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ABSTRACT 
 
Single sensors or small arrays of manually assembled neutron transmutation doped germanium (NTD-Ge) based 
microcalorimeters have been widely used as high energy-resolution detectors from infrared to hard X-rays. Several 
planar technological processes were developed in the last years aimed at the fabrication of NTD-Ge arrays, specifically 
designed to produce soft X-ray detectors. One of these processes consists in the fabrication of the absorbers. In order to 
absorb efficiently hard X-ray photons, the absorber has to be properly designed and a suitable material has to be 
employed. Bismuth offers interesting properties in terms of absorbing capability, of low heat capacity (needed to obtain 
high energy resolution) and deposition technical feasibility, moreover, it has already been used as absorber for other 
types of microcalorimeters. Here we present the electroplating process we adopted to grow bismuth absorbers for 
fabricating planar microcalorimeter arrays for hard X-rays detection. The process was specifically tuned to grow uniform 
Bi films with thickness up to ~ 70 µm. This work is part of a feasibility study for a stratospheric balloon borne 
experiment that would observe hard X-rays (20-100 keV) from solar corona. 
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INTRODUCTION 
 
The Sun is surrounded by a very hot (million degrees) atmosphere (the solar corona) consisting of very tenuous optically 
thin plasma strongly interacting with the magnetic field and emitting X-rays. The magnetic field plays a key role in the 
heating of the solar corona, but the detailed heating mechanisms are still under investigation. It is well known that non 
thermal hard X-rays are produced in the solar corona especially during energetic impulsive events (flares) 1,2,3, however, 
these events have never been observed at high energy resolution (∆E < 100 eV).  Recently, we have started a feasibility 
study for a stratospheric balloon experiment, named MISTER-X, aimed at observing hard X-rays from the solar corona 
in the 20-100 keV energy band, with an energy resolution of the order of ∆E = 50 eV, using NTD Ge cryogenic 
microcalorimeter detectors. Such preliminary feasibility study was funded by the Italian National Institute for 
Astrophysics (INAF) within an agreement with the Italian Space Agency (ASI).  
In this paper, we describe part of the work done to develop the hard X-ray microcalorimeter to be employed in the 
experiment, and in particular the development of the deposition process employed to build the X-ray absorbers. 
This paper is organized as follows: section 1 introduces NTD-Ge microcalorimeters; section 2 illustrates the 
microcalorimeter X-ray absorber design procedure; section 3 describes the electroplating process; in section 4 shows the 
results; in section 5 we draw our conclusions and work perspectives. 
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1. NTD-GE MICROCALORIMETERS 
 
X-ray microcalorimeters are based on the measurement of the temperature increase caused by the interaction of a single 
particle or photon with the absorber of the detector4. Such sensors consist of an absorber in high Z material and a 
sensitive thermal sensor (thermistor). NTD Ge thermometers, whose electrical resistance presents a high negative 
temperature coefficient, have been successfully used as thermistors of high sensitive X-ray microcalorimeters operating 
both at soft5,6 and hard7 x-rays. NTD Ge is obtained by irradiating high purity Ge crystals with thermal neutrons inside a 
nuclear reactor8.9. 
The general scheme of such a detector10 is depicted in the following picture (Figure 1): 
 

 
Figure 1 - NTD Ge microcalorimeter schematic. 

 
When a X-ray photon is absorbed, its energy E is transferred to the material whose temperature T increases; such 
increase ΔT causes a change in the resistance R(T) of the semiconductor thermometer. The measurement of this change 
provides a measurement of ΔT. A weak thermal link to a thermal sink at cryogenic temperature T < 100mK brings the 
temperature back to its steady value, allowing the detection of another photon.  If Ctot = Cabs + CT  is the total heat 
capacity of the device (absorber + thermometer),  the temperature increase is: 
ܶ߂  = ா஼೟೚೟,      (1) 
 
where E is the energy of the absorbed photon.  
The energy resolution (Full Width Half Maximum) of the detector is given by11:  

ிௐுெܧ߂  ≅  ௧௢௧     (2)ܥඥ݇஻ܶଶߦ2.355
 

in which ξ is a coefficient accounting for the thermometer sensitivity and kB is the Boltzmann constant. 
 
 

2. MICROCALORIMETER X-RAY ABSORBER DESIGN PROCEDURE 
 
The design of the absorbers requires the definition of the following parameters: 
 

1) energy band; 
2) energy resolution ΔEFWHM;  
3) quantum efficiency QE; 
4) operating temperature. 

 
Our group has already experience12,13,14 in designing and fabricating NTD-Ge microcalorimeters for soft X-rays (< 10 
keV). With our recent research activities, we are aiming to extend the detectable energy band up to 100 keV.  

High-z material 
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Figure 3 – Schematic description of the electroplating cell. 
 

3.1  Substrates preparation 
Suitable substrates were produced from microscope glass slides by cleaving each of them in six samples with dimensions 
2.5 x 1.25 x 1 mm3. They were optical grade cleaned by applying the following procedure: 
 

1) wash with a mild detergent; 
2) rins with de-ionized water; 
3) dry with pure nitrogen; 
4) degrease in tricloroethilene (TCE) with sonication and successive rinsing with TCE; 
5) immersion in acetone; 
6) wash with bi-distilled water with a mild detergent; 
7) rinse with bi-distilled water; 
8) final rinse with absolute ethanol. 

 
The cleaned samples were placed into the evaporation chamber of a Varian VT114A electron-beam evaporation system, 
labelled with “A” in Figure 4, to deposit two metal layers: 20 nm titanium directly on the glass, and 20 nm gold on the 
previous layer. Final cleaning steps (6 – 7 – 8) and film evaporations were performed in a class 10000 clean room. 
 

3.2 Bismuth electroplating 
 
The experimental setup employed is a three electrodes electrochemical cell connected to a Bio-Logic SA potentiostat. 
The working electrode (WE) is the metallic substrate where the bismuth layer is electrodeposited, an Ag/AgCl with KCl 
3M is the reference electrode, and a DSA (dimensionally stable anode) is the counter electrode (CE). The electroplating 
cell is placed on a stirring hot plate. The cell setup is shown in Figure 5. The electroplating solution21 composition is 
reported in Table 2. The solution had pH=0.10, measured by a Hanna laboratory pH-meter, and was moderately stirred 
during the electrodeposition to increase the film uniformity. 
Cyclic voltammetry22 is a potentio-dynamic method used in analytical chemistry and industrial processes in order to 
obtain analytical, thermodynamic, kinetic and mechanistic information about the chemical system under investigation. In 
this method, the WE potential measured with respect to the reference electrode is cyclically scanned in the range from 
the starting potential to the so called switching potential, and the current flowing between the above electrodes is 
continuously measured. The scan cycle number is a process parameter.  
Cyclic voltammetry curves, reporting the current flowing between the WE and the reference electrode as a function of 
the applied potential (Figure 6) were recorded before starting  the electroplating in order to investigate the useful 
potential range for the  electrodeposition according to the thermodynamic stability region of  bismuth in aqueous 
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