

Publication Year	2006	
Acceptance in OA@INAF	2024-03-07T11:14:58Z	
Title	FM 44GHz RCA25 Data Analysis Report	
Authors	VILLA, Fabrizio; BATTAGLIA, Paola Maria; CUTTAIA, FRANCESCO; TERENZI, LUCA; SANDRI, MAURA; et al.	
Handle	http://hdl.handle.net/20.500.12386/34931	
Number	PL-LFI-PST-RP-017	

TITLE:

FM 44GHz RCA25 Data Analysis Report

DOC. TYPE: REPORT

PROJECT REF.:	PL-LFI-PST-RP-017	PAGE: I of IV, 41
---------------	-------------------	--------------------------

ISSUE/REV.: 1.0

DATE: Aug. 2006

Prepared by	F.VILLA, P.BATTAGLIA, F.CUTTAIA, L.TERENZI, M.SANDRI, M.SALMON,	Date: Signature:	Aug 25 th , 2006
	L.VALENZIANO LFI Project System Team	0	

OPTIMIZATION OF THE LFI EDGE TAPER VALUES. I. FH #3 AND #9 MAIN BEAM AND FULL PATTERN SIMULATIONS W/O SHIELDS.

Document	PL-LFI-XXX-XX-
No.:	000
Issue/Rev.	Xx
No.:	XXX
Date:	II
Page:	

Agreed by	M. BERSANELLI LFI Instrument Scientist	Date: Signature:	Aug 25 th , 2006
Agreed by	C. BUTLER LFI Program Manager	Date: Signature:	Aug 25 th , 2006
Approved by	N. MANDOLESI LFI Principal Investigator	Date: Signature:	Aug 25 th , 2006

DISTRIBUTION LIST

Recipient	Company / Institute	E-mail address	Sent
LFI PST		lfipst@iasfbo.inaf.it	YES

CHANGE RECORD

Issue	Date	Sheet	Description of Change	Release
1.0		All	First Issue of the Document	===

TABLE OF CONTENTS

T	ABLE OF CONTENTS	3
1	INTRODUCTION AND SCOPE	1
2	APPLICABLE DOCUMENTS	3
3	REFERENCE DOCUMENTS	3
4	ANNEXES	3
5	TUNING	4
6	BASIC PERFORMANCES	4
	 6.1 RCA_LING: LINEARITY, ISOLATION, NOISE AND GAIN	4 5 9 10 11 12
	6.1.4 Consistency of the Results based on SKY steps	12
	6.1.5 Consistency of the Results based on REF steps	15
7	NOISE PROPERTIES	17
	 7.1 RCA_STN	17 17 17 18 19 20 22 22 22 22 22 24 25 26 28
8	SUSCEPTIBILIY TESTS	29
	 8.1 SUSCEPTIBILITY TESTS 8.2 RCA_THF: SUSCEPTIBILITY TO FEM TEMPERATURE VARIATIONS 	29 29

INAF/IASF – BOLOGNA LFI Project System Team

1 INTRODUCTION AND SCOPE

This document reports on the RCA28 Flight Model on – ground calibration. Tests were performed from 12 May 2006 to 24 May 2006 (including functional tests) at Alcatel Alenia Space – Milano according to the LFI Calibration Plan.

Three additional tests have been performed:

- ST3 with other P/S
- LIS with small ref temperature variations
- Check of spikes with all the environmental acquisition off.

The following tests have been performed:

Date	Filename	Notes
12-mag-06	044LFI25_RCA_FM_AMB_200605121101	Functional tests at room temperature
12-mag-06	044LFI25_RCA_FM_AMB_200605121121	Functional tests at room temperature, all channels on
12-mag-06	044LFI25_RCA_FM_AMB_200605121218	Swept source test at ambient temperature on main arm
12-mag-06	044LFI25_RCA_FM_AMB_200605121250	Swept source test at ambient temperature on side arm
15-mag-06	044LFI25_RCA_FM_CRY_200605150838	Functional tests at cryogenic temperature
15-mag-06	044LFI25_RCA_FM_CRY_200605151004	Functional tests at cryogenic temperature, all channels on
18-mag-06	044LFI25_RCA_FM_CRY_200605180847	Functional tests at cryogenic temperature. Corrupted file
18-mag-06	044LFI25_RCA_FM_CRY_200605180922	Functional tests at cryogenic temperature, all channels on. Corrupted file
18-mag-06	044LFI25_RCA_FM_CRY_200605180947	Check on RACHEI functionality
18-mag-06	044LFI25_RCA_FM_CRY_200605180959	Functional tests at cryogenic temperature
18-mag-06	044LFI25_RCA_FM_CRY_200605181012	Functional tests at cryogenic temperature, all channels on
18-mag-06	030LFI25_RCA_FM_XXX_200605181026	PS/SW I-V curves
18-mag-06	044LFI25_RCA_FM_TUN_200605181146	PS/SW tuning
18-mag-06	044LFI25_RCA_FM_TUN_200605181404	VG1 tuning: 1st T step
18-mag-06	044LFI25_RCA_FM_TUN_200605181512	VG1 tuning: 2nd T step
18-mag-06	044LFI25_RCA_FM_TUN_200605181620	VG2 tuning
18-mag-06	044LFI25_RCA_FM_TUN_200605181857	DAE tuning
18-mag-06	044LFI25_RCA_FM_ST3_200605181920	ST3 test starts
19-mag-06	044LFI25_RCA_FM_ST3_200605190355	и
19-mag-06	044LFI25_RCA_FM_OFT_200605191158	File errouneously opened
19-mag-06	044LFI25_RCA_FM_UNC_200605191202	Unchopped test with In1 rev., In 2 for., on all channles
19-mag-06	044LFI25_RCA_FM_UNC_200605191246	Unchopped test; M1/S1: In1 dir., In2 rev.; M2/S2: In1 rev., In2 dir.
19-mag-06	044LFI25_RCA_FM_UNC_200605191342	Unchopped test with In1 dir., In 2 rev., on all channles
19-mag-06	044LFI25_RCA_FM_UNC_200605191441	Unchopped test; M2/S2: In1 dir., In2 rev.; M1/S1: In1 rev., In2 dir.
19-mag-06	044LFI25_RCA_FM_SPR_200605191600	RCA swept source test (-32 dBm input power level)
19-mag-06	044LFI25_RCA_FM_THF_200605191641	RCA susceptibility test to thermal changes of the FEM
19-mag-06	044LFI25_RCA_FM_THV_200605191757	RCA susceptibility test to thermal changes of the V-groove
19-mag-06	044LFI25_RCA_FM_ST3_200605191847	ST3 test with 4kHz switching on M2/S2
20-mag-06	044LFI25_RCA_FM_ST3_200605190327	8
20-mag-06	044LFI25_RCA_FM_ELE_200605201120	RCA ELE test on VG1
20-mag-06	044LFI25_RCA_FM_ELE_200605201229	RCA ELE test on VG2
20-mag-06	044LFI25_RCA_FM_ELE_200605201430	RCA ELE test on V drain
20-mag-06	044LFI25_RCA_FM_LIS_200605201539	RCA linearity and TN test with temeprature steps both on sky and reference load
21-mag-06	044LFI25_RCA_FM_LIS_200605210004	n
21-mag-06	044LFI25_RCA_FM_LIS_200605210847	и
21-mag-06	044LFI25_RCA_FM_LIS_200605211720	u .
22-mag-06	044LFI25_RCA_FM_LIS_200605220154	и
22-mag-06	044LFI25_RCA_FM_OFT_200605221623	RCA offset test

INAF/IASF – BOLOGNA LFI Project System Team

22-mag-06	044LFI25_RCA_FM_AMB_200605221713	PS/SW I-V curves 2nd check (label is wrong. It is not a test at ambient temeprature. It is a cryogenic test)
22-mag-06	044LFI25_RCA_FM_THB_200605221744	RCA susceptibility test to thermal changes of the BEM
23-mag-06	044LFI25_RCA_FM_LIS_200605231059	RCA LIS test (small T steps on ref; from 8.2K to 9.7K; 0.05K each)
23-mag-06	044LFI25_RCA_FM_LIS_200605231943	н
24-mag-06	044LFI25_RCA_FM_LIS_200605240416	н
24-mag-06	044LFI25_RCA_FM_XXX_200605240937	Check on RCA 25 spikes

2 APPLICABLE DOCUMENTS

[AD 1] M.Bersanelli, *Planck-LFI Calibration Plan*, PL-LFI-PST-PL-008, Issue/Rev 1.0, July 2003

3 REFERENCE DOCUMENTS

[RD 1] P. Battaglia, RCA#25 at 44 GHz Test Report, PL-LFI-LAB-RP-065

4 ANNEXES

- [ANNEX 1] P. Battaglia, F. Villa, RCA_SPR_1600 RaNA Report.
- [ANNEX 2] RCA_LIS RaNA Report

5 TUNING

See [RD 1].

6 BASIC PERFORMANCES

6.1 RCA_LING: LINEARITY, ISOLATION, NOISE AND GAIN

This test includes both the RCA_LIS and the RCA_TNG. Files are named LIS. The linearity has been evaluated extensively by changing both the REF and the SKY temperature in several steps. From this data the noise temperature, isolation and gain can be also evaluated.

We found a problems on the SKY load temperature control reflected also to an instability of the Reference load as well. The SKY LOAD eccosorb is dumped such fluctuation due to its very high thermal inertia. The REF LOAD eccosorb is not. All the data stream with SKY temperature variations have the REF radiometric signal strongly affected by these fluctuations. These temperature fluctuations do not prevent the derivation of main calibration parameters. However all the receiver properties derived from differential data (for instance White noise) are affected.

Figure 6-1: Example of sensor data steam. Red: SKY controller. Blue: SKY Eccosorb. Green: REF sensor (here the RMON_TMP and the REF_TEMP are very close one to each other).

|--|

Figure 6-2: Radiometric REF output signal from Detector A...

From these datasets the characteristic curves V output Vs. T input were built for each detector and then linear and parabolic fits have been performed, as reported in next sections. In addition a gain model has been developed and results are reported as a "gain-model" fit.

6.1.1 Reference temperature steps

Noise temperature calculated using RaNa procedures (P. Battaglia). Note that these values have been obtained considering the BEM offset.

