approach applied by FREDEC proves to be most
effective, as proved by the higher R value with respect to the
other algorithms. This is consistent with the findings of Pinamonti
et al. (2017), which highlighted FREDEC to be less prone to false
detections in the analysis of time series containing multiple complex
signals.

It is worth noticing that the performances of all the periodogram
algorithms in retrieving the planetary signals are quite poor in all
the analysed scenarios, with CP orb � 5 per cent. This once again
highlights the importance of applying high-level analysis techniques
when trying to model planetary signals around active stars (e.g.
see Dumusque et al. 2017, and references therein, for a review of
different methods to deal with stellar activity).

Even though they must be considered mostly valid within the
framework defined for our simulations, these results could be
of some interest in a more general context, and could be used
for devising diversified statistical studies aimed at optimizing
follow-up strategies for different targets, number of planets, and
system architectures. They can be also extended to next genera-
tion high-resolution spectrographs, as for instance the operating
VLT/ESPRESSO (Pepe et al. 2014), the upcoming EXPRES (Jur-
genson et al. 2016), NEID (Schwab et al. 2016), and ELT-HIRES
(Marconi et al. 2016), or NIR spectrographs such as CARMENES
(Quirrenbach et al. 2016), SPIRou (Artigau et al. 2014), HPF
(Mahadevan et al. 2014), or NIRPS (Wildi et al. 2017), that are
expected to provide more precise RV measurements. Presently, the
operating TESS mission is already detecting new transiting planets,
and it is expected to discover ∼1000 planets with R < 4 R⊕ at short-
time cadence (2 min), 250 of which smaller than 2 R⊕ (Barclay, Pep-
per & Quintana 2018). Taking into account planets that can actually
be characterizable, i.e. are most suitable for mass measurements
through precise RV observations, Barclay et al. (2018) predict a
distribution of detected orbital periods with a median of 7–8 d, likely
less than 29–35 d at 95 per cent significance level. Therefore, our
simulations are particularly useful for planning the spectroscopic
follow-up of small-size, low-mass planets discovered right now by
TESS, and in the near future by the PLATO 2.0 mission (Rauer et al.
2014).
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APPENDI X A : SI MULATI ONS PROPERTIES

Table A1 shows some relations existing between the injected model
parameters considered in this work, generated as described in
Section 2.
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Table A1. Relations between some of the injected model parameters considered in this work, and typical rms of the
data sets. Each value is given as 16th, 50th, and 84th percentiles of each distribution consisting of 5000 samples.

Prot ∼ Porb Prot �= Porb

Parameter Short τAR Long τAR Short τAR Long τAR

One observing season
Low-activity star Prot–Porb (d) −0.03 ± 2.13 −0.1 ± 2.1 6.9 ± 2.1 7.1 ± 2.1

τAR–Prot (d) 0.0016 ± 2.1 179.9+10.4
−9.6 −0.006 ± 2.1 179.7+10.4

−10.2

RVrms ( m s−1) 3.4+0.7
−0.6 2.9+0.8

−0.5 3.4+0.7
−0.5 2.9+0.8

−0.5

Active star Prot–Porb (d) 0.02 ± 1.4 −0.03+1.43
−1.39 −8.0 ± 1.8 −8.0 ± 1.8

τAR–Prot (d) −0.005 ± 1.4 90.4+10.1
−10.2 0.02 ± 1.4 90.2+9.7

−9.9

RVrms ( m s−1) 14.2+2.6
−2.3 10.9+4.1

−3.3 14.1+2.6
−2.3 10.9+3.9

−3.2

Two observing seasons
Low-activity star Prot–Porb (d) −0.04 ± 2.2 0.03 ± 2.1 7.0 ± 2.1 6.9 ± 2.1

τAR–Prot (d) 0.06 ± 2.1 180.1+10.4
−10.1 0.008 ± 2.1 180.3 ± 10.1

RVrms ( m s−1) 3.5+0.6
−0.5 3.2+0.7

−0.6 3.5+0.6
−0.5 3.2+0.7

−0.5

Active star Prot−Porb (d) −0.01 ± 1.4 0.04+1.39
−1.42 −8.0 ± 1.8 −8.0+1.8

−1.7

τAR–Prot (d) 0.0035 ± 1.4 90.2+9.9
−10.0 0.0006 ± 1.4 89.9 ± 9.7

RVrms (m s−1) 14.7+2.0
−1.8 13.0+3.4

−3.0 14.7+1.9
−1.8 12.9+3.3

−2.9

APPENDIX B: A SSESSING POSSIBLE BIASES
I N T RO D U C E D BY TH E O B S E RV I N G
C A L E N DA R

We verified whether our particular choice of the 63-nights calendar
could have introduced biases in our results through three different
checks: (i) we calculated the median window functions for each
scenario, and they do not show significant peaks at specific fre-
quencies (except for the expected 1-yr alias for Nepochs,s2 data),
which would indicate the presence of aliases introduced by the
sampling (Fig. B1); (ii) we found that the orbits of the simulated
planets are on average uniformly covered in phase by the RV

measurements, i.e. there are no parts of the orbit systematically
over/undersampled (Fig. B2); (iii) we simulated 200 RV data sets
by randomly generated 40 epochs from a uniform distribution
over a range of one semester, and then adding 40 more epochs
randomly drawn within a time range shifted by 365 d. This implies
that each data set has a different observing calendar which does
not stem from the same array of epochs. We considered the case
of a quiet star with Prot �= Porb, long τAR, and two seasons of
observations. We found that the results of a GP-based MC analysis
are similar to those presented in Section 3, indicating that the
latter are free from biases due to a particular choice of the mold
calendar.
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Figure B1. Examples of median window functions for different simulated
scenarios. Upper panel: quiet star with Prot ∼ Porb, long τAR, and one season
of observations. Lower panel: active star with Prot �= Porb, long τAR, and
two seasons of observations.

Figure B2. Examples showing how the number of RV data distributes on
average (per single RV data set) within phase bins of size 0.1, for different
simulated scenarios. Upper panel: quiet star with Prot ∼ Porb, long τAR, and
one season of observations. Lower panel: quiet star with Prot �= Porb, long
τAR, and two seasons of observations. The error bars represent the rms of
the number of RV measurements within each phase bin.
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