Contro froguency (Up) - 4 400000	00.10	
Channel A	Je+10	
Changing gignal. Load		
DIM affart ()		
BEM OIISEL (V) =, 0.00340000		
There are 10 time winds	46	
tmin tmax	18	
225 00 722 00		
2257.00 4154.00		
5825 00 7767 00		
9619 00 11425 00		
12006 00 15028 00		
, 15000.00 , 15030.00		
, 10050.00 , 10000.00		
, 20232.00 , 22264.00		
, 24025.00 , 25922.00		
, 2/231.00 , 29399.00		
, 30356.00 , 30830.00		
maharana mini ataraharana mini at		
,Tchange, TT1xed, Vchange, VI1xed		
, 8.122349739075 , 10.845998	764038 , 0.1548841	.46561 , 0.161740962978
, 9.714027404785 , 10.845999	717712 , 0.1629231	.69082 , 0.162072932074
, 11.909742355347 , 10.897792	316162 , 0.1738149	48378 , 0.162744542208
, 14.101269721985 , 11.117090	225220 , 0.1844067	95893 , 0.164155837443
, 16.293554306030 , 11.400143	523352 , 0.1946505	21614 , 0.165943178359

FM 44 GHz RCA25 DATA ANALYSIS REPORT

18.493659973145 , 11.737550735474 , 0.204643616249 , 0.168079528708 0.204643610242, 0.214377260108, 0.223809914411, 0.233027443288, 12.069025039673 , 12.416210174561 , 20.687551498413 , 22.884937286377 , 0.170218396580 0.172413990354 25.079776763916 , 27.267183303833 , 12.737361907959 , 12.952797889709 , 0.174461490055 0.241890692609 , 0.175888192324 OUTPUT ******** Linear fit ********* Parameters ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff , 0.004313772004 , 26.9085578890 26.908557889072 , -13.236203875763 , 0.001489910527 Statistical uncertainties ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff 0.000026206202 , 3 533411467357 0 000570687263 0.161491632508 . ******* Parabolic fit ********* Average noise temperature Tn (k),Sigma (K) , 15.150474186853 , 0.645589263186 Temperature versus Voltage parabolic fit parameters Equation: T = a0 + a1 * V + a2 * V^2 ,a0,a1,a2 -15.150197159520 , 95.442693908005 . 312.271203827073 ,sigma(a0),sigma(a1),sigma(a2) 0.005350101076 , 0.055471632278 . 0.141288664569 Voltage versus temperature parabolic fit parameters Equation: V = a0 + a1 * T + a2 * T^2 ,a0,a1,a2 0.117025361511 , 0.005534242142 , -0.000029499754 ,sigma(a0),sigma(a1),sigma(a2) , 0.001344646105, 0.0 0.000201573094 , 0.000006298951 INPUT Centre frequency (Hz) =, 4.4000000e+10 Channel: B Changing signal: Load BEM offset (v) =, 0.00470000 There are , ,tmin, tmax 10 , time windows 225.00 , 2257.00 , 722.00 4154.00 5825.00 , 7767.00 9619.00 , 11425.00 13006.00 , 16890.00 , 20232.00 , 24025.00 , 15038.00 18606.00 22264.00 25922.00 27231.00 , 29399.00 30356.00 , 30830.00 ,Tchange, Tfixed, Vchange, Vfixed
 8.122349739075
 10.845998764038

 9.714027404785
 10.845999717712
 0.174980127247 , 0 182252423553 0.184035381751 , 0.182542442037 11.909742355347 , 14.101269721985 , 10.897792816162 , 11.117090225220 , 0.196346265102 , 0.208290251307 , 0.183218757694 0.184675123016 11.400143623352 , 11.737550735474 , 12.069025039673 , 16.293554306030 , 0.219875876520 , 0.186617761420 18.493659973145 , 20.687551498413 , 22.884937286377 , 25.079776763916 , 0.231218334368 , 0.242297701143 , 0.188961012516 0.191331811089 12.416210174561 , 12.737361907959 , 0.253106385756 , 0.263593047674 , 0.193812252138 0.196029087665 12.952797889709 , 0.273728881030 , 27.267183303833 , 0.197557177076 OUTPUT ******** Linear fit ********* Parameters ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff 26.833014960091 , -14.024586712642 , 0.001513712058 0.004929094161 , Statistical uncertainties ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff , 0.000035026783 , 0.19900501215 0.199005012157 , 5.109773618432 , 0.000740826107 ******* Parabolic fit ******** Average noise temperature ,Tn (k),Sigma (K) 15.952842196430 , 0.591718559483 Temperature versus Voltage parabolic fit parameters Equation: T = a0 + a1 * V + a2 * V^2 ,a0,a1,a2 -15.952348657914 , 92.604608849054 , 224.363568732155

INAF/IASF – BOLOGNA LFI Project System Team

,sigma(a0),sigma(a1),sigma(a2) 0.007027546779 , 0.064398624990 , 0.144986532781 Voltage versus temperature parabolic fit parameters Equation: V = a0 + a1 * T + a2 * T^2 ,a0,a1,a2 0.132443017849 , 0.006203509075 , -0.000031125269 0.000201573094 , 0.000006298951 INPUT Centre frequency (Hz) =, 4.4000000e+10 Channel: C Changing signal: Load BEM offset (v) =, 0.00490000 There are , ,tmin, tmax 10 , time windows 225.00 , 2257.00 , 722.00 4154.00 5825.00 , 7767.00 9619.00 , 11425.00 13006.00 , 16890.00 , 20232.00 , 15038.00 18606.00 22264.00 24025.00 , 25922.00 27231.00 , 29399.00 30356.00 , 30830.00 ,Tchange, Tfixed, Vchange, Vfixed , 8.122349739075 , 10.845998764038 , , 9.714027404785 , 10.845999717712 , , 11.909742355347 , 10.897792816162 , , 14.101269721985 , 11.117090225220 , , 14.100269721985 , 11.117090225220 , 0.169215529965 , 0.176117279311 0.177716239315 , 0.189072524318 , 0.200000447284 , 0.176522681121 0.177273501296 0.178771480918 16.293554306030 , 18.493659973145 , 11.400143623352 , 11.737550735474 , 0.210488243854 , 0.220622114015 , 0.180692114210
 16.2955041

 18.493659973145
 11.757504

 20.687551498413
 12.069025039673

 22.884937286377
 12.416210174561

 25.079776763916
 12.737361907959

 25.07183303833
 12.952797889709
 0.182964644101 0.230324885492 , 0.185175651877 0.239809385999 , 0.187584857445 0.189693711733 0.248824472531 , 0.257545498034 , 0.191249921229 OUTPUT ******** Linear fit ********* Parameters ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff 0.004330599602 , 29.695070310063 , -12.643269086093 , 0.001884727514 Statistical uncertainties ,Gain (V/K),Tn (K),Iso. (dB),Lin. coeff , 0.000029339915 , 0.190584638219 , 3.305608246989 , 0.000621944181 ******* Parabolic fit ******** Average noise temperature ,Tn (k),Sigma (K) 11.887861103675 , 0.581406456160 Temperature versus Voltage parabolic fit parameters Equation: T = a0 + a1 * V + a2 * V^2 ,a0,a1,a2 -11.886893073646 , 44.289318678999 , 402.296855600917 , ,sigma(a0),sigma(a1),sigma(a2) , 0.006652210301, 0.0 0.063748416240 , 0.150401512455 Voltage versus temperature parabolic fit parameters Equation: $V = a0 + a1 * T + a2 * T^{2}$,a0,a1,a2 0.129059494160 , 0.005932352361 , -0.000039471732 ,sigma(a0),sigma(a1),sigma(a2) , 0.001344646105 , 0.00020157309 0.000201573094 , 0.000006298951 INPUT Centre frequency (Hz) =, 4.400000e+10 Channel: D Changing signal: Load BEM offset (v) =, 0.00550000 10 , time windows There are , ,tmin, tmax 225.00, 2257.00, 5825.00, 722.00 4154.00 7767.00 9619.00 , 13006.00 , 11425.00 15038.00 16890.00 , 18606.00 20232.00 , 22264.00 24025.00 25922.00

,	27231.00 ,	29399.00)				
,	30356.00 ,	30830.00)				
Π.	abango Tfiro	d Vahanaa	Vfired				
, 10	0 1222/07	a, venange	10 9/500976/	020	0 160000756000		0 176776025102
,	0.1223497	04795	10 045000717	712	0.177276594024	'	0.177170250000
,	11 0007/22	55247	10.0433337117	162	0.199760994030	, ,	0.1770220000
'	14 1012697	21985	11 117090225	220	0.199806436089	,	0.179512055456
,	16 2935543	06030	11 400143623	352	0 21033974294	· /	0 181441418506
'	18 4936599	73145	11 737550735	474 ,	0.220565876618	· ·	0 183769372955
,	20 6875514	98413	12 069025039	473 ,	0 23042373561	, ,	0 186072685818
'	22 8849372	86377	12 416210174	561	0 239959073428	, '	0 188481479356
,	25 0797767	63916	12 737361907	959	0 249131952056	· /	0 190651316527
	27.2671833	03833 .	12.952797889	709.	0.257878248313		0.192171961611
,		,		, ,		,	
OUTI	PUT						
	****	*** Linear	fit *******	* *			
Darr	meters						
Faid	dim (V/V) Tr	(K) TCO (dp) Lin coef	f			
, 66	0 0043550	68894	29 319830016	380	-12 52546261362	,	0 001846512965
'	0.00455550	, 100054	29.919050010.	, 500	12.52540201502	'	0.001040512905
Stat	tistical unce	rtainties					
, Ga	ain (V/K),Tn	(K),Iso. (dB),Lin. coef:	f			
,	0.0000293	16975 ,	0.185185684	249 ,	3.225523799436	,	0.000643824238
	****	*** Darabo	lic fit *****	****			
		Falabo	,IIC IIC				
Ave	rage noise te	mperature					
, T1	n (k),Sigma (1	K)					
,	12.3759023	10700 ,	0.580077325	884			
Tem	perature vers	us Voltage	e parabolic fi	t param	neters		
Equa	ation: $T = a0$	+ a1 * V	+ a2 * V^2				
, a),a1,a2				200 50001050212		
'	-12.3/50216	/2688 ,	50.845414629	460,	382./96819/23130)	
s	iama(a0) siam	a(al) sion	1a (a2)				
, .	0.0065816	37097 .	0.063139610	212 .	0.149082443811		
'	0100000010	5,65, 1	0.000100010	,	0.110002110011		
Volt	tage versus to	emperature	e parabolic fi	t param	neters		
Equa	ation: $V = a0$	+ a1 * T	+ a2 * T^2				
, a),a1,a2						
,	0.1285779	37422 ,	0.005946357	955,	-0.000038766469)	
		- (-1)	- (- 2)				
, s:	rgma(au),sigma	a(ai),sign	la (a2)				
'	0.0013446	±0102 ,	0.000201573	094 ,	0.000006298951		
===:							

The input data used for the analysis are reported in Table 6-1

Table 6-1: Input data used to derive the calibration curve of the RCA using temperature steps on REF. All the temperature are Antenna Temperature (Kelvin). Voltages are in Volts.

D	etectors A and B		Detector C and D				
T REF	Detector A Voltage	Detector B Voltage	T REF	Detector C Voltage	Detector D Voltage		
7.11228	0.15828	0.17968	7.11228	0.17411	0.17439		
8.69656	0.16635	0.18876	8.69656	0.18262	0.1829		
10.88579	0.17721	0.20107	10.88579	0.19392	0.19423		
13.07177	0.18779	0.21306	13.07177	0.20493	0.20532		
15.26066	0.19809	0.22459	15.26066	0.21547	0.21592		
17.45679	0.2081	0.23604	17.45679	0.2256	0.22615		
19.64962	0.2178	0.24702	19.64962	0.23531	0.23603		
21.84559	0.22721	0.25782	21.84559	0.24476	0.24552		
24.03867	0.23652	0.26835	24.03867	0.25376	0.25465		
26.22555	0.24542	0.27856	26.22555	0.26257	0.26353		
28.42064	0.25424	0.28855	28.42064	0.27103	0.27206		
30.62906	0.26257	0.29816	30.62906	0.27925	0.28054		
32.81195	0.27089	0.30774	32.81195	0.28704	0.28838		

FM 44 GHz RCA25 DATA ANALYSIS REPORT	Document No.: Issue/Rev. No.:	PL-LFI-PST-RP-017 1.0
TWI ++ OHZ KCA25 DATA ANALISIS KEI OKT	Date: Page :	Aug 06 9

The following fits have been performed (V is voltage in Volt and T is the input antenna temperature in Kelvin):

• linear fit:

•

- V=a0+a1*T
- parabolic fit V(T): • inverse parabolic fit T(V):
- V=a0+a1*T+a2*T² $T=a0+a1*V+a2*V^{2}$
- gain-model fit V(T): •

 $V = G^{*}(T+T0) / (1+b^{*}G^{*}(T+T0))$ (T0 is the Tn)

The fit results are reported here:

	Linear	r Fit V(T)	Parabolic Fit V(T)			Gain Model Fit V(T)			
	a0 a1		a0	a1	a2	G	Т0	В	
Detector A	0.12985	0.00438	0.12074	0.00549	-2.78999E-5	0.00758	18.17818	1.10582	
Detector B	0.14717	0.00498	0.13743	0.00617	-2.98613E-5	0.00838	18.6345	0.92933	
Detector C	0.14658	0.00439	0.13447	0.00586	-3.71044E-5	0.00925	17.37273	1.32946	
Detector D	0.14643	0.00444	0.1346	0.00587	-3.62591E-5	0.00912	17.55817	1.28916	

Based on the fit results the noise temperatures have been estimated from the reference load temperature steps and are reported in table

	T noise (K) Linear Fit	T noise (K) Parabolic Fit V(T)	T noise (K) Gain-Model Fit V(T)
Detector A	29.6	20.0	18.2
Detector B	29.6	20.3	18.6
Detector C	33.4	20.3	17.4
Detector D	33.4	20.4	17.6

Table 6-3: Noise Temperatures estimated from four different fitting function applied on data with REF steps.

6.1.1.1 Photometric gain with REF variations

The overall photometric gain can be calculated as follows:

- linear fit: G0=a1 (K/V)
- parabolic fit V(T): •
- G1=dV/dT (V/K) gain-model fit V(T) : G3 = G/(1+b*G*(T+T0))•

In the case of non linear fit the photometric gain depends on the input temperature. The gain functions are reported hereafter:

Photometric Gain from Linear fit

Detector A:	G0	=	0.00438	(V/K)
Detector B:	G0	=	0.00498	(V/K)
Detector C:	G0	=	0.00439	(V/K)
Detector D:	G0	=	0.00444	(V/K)

Photometric Gain from Parabolic V(T) fit

Detector A:	G1	=	0.00549	-5.58E-05	*	Т	(V/K)
Detector B:	G1	=	0.00617	-5.98E-05	*	Т	(V/K)
Detector C:	G1	=	0.00586	-7.42E-05	*	Т	(V/K)
Detector D:	G1	=	0.00587	-7.26E-05	*	Т	(V/K)

Photometric Gain from Gain-Model V(T) fit

Detector A:	G3	=	0.00758/(1.15237+0.0084*T)	(V/K)
Detector B:	G3	=	0.00838/(1.14512+0.0078*T)	(V/K)
Detector C:	G3	=	0.00925/(1.21364+0.0123*T)	(V/K)
Detector D:	G3	=	0.00912/(1.20643+0.0118*T)	(V/K)

6.1.2 Sky Temperature Steps

The temperature sensor used for the analysis is the SMON_TMP (ID = 09) which is the thermometer located on the Eccosorb SKY LOAD pyramids. Standard deviation of T and V has not taken into account on the fit.

Using the RaNa routine receiver_basic_properties the temperature (antenna) and the voltages have been carried out for each single data file. Then all the values have been combined to perform the fits (in IDL) outside the RaNa environment. The data are reported in the following tables.

Table 6-4: Input data as derived from receiver_basic_properties RaNa routine used to perform the fits. Only T change and Vchange data have been used. Antenna Temperatures are in Kelvin, Voltages in Volts.

T SKYMON	Detector A Voltage	Detector B Voltage	Detector C Voltage	Detector D Voltage
15.218	0.1928	0.21893	0.20974	0.21111
18.4048	0.2076	0.23609	0.22479	0.22632
21.55438	0.22139	0.2522	0.23883	0.24039
24.6939	0.23483	0.26798	0.2523	0.25415
27.82117	0.24788	0.28314	0.26514	0.26721
32.74831	0.26686	0.30558	0.28368	0.28613

As in the previous case (Reference steps) the following fits have been performed (V is voltage in Volt and T is the input antenna temperature in Kelvin):

- linear fit: V=a0+a1*T
 - parabolic fit V(T): $V=a0+a1*T+a2*T^2$
- gain-model fit V(T): V = G*(T+T0)/(1+b*G*(T+T0)) (T0 is the Tn)

The parameters of the linear and parabolic fits have been reported hereafter. Note that all the fits have been performed in antenna temperature and not in physical temperature.

•

<i>Lubic</i> 0-5. 1 ming parameters for SK1 steps.	Table	6-5 :	Fitting	parameters	for	SKY	steps.
---	-------	--------------	---------	------------	-----	-----	--------

	Linear	r Fit V(T)	Parabolic Fit V(T)			Gain Model Fit V(T)		
	a0	a1	a0	a1	a2	G	Т0	В
Detector A	0.12961	0.00423	0.11515	0.00551	-2.68066E-5	0.00766	16.83686	1.11278
Detector B	0.14488	0.00495	0.12928	0.00633	-2.89287E-5	0.0085	16.85441	0.90081
Detector C	0.14693	0.00422	0.12846	0.00586	-3.42448E-5	0.0092	16.129	1.29932
Detector D	0.14728	0.00428	0.12984	0.00583	-3.23301E-5	0.00887	16.8296	1.22087

Based on the fit results the noise temperatures have been estimated from the reference load temperature steps and are reported in table

	T noise (K) Linear Fit	T noise (K) Parabolic Fit V(T)	T noise (K) Gain-Model Fit V(T)
Detector A	30.6	19.1	16.8
Detector B	29.3	18.8	16.9
Detector C	34.8	19.7	16.1
Detector D	34.4	20.0	16.8

Table 6-6: Noise Temperatures estimated from three different fitting function applied on data with SKY steps.

6.1.2.1 Photometric Gain with SKY variations

The overall photometric gain can be calculated as follows:

• linear fit:

•

- G0=a1 (K/V) G1=dV/dT (V/K)
- gain-model fit V(T): G3= G/(1+b*G*(T+T0))

In the case of non linear fit the photometric gain depends on the input temperature. The gain functions are reported hereafter:

Photometric Gain from Linear fit

parabolic fit V(T):

INAF/IASF – BOLOGNA LFI Project System Team

Detector A:	G0	=	0.00423	(V/K)
Detector B:	G0	=	0.00495	(V/K)
Detector C:	G0	=	0.00422	(V/K)
Detector D:	G0	=	0.00428	(V/K)

Photometric Gain from Parabolic V(T) fit

Detector A:	Gl	=	0.00551	-	5.36E-05	*	Т	(V/K)
Detector B:	G1	=	0.00633	-	5.78E-05	*	Т	(V/K)
Detector C:	G1	=	0.00586	-	6.84E-05	*	Т	(V/K)
Detector D:	G1	=	0.00583	-	6.46E-05	*	Т	(V/K)

Photometric Gain from Gain-Model V(T) fit

Detector A:	G3	=	0.00766/(1.14351+0.0085*T)	(V/K)
Detector B:	G3	=	0.00850/(1.12905+0.0077*T)	(V/K)
Detector C:	G3	=	0.00920/(1.19280+0.0120*T)	(V/K)
Detector D:	G3	=	0.00887/(1.18225+0.0108*T)	(V/K)

6.1.3 Linearity

See RCA25_LIS.pdf

6.1.4 Consistency of the Results based on SKY steps

The white noise limit has been calculated and compared with the requirement. The white noise limit is defined at a given SKY temperature as follows:

Eq. 1:
$$\Delta T = \sqrt{2} \cdot \frac{T_{SKY} + T_{SYS}}{\sqrt{B}} \cdot 1000 \left[\text{mK} \cdot \sqrt{\text{sec}} \right]$$

where B is the bandwidth [Hz], τ is the integration time [sec], T_{SKY} and T_{SYS} are the Skyload antenna temperature [K] and noise system temperature [K] respectively.

From measurements the white noise limit is calculated as follows:

Eq. 2:
$$\Delta T = G[K/V] \cdot \frac{1}{\sqrt{2}} \cdot WN \cdot \sqrt{\frac{\tau}{\tau - \tau_{BT}}}$$

where WN is the white noise as derived from RaNA, τ is the 122 microSec (1/8KHz) integration time and τ_{BT} is the blanking time (7.5 microSec). G is the gain (K/V) which needs to be know from RCA_TNG tests.

The requirements has been calculated assuming Tsys = 16.6 Kelvin and B = 8.8 GHz (see XXX), while the white noise limit form measurements has been derived in three ways:

- 1. From the Tsys and B derived from tests applying Eq. 1. Tsys values were obtained from the gainmodel fit V(T) and B were obtained from RCA_SPR test
- 2. Directly From WN measurements applying the Eq. 2, where *WN* is the white noise level derived from RaNA FFT module. Firstly the white noise limit has been derived form *RaNA_FFT* module selecting a stable (~600 sec) calibrated acquisition data chunk. The White noise of differenced calibrated¹ detectors has been selected (A–B and C–D). Then the number has been corrected by the Blanking time.
- 3. White noise derived from B obtained from WN level (from RaNA FFT) and Tsys from LIS results.

Note that the consistency check has been repeated also using data with SKY = 20K and REF = 20K. Moreover the consistency check has been performed also using the noise temperatures derived from linear extrapolation at Tin = 0.

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)		
			SKY = 10.5 K REF = 8 K			
Detector A B	0.25544120	0.47482853	1.34	0.47338609	1.33	1.00
Detector C D	0.35564120	0.49728092	1.40	0.42825619	1.20	0.86
			SKY = 20 K REF = 20 K			
Detector A B	0 52612062	0.71332009	1.33	0.63655285	1.19	0.89
Detector C D	0.00012002	0.75094818	1.41	0.57772631	1.08	0.77

 Table 6-7: white noise as derived from measurements (Tsys, B from SPR, calibrated WN) compared with the requirements

 Table 6-8: white noise as derived from measurements (Tsys, B from WN diff, calibrated WN) compared with the requirements

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)		
			SKY = 10.5 K REF = 8 K			
Detector A B	0.25544120	0.43428372	1.22	0.47338609	1.33	1.09
Detector C D	0.33504120	0.39943288	1.12	0.42825619	1.20	1.07
			SKY = 20 K			

¹ The calibration has been obtained in the following way:

			REF = 20 K			
Detector A B	0 52/120/2	0.60226832	1.12	0.63655285	1.19	1.06
Detector C D	0.53012802	0.55183196	1.03	0.57772631	1.08	1.05

Expected White noise at Flight conditions has been calculated using with Tnoise gain-model V(T) fit and B derived from SPR tests. Here the results:

Table 6-9: white noise extrapolated at Flight conditions (SKY = 2.73 K) compared (**Tsys from Gain-Model V(T) fit, B from WN**) compared with the requirements

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)		
		EX	TRAPOLATED AT FLIGH	T CONDITIONS		
Detector A B	0.20141400	0.31809579	1.13	N/A	N/A	N/A
Detector C D	0.20141000	0.28876590	1.03	N/A	N/A	N/A

Tsys that gives consistency ratio = 1 (beta from SPR test, value is an average of both channels)						
beta-A (GHz)	5.9100					
beta-B (GHz)	4.17					
beta A-B (GHz)	5.04					
Optimal noise temperature	16.6000000	1.00600000				
beta that gives consistency ratio = 1 (Tsys	s from gain-model fit, v	alue is an average of both channels)				
Tsys-A (K)	16.83686					
Tsys-В (K)	16.85441					
Tsys A-B (K)	16.845635					
Optimal eff bandwidth	5.1	1.00300000				

Tsys that gives consistency ratio = 1 (beta from SPR test, value is an average of both channels)					
beta-C (GHz)	4.4200				
beta-D (GHz)	4.49				
beta C-D (GHz)	4.45500				
Optimal noise temperature	12.50000000	1.0000000			
beta that gives consistency ratio = 1 (Tsys	s from gain-model fit, v	alue is an average of	both ch	anne	els)
Tsys-C (K)	16.129				
Tsys-D (K)	16.8296				
Tsys C-D (K)	16.4793				
Optimal eff bandwidth	6.0	0.99900000			

6.1.5 Consistency of the Results based on REF steps

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)		
			SKY = 10.5 K REF = 8 K			
Detector A B	0.25544120	0.50591852	1.42	0.48465993	1.36	0.96
Detector C D	0.33304120	0.51817552	1.46	0.43009999	1.21	0.83
			SKY = 20 K REF = 20 K			
Detector A B	0 52412042	0.74441008	1.39	0.65128649	1.21	0.87
Detector C D	0.03012802	0.77184279	1.44	0.58215614	1.09	0.75

Table 6-10: white noise as derived from measurements (Tsys, B from SPR, calibrated
WN) compared with the requirements

 Table 6-11: white noise as derived from measurements (Tsys, B from WN diff, calibrated WN) compared with the requirements

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)		
			SKY = 10.5 K REF = 8 K			
Detector A B	0.25544120	0.46271899	1.30	0.48465993	1.36	1.05
Detector C D	0.55504120	0.41621613	1.17	0.43009999	1.21	1.03
			SKY = 20 K REF = 20 K			
Detector A B	0 52612062	0.62851813	1.17	0.65128649	1.21	1.04
Detector C D	0.55012602	0.56718630	1.06	0.58215614	1.09	1.03

Expected White noise at Flight conditions has been calculated using **Errore. L'origine riferimento non è** stata trovata. with Tnoise gain-model V(T) fit and B derived from SPR tests. Here the results:

 Table 6-12: white noise extrapolated at Flight conditions (SKY = 2.73 K) compared (Tsys from Gain-Model V(T) fit, B from WN) compared with the requirements

	Requirement	From Measured Tsys & B	Ratio over requirement	From Data After calibration	Ratio over requirement	Consistency ratio			
	mK*Sqrt(s)	mK*Sqrt(s)		mK*Sqrt(s)					
	EXTRAPOLATED AT FLIGHT CONDITIONS								
Detector A B	0 20141400	0.34434560	1.22	N/A	N/A	N/A			
Detector C D	0.20141000	0.30412024	1.08	N/A	N/A	N/A			

Tsys that gives consistency ratio = 1 (beta from SPR test, value is an average of both channels)							
beta-A (GHz)	5.9100						
beta-B (GHz)	4.17						
beta A-B (GHz)	5.04						
Optimal noise temperature	17.0000000	1.00500000					
beta that gives consistency ratio = 1 (Tsys	s from gain-model fit, v	alue is an average of	both channe	els)			
Tsys-A (K)	18.17818						
Tsys-В (К)	18.6345						
Tsys A-B (K)	18.40634						
Optimal eff bandwidth	5.5	1.00700000					

Tsys that gives consistency ratio = 1 (beta from SPR test, value is an average of both channels)						
beta-C (GHz)	4.4200					
beta-D (GHz)	4.49					
beta C-D (GHz)	4.45500					
Optimal noise temperature	12.25000000	1.00400000				
beta that gives consistency ratio = 1 (Tsys	s from gain-model fit, v	alue is an average of both channels)				
Tsys-C (K)	17.37273					
Tsys-D (K)	17.55817					
Tsys C-D (K)	17.46545					
Optimal eff bandwidth	6.5	1.00300000				

6.2 RCA_SPR: BANDPASS MEASUREMENT

Summary is reported in RCA25_SPR_1600.pdf The results are summarized here:

There is an offset problem on channel A that could overestimate the bandwidth of this channel. A detail study of this effect is on-going.

Table 6-13: RCA_SPR main results.

	Central Frequency (GHz)	Equivalent Bandwidth (GHz)
Detector A	44.90	5.91
Detector B	45.85	4.17
Detector C	45.75	4.42
Detector D	45.25	4.49

7 NOISE PROPERTIES

7.1 RCA_STN

STn test has been performed both for phase switch on channel M1/S1 and M2/S2 as to investigate symmetries.

7.1.1 4kHz switching on M1/S1

Long acquisition time has been performed with the aim to derive noise spectra. The data set analysed are: 044LFI25_RCA_FM_ST3_200605181920 044LFI25_RCA_FM_ST3_200605190355

The temperature step sequence is reported in Table 7-1.

	The second s	
SKY Temperature	REF Temperature	Duration
10.5 K	8.0 K	≤ 3 hours
11.0 K	15.0 K	≤ 3 hours
11.2 K	20.0 K	≤ 3 hours
20.0 K	20.0 K	≤ 3 hours

Table 7-1: Reference Temperature steps for Noise properties test (STn)

RaNA reports have been uploaded on max.iasfbo.inaf.it (directory RCA025 Docs).

7.1.1.1 One–Over–F Noise

A fourier transform has been applied on data to obtain the 1/f knee frequency and noise properties. The following data set have been used:

³ Thanks to Segio Mariotti INAF/IRA - Bologna

⁴ Thanks to ESA – ESTEC

² Thanks to ESA – ESTEC

10.5 / 8.0 Selected from **7200** – **10800** sec, bin 10 for FFT and 1/f from file 044LFI25_RCA_FM_ST3_200605181920 11.0 / 15.0 Selected from **17900** – **21500** sec, bin 10 for FFT and 1/f from file 044LFI25_RCA_FM_ST3_200605181920 11.2 / 20.0 Selected from **27000** – **30600** sec , bin 10 for FFT and 1/f from file 044LFI25_RCA_FM_ST3_200605181920 20.0 / 20.0 Selected from **19400** – **23000** sec, bin 10 for FFT and 1/f from file 044LFI25_RCA_FM_ST3_200605181920

In the following table the 1/f characteristics obtained by an optimized fitting is reported. The numbers of point used for the low frequency fit is reported for each detector. BIN = 10 is used (fsampl =409.600).

T sky = 10.5 K T ref = 8.0 K	Detector A	Detector B	Detector C	Detector D
N points	53	53	53	25
1/f knee frequency	0.010516714	0.023660445	0.023824874	0.011375346
R factor	1.0436863	1.0396388	1.0397661	1.0450748
1/f Slope	-0.94395202	-0.97695062	-0.98607429	-0.83907391
T sky = 11.0 K T ref = 15.0 K	Detector A	Detector B	Detector C	Detector D
N points	90	31	46	37
1/f knee frequency	0.025250720	0.0178765	0.0179022	0.018131704
R factor	0.87991557	0.87605257	0.88477145	0.88909587
1/f Slope	-1.0300975	-0.945251	-0.982794	-1.1358883
T sky = 11.2 K T ref = 20.0 K	Detector A	Detector B	Detector C	Detector D
N points	100	100	100	100
1/f knee frequency	0.034420479	0.025147609	0.039282668	0.043440990
R factor	0.80887303	0.80469791	0.81886386	0.82248744
1/f Slope	-1.2393608	-1.1802476	-1.1579224	-1.0876688
T sky = 20.0 K T ref = 20.0 K	Detector A	Detector B	Detector C	Detector D
N points	22	50	22	40
1/f knee frequency	0.010734703	0.0111339	0.019024844	0.013390471
R factor	0.98201972	0.98086981	0.97952690	0.98513828
1/f Slope	-0.79388733	-0.497261	-0.89865325	-0.80295615

7.1.1.2 White Noise Level and Equivalent Bandwidth

T sky = 10.5 K	White noise level			Effective bandwidth		
T ref = 8.0 K	[V/Sqrt(Hz)]			[GHz]		
	Sky	Load	Diff	Sky	Load	Diff

DETECTOR A	3.9261940e-006	3.7706452e-006	5.5503204e-006	7.00	6.97	7.01
DETECTOR B	5.2720633e-006	5.0191523e-006	7.4160007e-006	4.98	5.09	5.04
DETECTOR C	4.3518511e-006	4.1894667e-006	6.1527110e-006	6.88	6.87	6.89
DETECTOR D	4.3836212e-006	4.1628118e-006	6.1779480e-006	6.87	6.98	6.92

T sky = 11.0 K T ref = 15.0 K	White noise level [V/Sqrt(Hz)]				tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0123085e-006	4.3075149e-006	5.5164725e-006	7.08	7.93	7.49
DETECTOR B	5.3630112e-006	5.8077719e-006	7.3862621e-006	5.07	5.63	5.35
DETECTOR C	4.4383118e-006	4.7304208e-006	6.1097743e-006	6.99	7.86	7.38
DETECTOR D	4.4644086e-006	4.7820458e-006	6.1653777e-006	7.01	7.72	7.35

T sky = 11.2 K T ref = 20.0 K	White noise level [V/Sqrt(Hz)]			Effect	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0701811e-006	4.7781284e-006	5.6095932e-006	7.29	8.06	7.67
DETECTOR B	5.4266784e-006	6.2675246e-006	7.4074544e-006	5.24	6.05	5.62
DETECTOR C	4.5458811e-006	5.0844118e-006	6.1642602e-006	7.05	8.39	7.67
DETECTOR D	4.5189476e-006	5.0840219e-006	6.1660806e-006	7.24	8.44	7.77

T sky = 20.0 K T ref = 20.0 K	White noise level [V/Sqrt(Hz)]			Effect	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.7889175e-006	4.6703527e-006	6.6236233e-006	7.86	8.57	8.22
DETECTOR B	6.3479494e-006	6.3351423e-006	8.8713764e-006	5.78	6.03	5.92
DETECTOR C	5.1240884e-006	5.1324457e-006	7.1812275e-006	8.09	8.40	8.24
DETECTOR D	5.1534072e-006	5.1339909e-006	7.2266061e-006	8.12	8.43	8.26

7.1.2 4kHz switching on M2/S2

Long acquisition time has been performed with the aim to derive noise spectra. The data set analysed are: 044LFI25_RCA_FM_ST3_200605191847 044LFI25_RCA_FM_ST3_200605200327

The temperature step sequence is reported in Table 7-1.

SKY Temperature	REF Temperature	Duration
10.5 K	8.0 K	≤ 3 hours
11.0 K	15.0 K	≤ 3 hours
11.8 K	20.0 K	≤ 3 hours
20.0 K	20.0 K	≤ 3 hours

Table 7-2: Reference Temperature steps for Noise properties test (STn)

RaNA reports have been uploaded on max.iasfbo.inaf.it (directory RCA025 Docs).

7.1.2.1 One–Over–F Noise

A fourier transform has been applied on data to obtain the 1/f knee frequency and noise properties. The following data set have been used:

 $\label{eq:10.5} \begin{array}{l} 10.5 \ / \ 8.0 \ \text{Selected from 7100} - 10700 \ \text{sec, bin 10 for FFT and 1/f from file} \\ 044 \ \text{LF125} \ \text{RCA} \ \text{FM} \ \text{ST3} \ 2006 \ 05191847 \\ 11.0 \ / \ 15.0 \ \text{Selected from 17800} - 21400 \ \text{sec, bin 10 for FFT and 1/f from file} \\ 044 \ \text{LF125} \ \text{RCA} \ \text{FM} \ \text{ST3} \ 2006 \ 05191847 \\ 11.2 \ / \ 20.0 \ \text{Selected from 27000} - 30600 \ \text{sec, bin 10 for FFT and 1/f from file} \\ 044 \ \text{LF125} \ \text{RCA} \ \text{FM} \ \text{ST3} \ 2006 \ 05191847 \\ 11.2 \ / \ 20.0 \ \text{Selected from 19000} - 22600 \ \text{sec, bin 10 for FFT and 1/f from file} \\ 044 \ \text{LF125} \ \text{RCA} \ \text{FM} \ \text{ST3} \ 2006 \ 05191847 \\ 20.0 \ / \ 20.0 \ \text{Selected from 19000} - 22600 \ \text{sec, bin 10 for FFT and 1/f from file} \\ 044 \ \text{LF125} \ \text{RCA} \ \text{FM} \ \text{ST3} \ 2006 \ 052 \ 00327 \\ \end{array}$

In the following table the 1/f characteristics obtained by an optimized fitting is reported. The numbers of point used for the low frequency fit is reported for each detector. BIN = 10 is used (fsampl =409.600).

T sky = 10.5 K T ref = 8.0 K	Detector A	Detector B	Detector C	Detector D
N points	19	19	49	43
1/f knee frequency	0.0047304590	0.0095577413	0.018027259	0.0219002
R factor	1.0412120	1.0408503	1.0288710	1.0589843
1/f Slope	-0.88591810	-0.85855637	-1.1240666	-1.28016
T sky = 11.0 K T ref = 15.0 K	Detector A	Detector B	Detector C	Detector D
N points	17	44	22	80
1/f knee frequency	0.015153034	0.0130549	0.0248488	0.0203416
R factor	0.87677074	0.87603497	0.87557050	0.90053544
1/f Slope	-1.0434849	-1.01460	-1.06759	-0.931436
T sky = 11.2 K T ref = 20.0 K	Detector A	Detector B	Detector C	Detector D
N points	100	100	70	60
1/f knee frequency	0.036881693	0.036198000	0.035724396	0.037098859
R factor	0.80554513	0.80433787	0.81045024	0.83289638
1/f Slope	-1.0727899	-1.1014008	-1.0590718	-1.0943250
T sky = 20.0 K T ref = 20.0 K	Detector A	Detector B	Detector C	Detector D
N points	30	30	100	50
1/f knee frequency	0.012638429	0.0085212576	0.012390460	0.0106418
R factor	0.97991426	0.98122846	0.97057132	0.99793510
1/f Slope	-0.83478059	-0.74100597	-0.86817151	-0.630170

7.1.2.2 White Noise Level and Equivalent Bandwidth

T sky = 10.5 K T ref = 8.0 K	White noise level [V/Sqrt(Hz)]			Effect	tive band [GHz]	lwidth
	Sky Load Diff			Sky	Load	Diff

DETECTOR A	3.9896729e-006	3.7934427e-006	5.6114976e-006	6.75	6.89	6.82
DETECTOR B	5.3047069e-006	5.0644272e-006	7.4819674e-006	4.94	5.00	4.96
DETECTOR C	4.3943584e-006	4.2159649e-006	6.1630940e-006	6.76	6.94	6.87
DETECTOR D	4.4712810e-006	4.1977985e-006	6.2865945e-006	6.80	6.88	6.88

T sky = 11.0 K T ref = 15.0 K	White noise level [V/Sqrt(Hz)]				tive band [GHz]	dwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0283197e-006	4.3441153e-006	5.5474188e-006	6.97	7.80	7.35
DETECTOR B	5.3700218e-006	5.8377617e-006	7.4217332e-006	5.07	5.58	5.31
DETECTOR C	4.4632934e-006	4.7688702e-006	6.1248291e-006	6.91	7.89	7.34
DETECTOR D	4.5243587e-006	4.8171386e-006	6.2666826e-006	7.02	7.63	7.31

T sky = 11.2 K T ref = 20.0 K	White noise level [V/Sqrt(Hz)]			Effec	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0655313e-006	4.7933802e-006	5.6067105e-006	7.24	8.01	7.62
DETECTOR B	5.4383850e-006	6.3467385e-006	7.4565302e-006	5.23	5.92	5.56
DETECTOR C	4.5598769e-006	5.1254642e-006	6.1667095e-006	6.99	8.41	7.64
DETECTOR D	4.5944623e-006	5.1243207e-006	6.2828882e-006	7.19	8.32	7.69

T sky = 20.0 K T ref = 20.0 K	White noise level [V/Sqrt(Hz)]			Effec	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.8056881e-006	4.6744742e-006	6.6335184e-006	7.78	8.56	8.16
DETECTOR B	6.3620178e-006	6.3993873e-006	8.9362055e-006	5.78	5.93	5.86
DETECTOR C	5.1610502e-006	5.1668449e-006	7.1878295e-006	7.97	8.44	8.21
DETECTOR D	5.2103505e-006	5.1573417e-006	7.3174940e-006	8.16	8.36	8.27

7.2 RCA_UNC: UNCHOPPED DATA

Noise properties have been derived also from unchopped data, i.e. with all the phase switches off. The knee frequencies reported in the tables below are in Hz. The following data set have been analysed:

- 044LFI25_RCA_FM_UNC_200605191202
- 044LFI25_RCA_FM_UNC_200605191246
- 044LFI25_RCA_FM_UNC_200605191342
- 044LFI25_RCA_FM_UNC_200605191441

The corresponding RaNA report sare available on max server (max.iasfbo.inaf.it).

7.2.1 PS/SW ln1 diode reverse, ln2 diode forward on all channels

 $10.9\,/\,8.0$ Selected from 50-2450 sec, bin 10 for FFT and 1/f $\,$ from file 044LF125_RCA_FM_UNC_200605191202 $\,$

T sky = 13.0 K T ref = 8.5 K	Detector A	Detector B	Detector C	Detector D	
		SI	KY		
N points	30000	37	30000	44	
1/f knee frequency	14.403801 ⁵	29.9906	19.8833	33.1539	
1/f Slope	-0.74162818	-0.755692	-0.685979	-0.667751	
		RI	EF		
N points	30000	37			
1/f knee frequency	14.6886	39.7850	20.0638	21.8985	
1/f Slope	-0.738654	-0.731333	-0.686840	-0.660918	

⁵ The red values are underestimated because the right number of points has not been found.

T sky = 13.0 K T ref = 8.5 K	White noise level [V/Sqrt(Hz)]			Effec	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	3.8177859e-006	3.8184308e-006	5.3982691e-006	6.93	6.93	6.94
DETECTOR B	5.4974387e-006	5.4895444e-006	7.7847206e-006	5.17	5.19	5.16
DETECTOR C	4.5723670e-006	4.5643786e-006	6.4601131e-006	6.98	7.00	6.99
DETECTOR D	4.2121663e-006	4.2157433e-006	5.9478368e-006	7.01	6.99	7.03

7.2.2 PS/SW ln1 diode reverse, ln2 diode forward on Channels M2/S2; ln1 diode forward, ln2 diode reverse on Channels M1/S1

10.5 / 8.0 Selected from 50-3050 sec, bin 10 for FFT and 1/f from file 044LF125_RCA_FM_UNC_200605191246

T sky = 10.5 K T ref = 8.0 K	Detector A	Detector B	Detector C	Detector D
		SI	КY	
N points	30000	30000	32	30000
1/f knee frequency	13.945311	12.172465	166.62519	20.938829
1/f Slope	-0.75716635	-0.71929293	-0.64926289	-0.66001421
		RI	EF	
N points	30000	30000	32	30000
1/f knee frequency	14.199085	12.326361	84.536024	20.930331
1/f Slope	-0.75641171	-0.70943754	-0.69140536	-0.66219999

T sky = 10.5 K T ref = 8.0 K	White noise level [V/Sqrt(Hz)]			Effec	tive band [GHz]	lwidth
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0190481e-006	4.0346009e-006	5.6842554e-006	7.05	7.00	7.05
DETECTOR B	5.1117798e-006	5.1149090e-006	7.2316124e-006	5.12	5.12	5.12
DETECTOR C	4.2804437e-006	4.2536946e-006	6.0344549e-006	6.78	6.87	6.83
DETECTOR D	4.4748793e-006	4.4804996e-006	6.3204366e-006	6.93	6.91	6.95

7.2.3 PS/SW ln1 diode forward, ln2 diode reverse on all channels

 $13.0\,/\,8.5$ Selected from 50-3350 sec, bin 10 for FFT and 1/f $\,$ from file 044LF125 <code>RCA_FM_UNC_200605191342</code>

T sky = 10.5 K T ref = 8.0 K	Detector A	Detector B	Detector C	Detector D
		SI	KΥ	
N points	41	14	31	32
1/f knee frequency	53.4216	35.0257	52.8597	81.7439
1/f Slope	-0.723392	-0.779242	-0.740832	-0.640833
		RI	EF	
N points	41	14	31	32
1/f knee frequency	51.0993	30.3707	113.128	157.466
1/f Slope	-0.727320	-0.788928	-0.685558	-0.599572

T sky = 10.5 K T ref = 8.0 K	White noise level [V/Sqrt(Hz)]			Effective bandwidth [GHz]		
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	3.8232492e-006	3.8175648e-006	5.4096910e-006	7.10	7.12	7.09
DETECTOR B	5.3203804e-006	5.3121512e-006	7.5179271e-006	5.18	5.20	5.19
DETECTOR C	4.4829167e-006	4.4856775e-006	6.3451152e-006	6.97	6.96	6.96
DETECTOR D	4.2514357e-006	4.2554477e-006	6.0134052e-006	7.15	7.14	7.15

7.2.4 PS/SW ln1 diode reverse, ln2 diode forward on Channels M1/S1; ln1 diode forward, ln2 diode reverse on Channels M2/S2

 $13.0\,/\,8.5$ Selected from 0-3000 sec, bin 10 for FFT and 1/f from file 044LF125_RCA_FM_UNC_200605191441

T sky = 13.0 K T ref = 8.5 K	Detector A	Detector B	Detector C	Detector D		
	SKY					
N points	43	18	45	24		
1/f knee frequency	157.21152	462.165	166.480	75.4817		
1/f Slope	-0.61160166	-0.572220	-0.606649	-0.644112		
	REF					
N points	44	18	46	24		
1/f knee frequency	96.436066	245.102	91.3560	198.413		
1/f Slope	-0.64071303	-0.603175	-0.649805	-0.584125		

T sky = 13.0 K T ref = 8.5 K	White noise level [V/Sqrt(Hz)]			Effective bandwidth [GHz]		
	Sky	Load	Diff	Sky	Load	Diff
DETECTOR A	4.0200618e-006	4.0069063e-006	5.6718627e-006	6.86	6.90	6.89
DETECTOR B	5.1196761e-006	5.1281481e-006	7.2557033e-006	5.03	5.01	5.01
DETECTOR C	4.2273930e-006	4.2335806e-006	5.9829269e-006	7.08	7.06	7.07
DETECTOR D	4.4845856e-006	4.4763399e-006	6.3247848e-006	6.99	7.01	7.02

INAF/IASF – BOLOGNA LFI Project System Team

7.3 SPIKES INVESTIGATION

The following data have been selected:

- 8640 10800 sec (bin 10) from file 044LFI25_RCA_FM_ST3_200605181920
- 0 2160 sec (bin 10) from file 044LFI25_RCA_FM_XXX_200605240937

In the XXX data set all connectors from temperature controllers have been removed and this has no effect on spikes, that are probably due (as in the 30 GHz) to the temperature acquisition system.

Figure 5 044LFI25_RCA_FM_ST3_200605181920 data set: Sky – r Ref.

Figure 6 044LFI25_RCA_FM_XXX_200605240937 data set: Sky - r Ref.

8 SUSCEPTIBILIY TESTS

8.1 SUSCEPTIBILITY TESTS

Any thermal and electrical variation on the RCA subsystem units produces a variation of the output signal from each of the four detector.

8.2 RCA_THF: SUSCEPTIBILITY TO FEM TEMPERATURE VARIATIONS

The test has been performed by varying the temperature of the FEM keeping constant the temperatures of the other thermal interfaces.

The temperature of the FEM has been set to 20K (nominal), 22K, 24K, and 27K as seen in Figure -1

Figure -7: FEM temperature step during the RCA_THF test

The temperature behaviour of the other thermal interfaces are reported in the next figures (Figure -2 and Figure -3) showing the sky load (SKY_TEMP and SMON_TMP) and reference load temperatures, and the BEM temperature.

Figure -8: Left – Reference Load temperature behaviour during the RCA_THF test; right – SKY_TEMP probe (red) and SMON_TMP probe (green)

Figure -9: BEM temperature behaviour during the RCA_THF test

To do the analysis, the radiometric output for each channel in the three steps was recorded. We can see the output of the channels in the figures below:

Figure -10: Radiometric output of the 4 detectors during the RCA_THF test. Sky (*red*) *and Ref*(*green*)

Analysis using the SKY_TEMP probe as sky load temperature: The default parameters for the four channels are:

	Ch. A	Ch. B	Ch. C	Ch. D	
Freq.(GHz)		4	14		
$L_{feed-OMT}$ (dB)		0	.1		
L_{4k} (<i>dB</i>)		0	.1		
r	1.044862	1.0414686	1.0419499	1.0466342	
T_{sky} (K)		10	0.5		
T _{ref} (K)	7.9999				
G ^{dB} _{F1} (<i>dB</i>)	35				
$\mathrm{G}_{\mathrm{F2}}^{\mathrm{dB}}$ (dB)		:	35		
$T_{nF1}(K)$	20	20	20	20	
T_{nF2} (K)	20	20	20	20	
$\partial G_{F1}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.05	-0.05	-0.05	-0.05	
$\partial G_{F2}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.05	-0.05	-0.05	-0.05	
$\partial T_{nF1} / \partial T_{phys}^{FE}$ (K/K)	0.08	0.08	0.08	0.08	

Page :	1g 00 32
$\partial T_{nF2} / \partial T_{phys}^{FE}$ (K/K) 0.08 0.08 0.08 0.08	

Table -3: Default input parameters for RCA_THF analysis

Calculating the theoretical and the measured transfer functions with RaNA, we obtain:

Figure -11: RCA_THF theoretical (blue) Vs measured (red) transfer function

Table -4: RCA_7	THF Analysis	Result based	on default	parameters
-----------------	--------------	--------------	------------	------------

	Channel A	Channel B	Channel C	Channel D
$f_{therm}^{front-end}$ (K/K) theoretical	-0.018952	-0.019686	-0.019582	-0.018569
$f_{therm}^{front-end}$ (K/K) measured	-0.035634	-0.043128	-0.027621	-0.023977

The complete RaNA output:

(V/K)

FEM susceptibility	FEM susceptibility
INPUT	INPUT
Frequency (GHz) = 44	Frequency (GHz) = 44
Receiver: LFI	Receiver: LFI
Channel : A	Channel : B
Load correct : Yes	Load correct : Yes
r = 1.0448612	r = 1.0414686
Model: FM	Model: FM
Gain calibration factor (V/K) = value of RaNA_View	Gain calibration factor (V/K) = value of RaNA_View
LfeedOMT_dB = 0.100000	LfeedOMT_dB = 0.100000
L4K_dB = 0.100000	L4K_dB = 0.100000
GF1_dB = 35	GF1_dB = 35
GF2_dB = 35	GF2_dB = 35
TnF1_K = 20	TnF1_K = 20
TnF2_K = 20	TnF2_K = 20
dGF1_dB_dTFEphys_K = -0.0500000	dGF1_dB_dTFEphys_K = -0.0500000
dGF2 dB dTFEphys K = -0.0500000	dGF2 dB dTFEphys K = -0.0500000
dTn1_dTFEphys_K = 0.0800000	dTn1_dTFEphys_K = 0.0800000

Date: Page : Aug 06 33

1.0

	-
dTn2_dTFEphys_K = 0.0800000	dTn2_dTFEphys_K = 0.0800000
There are 4 time windows tmin tmax	There are 4 time windows tmin tmax
40.00 325.00 520.00 1482.00	48.00 529.00 520.00 1482.00
1647.00 2454.00	1647.00 2454.00
2649.00 3291.00	2649.00 3291.00
Sky Sensor = Ski_IEMP	Sky Sensor = Ski_IEMP
FEM Sensor = FEM TEMP	FEM Sensor = FEM TEMP
	=
SKY_TEMP REF_TEMP FEM_TEMP	SKY_TEMP REF_TEMP FEM_TEMP
10.50000000 7.99991846 19.99995232	10.50000000 7.99991846 19.99995232
10.49999905 7.99995136 22.00032234	10.499999905 7.99995136 22.00032234
10.50000000 7.99993324 27.00074768	10.50000000 7.99993324 27.00074768
Radiometer outputs (K)	Radiometer outputs (K)
Tsky Trei	Tsky Trei
38 243971 36 657825	37 179574 35 763872
38.504979 36.965684	37.434367 36.073846
38.877864 37.433767	37.795469 36.560129
Tsky-r*Tref	Tsky-r*Trei
-0.11902964	-0.13540998
-0.23522686	-0.28075658
ftheo (K/K) fmeas (K/K)	ftheo (K/K) fmeas (K/K)
-0.018952 -0.035634	-0.019686 -0.043128
FPM suggestibility	FFM suggestibility
INPUT	INPUT
Frequency (GHz) = 44	Frequency (GHz) = 44
Receiver: LFI	Receiver: LFI
Channel : C	Channel : D
r = 1.0419499	r = 1.0466342
Model: FM	Model: FM
Gain calibration factor (V/K) = value of RaNA_View	Gain calibration factor (V/K) = value of RaNA_View
LfeedOMT_dB = 0.100000	LfeedOMT_dB = 0.100000
$L4K_{dB} = 0.100000$	$L4K_dB = 0.100000$
GF2 dB = 35	GF2 dB = 35
TnF1_K = 20	TnF1_K = 20
TnF2_K = 20	TnF2_K = 20
$dGF1_dB_dTFEphys_K = -0.0500000$	$dGF1_dB_dTFEphys_K = -0.0500000$
$dTr_2 dE_dT_Ephys_K = -0.0500000$	$dTr_{ab} dTr_{bhys} K = -0.0500000$
dTn2 dTFEphys K = 0.0800000	dTn2 dTFEphys K = 0.0800000
There are 4 time windows	There are 4 time windows
48.00 329.00	48.00 329.00
520.00 1482.00	520.00 1482.00
1647.00 2454.00	1647.00 2454.00
2649.00 3291.00	2649.00 3291.00
Sky Sensor = SKY_TEMP	Sky Sensor = SKY_TEMP
Ref Sensor = REF_TEMP	Ref Sensor = REF_TEMP
FEM Sensor = FEM_TEMP	FEM Sensor = FEM_TEMP
SKY TEMP REF TEMP FEM TEMP	SKY TEMP REF TEMP FEM TEMP
10.50000000 7.99991846 19.99995232	10.50000000 7.99991846 19.99995232
10.49999905 7.99995136 22.00032234	10.49999905 7.99995136 22.00032234
10.50000000 7.99995899 24.00051689	10.50000000 7.99995899 24.00051689
1.3333324 21.00014168	10.30000000 1.3333324 21.000/4/68
Radiometer outputs (K)	Radiometer outputs (K)
Tsky Tref	Tsky Tref
40.303937 38.681263 40.486900 38.896909	41.1/9062 39.344274 41.367648 39.556259
40.644907 39.091051	41.530721 39.749732
40.923840 39.447500	41.811906 40.094254
malua utmasf	malas sémesé
TSKY-r*Trei	TSKY-r*Tret 0_033283312
-0.086008569	-0.072706355
-0.17847746	-0.15210943
ftheo (K/K) fmeas (K/K)	ftheo (K/K) fmeas (K/K)
-0.019582 -0.027621	-0.018569 -0.023977

INAF/IASF - BOLOGNA LFI Project System Team

FM 44 CH7 DC 4 25 DATA ANALVSIS DEDODT	Document No.: Issue/Rev No [.]	PL-LFI-PST-RP-017
FWI 44 GHIZ NCA25 DATA ANAL 1515 KEFOKI	Date: Page :	Aug 06 34

To improve the results obtained with the default parameters, I am going to change any of them. In particular, I change the $\partial G_{FE}^{dB}/\partial T_{phys}^{FE}$ and $\partial T_{nFE}/\partial T_{phys}^{FE}$. The best values will be:

	Ch. A	Ch. B	Ch. C	Ch. D
$\partial G_{F1}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.1	-0.12	-0.075	-0.062
$\partial G_{F2}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.1	-0.12	-0.075	-0.062
$\partial T_{nF1} / \partial T_{phys}^{FE}$ (K/K)	0.13	0.13	0.09	0.125
$\partial T_{nF2} / \partial T_{phys}^{FE}$ (K/K)	0.13	0.13	0.09	0.125

Table -5: Optimized parameters of RCA_THF test

and calculating the transfer functions, the new results:

Figure -12: RCA_THF theoretical Vs measured transfer function after optimisation of the parameters.

Table -6: RCA_THF Optimal transfer function Vs. theoretical

			Channel A	Channel B	Channel C	Channel D
$f_{therm}^{front-end}$	(K/K)	theoretical	-0.035483	-0.043264	-0.027597	-0.023996
$f_{\rm therm}^{\rm front-end}$	(K/K)	measured	-0.035634	-0.043128	-0.027621	-0.023977

The complete RaNA output:

FEM susceptibility	FEM susceptibility
Frequency (GHz) = 44	INPUT Frequency (GHz) = 44
Receiver: LFI	Receiver: LFI
Load correct : Yes	Load correct : Yes
r = 1.0448612	r = 1.0414686
Model: FM	Model: FM
LifeedOMT dB = 0.100000	LifeedOMT dB = 0.100000
L4K_dB = 0.100000	L4K_dB = 0.100000
$GF1_{dB} = 35$ $GF2_{dB} = 35$	$GF1_{dB} = 35$ $GF2_{dB} = 35$
TnF1_K = 20	$TnFI_K = 20$
$TnF2_K = 20$ dGE1 dB dTEEphys K = -0.100000	$TnF2_K = 20$ dGE1_dB_dTFEphys_K = -0.120000
$dGF2_dB_dTFEphys_K = -0.100000$	dGF2_dB_dTFEphys_K = -0.120000
$dTn1_dTFEphys_K = 0.130000$ $dTn2_dTFEphys_K = 0.120000$	$dTn1_dTFEphys_K = 0.130000$ $dTn2_dTFEphys_K = 0.130000$
There are 4 time windows	There are 4 time windows
48.00 329.00	48.00 329.00
520.00 1482.00	520.00 1482.00
1647.00 2454.00 2649.00 3291.00	1647.00 2454.00 2649.00 3291.00
Sky Sensor = SKY_TEMP Ref Sensor = REF TEMP	Sky Sensor = SKY_TEMP Ref Sensor = REF TEMP
FEM Sensor = FEM_TEMP	FEM Sensor = FEM_TEMP
SKY TEMP REF TEMP FEM TEMP	SKY TEMP REF TEMP FEM TEMP
10.50000000 7.99991846 19.99995232	10.50000000 7.99991846 19.99995232
10.49999905 7.99995136 22.00032234 10.50000000 7.00005800 24.00051680	10.49999905 7.99995136 22.00032234
10.50000000 7.9999324 27.00074768	10.50000000 7.99993324 27.00074768
Tsky Tref	Tsky Tref
37.994215 36.362931	36.930894 35.460401
38.243971 36.657825 38.504979 36.965684	37.179574 35.763872 37.434367 36.073846
38.877864 37.433767	37.795469 36.560129
Taky-r*Tref	Toky-r*Tref
-0.058368730	-0.067375315
-0.11902964	-0.13540998
-0.23522686	-0.28075658
OUTPUT	OUTPUT
-0.035483 -0.035634	-0.043264 -0.043128
FEM susceptibility	FEM susceptibility
INPUT Frequency (CHz) - 44	INPUT Frequency (CHz) - 44
Receiver: LFI	Receiver: LFI
Channel : C	Channel : D
r = 1.0419499	r = 1.0466342
Model: FM Gain calibration factor (W/K) - walks of RaNA View	Model: FM Gain calibration factor (W/K) - walks of RaNA View
LifeedOMT dB = 0.100000	LifeedOMT dB = 0.100000
L4K_dB = 0.100000	L4K_dB = 0.100000
$GF1_{dB} = 35$ $GF2_{dB} = 35$	GF1 dB = 35
	GF2 dB = 35
$TnF1_K = 20$	GF2_dB = 35 TnF1_K = 20
ThFl_K = 20 ThF2_K = 20 dGFl_dB_dTFEphys_K = -0.0750000	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = -0.0620000
ThF1_K 20 ThF2_K 20 dGF1_dB_dTFEphys_K -0.0750000 dGF2_dB_dTFEphys_K -0.0750000 dTn1_dTFEphys_K 0.0900000 dTn2_dTFEphys_K 0.0900000	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = -0.0620000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = -0.0620000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = -0.0520000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 time windows
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = -0.0620000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 time windows tmin tmax 48.00 329.00
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647_00 2454_00	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647_00 2454_00
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 time windows tmin tmax 48.00 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Eby Sensor = SKY TEME	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn1_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Shy Sensor = SKY TEME
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP Ref Sensor = REF_TEMP	GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn1_dTFEphys_K = 0.125000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP Ref Sensor = REF_TEMP
ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP FEM Sensor = FEM_TEMP
<pre>ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP</pre>	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SKY_TEMP REF_TEMP SKY_TEMP REF_TEMP
<pre>ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0750000 dGF2_dB_dTFEphys_K = -0.0750000 dTn1_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SKY_TEMP REF_TEMP FEM_TEMP </pre>	GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0620000 dGF2_dB_dTFEphys_K = 0.125000 dTn2_dTFEphys_K = 0.125000 There are 4 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SKY_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SKY_TEMP REF_TEMP FEM_TEMP 10.5000000 7.99991846 19.99995232

FM 4	4 GHz RCA	A25 DATA ANALYSIS R	EPORT	Docum Issue/F	nent No.: Rev. No.: Date: Page :	PL-LFI-PST-F	RP-017 1.0 Aug 06 36
10.5000000 10.5000000 Radiometer outputs (K) Tsky Tref 40.303937 40.486900 40.644907 40.923840 Tsky-r*Tref -0.041729511 -0.086008569 -0.17847746 OUTPUT ftheo (K/K) fmeas (K, -0.027597 -0.02762	7.99995899 7.99993324 38.681263 38.896909 39.091051 39.447500	24.00051689 27.00074768	10.50 10.50 Radiometer of Tsky T 41. 41. 41. 41. 50.033 -0.072 -0.15 OUTPUT ftheo (K/K -0.02395	0000000 0000000 ref 179062 367648 530721 811906 ref 283312 7706355 210943 c) fmeas (-0.023	7.99995899 7.99993324 39.344274 39.556258 39.749732 40.094254 K/K) 977	24.00051689 27.00074768	

Analysis using the SMON_TMP probe as sky load temperature:

The default parameters for the four channels are:

	Ch. A	Ch. B	Ch. C	Ch. D		
Freq.(GHz)	30					
$L_{feed-OMT}$ (dB)		0	.1			
L_{4k} (<i>dB</i>)		0	.1			
r	1.044862	1.0414686	1.0419499	1.0466342		
T _{sky} (K)		10.	849			
T _{ref} (K)	7.9999					
$G_{\rm Fl}^{\rm dB}$ (dB)	35					
G_{F2}^{dB} (dB)		3	5			
T _{nFl} (K)	20	20	20	20		
T_{nF2} (K)	20	20	20	20		
$\partial G_{F1}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.05 -0.05 -0.05 -0.0					
$\partial G_{F2}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.05 -0.05 -0.05					
$\partial T_{nF1} / \partial T_{phys}^{FE}$ (K/K)	0.08 0.08 0.08 0.08					
$\partial T_{nF2} / \partial T_{phys}^{FE}$ (K/K)	0.08	0.08	0.08	0.08		
Gain Calibration Factor (V/K)	0.0043	0.00493	0.00433	0.004355		

Table -7: Default input parameters for RCA_THF analysis

Calculating the theoretical and the measured transfer functions with RaNA, we obtain:

Figure -13: RCA_THF theoretical (blue) Vs measured (red) transfer function

Table -8: RCA_THF Analysis Result based on default parameter	ers
--	-----

	Channel A	Channel B	Channel C	Channel D
$f_{therm}^{front-end}$ (K/K) theoretical	-0.022958	-0.023692	-0.023588	-0.022574
$f_{therm}^{front-end}$ (K/K) measured	-0.035696	-0.043190	-0.027684	-0.024039

The complete RaNA output:

FEM susceptibility	FEM susceptibility
INPUT	INPUT
Frequency (GHz) = 44	Frequency (GHz) = 44
Receiver: LFI	Receiver: LFI
Channel : A	Channel : B
Load correct : Yes	Load correct : Yes
r = 1.0448612	r = 1.0414686
Model: FM	Model: FM
Gain calibration factor (V/K) = value of RaNA_View	Gain calibration factor $(V/K) =$ value of RaNA_View
LfeedOMT_dB = 0.100000	LfeedOMT_dB = 0.100000
L4K_dB = 0.100000	L4K_dB = 0.100000
GF1_dB = 35	GF1_dB = 35
GF2_dB = 35	GF2_dB = 35
TnF1_K = 20	TnF1_K = 20
TnF2_K = 20	TnF2_K = 20
dGF1_dB_dTFEphys_K = -0.0500000	dGF1_dB_dTFEphys_K = -0.0500000
dGF2_dB_dTFEphys_K = -0.0500000	dGF2_dB_dTFEphys_K = -0.0500000
dTn1_dTFEphys_K = 0.0800000	dTn1_dTFEphys_K = 0.0800000
dTn2_dTFEphys_K = 0.0800000	dTn2_dTFEphys_K = 0.0800000
There are 4 time windows	There are 4 time windows
tmin tmax	tmin tmax
48.00 329.00	48.00 329.00
520.00 1482.00	520.00 1482.00
1647.00 2454.00	1647.00 2454.00
2649.00 3291.00	2649.00 3291.00
	1

FM 44 GHz RCA25 DATA ANALYSIS REPORT

Date: Page : 1.0 Aug 06 38

Sky Sensor = SMON_TMP	Sky Sensor = SMON_TMP
Ref Sensor = REF_TEMP	Ref Sensor = REF_TEMP
FEM Sensor = FEM_TEMP	FEM Sensor = FEM_TEMP
SMON_TMP REF_TEMP FEM_TEMP	SMON_TMP_REF_TEMP_FEM_TEMP
10.84904289 7.99991846 19.99995232 10.84972858 7.99995136 22.00032234 10.85003853 7.99995899 24.000516689 10.85006332 7.99993324 27.00074768	10.84904289 7.99991846 19.99995322 10.84972858 7.99995136 22.00032234 10.85003853 7.99995899 24.00051689 10.85006332 7.99993324 27.00074768
Radiometer outputs (K)	Radiometer outputs (K)
Tsky Tref	Tsky Tref
37.994215 36.362931	36.930894 35.460401
38.243284 36.657825	37.17887 35.763872
38.503984 36.965684	37.433371 36.073846
38.876843 37.433767	37.794448 36.560129
Tsky-r*Tref	Tsky-r*Tref
-0.059055376	-0.068061961
-0.12002528	-0.13640562
-0.23624729	-0.28177701
OUTPUT	OUTPUT
ftheo (K/K) fmeas (K/K)	ftheo (K/K) fmeas (K/K)
-0.022958 -0.035696	-0.023692 -0.043190
<pre>FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA View</pre>	<pre>FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA View</pre>
LifeedOMT_dB = 0.100000 LifeedOMT_dB = 0.100000 GF1_dB = 35 TnF1_K = 20 TnF2_K = 20 GGF1_dB_dTFEphys_K = -0.0500000 dGF1_dB_dTFEphys_K = 0.0800000 dTn1_dTFEphys_K = 0.0800000	LifeedOMT_dB = 0.100000 LifeedOMT_dB = 0.100000 GF1_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0500000 dGF2_dB_dTFEphys_K = 0.0800000 dTn1_dTFEphys_K = 0.0800000
There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 3291.00 3291.00	There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 3291.00 3291.00
Sky Sensor = SMON_TMP	Sky Sensor = SMON_TMP
Ref Sensor = REF_TEMP	Ref Sensor = REF_TEMP
FEM Sensor = FEM_TEMP	FEM Sensor = FEM_TEMP
SMON_TMP REF_TEMP FEM_TEMP 10.84904289 7.99991846 19.99995232 10.84972858 7.99995136 22.00032234 10.85003853 7.99995899 24.00051689 10.85006332 7.99993324 27.00074768	SMON_TMP REF_TEMP FEM_TEMP 10.84904289 7.99991846 19.99995232 10.84972858 7.99995136 22.00032234 10.85003853 7.99995899 24.00051689 10.85006332 7.99993324 27.00074768
Radiometer outputs (K)	Radiometer outputs (K)
Tsky Tref	Tsky Tref
40.303937 38.681263	41.179062 39.344274
40.486213 38.896909	41.366961 39.556258
40.643911 39.091051	41.529726 39.749732
40.922819 39.447500	41.810886 40.094254
Tsky-r*Tref	Tsky-r*Tref
-0.042416157	-0.033969958
-0.087004205	-0.073701991
-0.17949789	-0.15312986
OUTPUT	OUTPUT
ftheo (K/K) fmeas (K/K)	ftheo (K/K) fmeas (K/K)
-0.023588 -0.027684	-0.022574 -0.024039

		Document No.:	PL-LFI-PST-RP-017
	FM 44 GHz RCA25 DATA ANALYSIS REPORT	Issue/Rev. No.:	1.0
		Date:	Aug 06
/		Page :	39

To improve the results obtained with the default parameters, I am going to change any of them. In particular, I change the $\partial G_{FE}^{dB}/\partial T_{phys}^{FE}$ and $\partial T_{nFE}/\partial T_{phys}^{FE}$. The best values will be:

	Ch. A	Ch. B	Ch. C	Ch. D
$\partial G_{F1}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.085	-0.095	-0.06	-0.052
$\partial G_{F2}^{dB} / \partial T_{phys}^{FE}$ (dB/K)	-0.085	-0.095	-0.06	-0.052
$\partial T_{nFl} / \partial T_{phys}^{FE}$ (K/K)	0.080	0.13	0.09	0.096
$\partial T_{nF2} / \partial T_{phys}^{FE}$ (K/K)	0.080	0.13	0.09	0.096

Table -9: Optimized parameters of RCA_THF test

and calculating the transfer functions, the new results:

Figure -14: RCA_THF theoretical Vs measured transfer function after optimization of the parameters.

Table -10: RCA_	THF Optimal	transfer function	Vs.	theoretical
-----------------	-------------	-------------------	-----	-------------

	Channel A	Channel B	Channel C	Channel D
$f_{therm}^{front-end} _{\text{(K/K) theoretical}}$	-0.035726	-0.043211	-0.027852	-0.024045
$f_{therm}^{front-end}$ (K/K) measured	-0.035696	-0.04319	-0.027684	-0.024039

The complete RaNA output:

FEM susceptibility	FEM susceptibility
INPUT	INPUT
Frequency (GHz) = 44	Frequency (GHz) = 44
Receiver: LFI	Receiver: LFI
Channel : A	Channel : B
Load correct : Yes	Load correct : Yes
r = 1.0448612	r = 1.0414686
Model: FM	Model: FM
Gain calibration factor (V/K) = value of RaNA_View	Gain calibration factor $(V/K) = value of RaNA_View$
LfeedOMT_dB = 0.100000	LfeedOMT_dB = 0.100000
L4K_dB = 0.100000	L4K_dB = 0.100000
GF1_dB = 35	GF1_dB = 35
GF2_dB = 35	GF2_dB = 35
TnF1_K = 20	TnF1_K = 20
$TnF2_K = 20$	$InF2_K = 20$
$aGF1_aB_aTFEpnys_K = -0.0850000$	$aGF1_aB_aTFEpnys_K = -0.0950000$
	$dT_2 dT_2 d$
dTn2 dTEEphys K = 0.0800000	dTn2 dTEEphys K = 0.130000
There are 4 time windows	There are 4 time windows
tmin tmax	tmin tmax
48.00 329.00	48.00 329.00
520.00 1482.00	520.00 1482.00
1647.00 2454.00	1647.00 2454.00
2649.00 3291.00	2649.00 3291.00
Sky Sensor = SMON_TMP	Sky Sensor = SMON_TMP
Ref Sensor = REF_TEMP	Ref Sensor = REF_TEMP
FEM Sensor = FEM_TEMP	FEM Sensor = FEM_TEMP
CMON THE DEE TEMP EEM TEMP	CMON THE DEE TEME DEM TEME
	10 84904289 7 99991846 10 99965222
	10.04973050 7.0995126 22 20.0022224
10 85003853 7 99995899 24 00051689	10 85003853 7 99995899 24 00051689
10.85006332 7.99993324 27.00074768	10.85006332 7.99993324 27.00074768
Radiometer outputs (K)	Radiometer outputs (K)
Tsky Tref	Tsky Tref
37.994215 36.362931	36.930894 35.460401
38.243284 36.657825	37.178887 35.763872
38.503984 36.965684	37.433371 36.073846
38.876843 37.433767	37.794448 36.560129
mul stm s C	mul America
Tsky-r*Tref	Tsky-r*Tref
Tsky-r*Tref -0.059055376	Tsky-r*Tref -0.068061961
Tsky-r*Tref -0.059055376 -0.12002528 -0.22624729	Tsky-r*Tref -0.068061961 -0.13640562 -0.2817701
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K)	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K)
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT INPUT
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Ghamael - C	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Charmed - D
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct - Vec	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct - Yec
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INFUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: EM
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA View	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA View
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT dB = 0.100000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOWT dB = 0.100000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4X_dB = 0.100000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GFl_dB = 35	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INFUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GFl_dB = 35
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35
Tsky-r*Tref -0.059055376 -0.2202528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20	Tsky-r*Tref -0.068061961 -0.3640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GP1_dB = 35 GF2_dB = 35 ThFI_K = 20 ThF2_K = 20
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 dGF1_dB_dTFEphys_K = -0.0600000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0520000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = -0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = -0.0600000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: D Load correct: Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 GAF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = -0.0520000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT.dB = 0.100000 GF1_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 20 ThF2_K = 0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 GF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThFI_K = 20 ThF2_K = 20 ThF2_K = 0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGT1_dTFEphys_K = 0.0960000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dTEPhys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 dTn2_dTFEphys_K = 0.0960000 There are 4 time windows
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF2_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 dTn2_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GP1_dB = 35 GF2_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 0.0520000 dGF2_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 dTn2_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax
<pre>Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) =</pre>	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB dTFEphys_K = -0.0520000 dGF1_dB TFEphys_K = 0.0960000 dTn1_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF1_dB_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INFUT Frequency (GHz) = 44 Receiver: LFI Channel: D Load correct: Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGF1_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: D Load correct: Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0900000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF1_dE = 35 GF2_dB = 0.0600000 dGF1_dE_dTFEphys_K = -0.0600000 dGF2_dE_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GP1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB_dTFEphys_K = -0.0520000 dGF1_dB_dTFEphys_K = -0.0520000 dGf1_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 GF1_dB_dTFEphys_K = -0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF1_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1442.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: D Load correct: Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0520000 dGF1_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 PEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 CF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 20 dGF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT.dB = 0.100000 GF1_dB = 35 GF2_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF2_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP FeM Sensor = FEM_TEMP	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT.dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB dTFEphys_K = -0.0520000 dGF1_dBTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP FEM Sensor = REF_TEMP FEM Sensor = FEM_TEMP
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Prequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnFI_K = 20 TnF2_K = 20 TnF2_K = 20 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 dTn1_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1442.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INFUT Frequency (GHz) = 44 Receiver: LFI Channel: D Load correct: Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThFI_K = 20 ThF2_K = 20 ThF2_K = 20 ThF2_K = 0.0960000 dGF2_dB_dTFEphys_K = -0.0520000 dGF1_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 TnF2_K = 0.0600000 dGF2_dB_dTFEphys_K = -0.0600000 dGF1_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP IN 0 84904269 7 9900104 10 00005220	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 GGF2_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = -0.0520000 dTn1_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = FEM_TEMP IN 640000 7 000000000000000000000000000000
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 20 ThF2_K = 0.0900000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_TEMP 10.84904289 7.99991846 19.99995232 10.84972858 7.99991846 19.99995232 10.84972858 7.99991846 19.99995232	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 CF1_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 ThF1_K = 20 ThF2_K = 20 ThF2_K = 20 ThF2_K = 0.0960000 dGF2_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_TEMP 10.84904289 7.99991846 19.99995232 10.84924285 7.99991846 19.99995232 10.84924285 7.99991846 19.99995232
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : C Load correct : Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB dTFEphys_K = -0.0600000 dGF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_TEMP 10.84904269 7.99991846 19.99995232 10.84972858 7.99995136 22.00032234 10.84972858 7.99995136 22.00032234	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 GP1_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB = 35 GF2_dB _ 35 GF2_dB _ 0.100000 dGF2_dB_dTFEphys_K = -0.0520000 dGF1_dB_dTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_TEMP 10.84904289 7.99995136 22.00032234 10.84972858 7.99995136 22.00032234 10.84972858 7.99995136 22.00032234
Tsky-r*Tref -0.059055376 -0.12002528 -0.23624729 OUTPUT ftheo (K/K) fmeas (K/K) -0.035726 -0.035696 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel: C Load correct: Yes r = 1.0419499 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 TnF2_K = 20 GAF1_dB_dTFEphys_K = -0.0600000 dGF2_dB_dTFEphys_K = 0.0900000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_T	Tsky-r*Tref -0.068061961 -0.13640562 -0.28177701 OUTPUT ftheo (K/K) fmeas (K/K) -0.043211 -0.043190 FEM susceptibility INPUT Frequency (GHz) = 44 Receiver: LFI Channel : D Load correct : Yes r = 1.0466342 Model: FM Gain calibration factor (V/K) = value of RaNA_View LfeedOMT_dB = 0.100000 L4K_dB = 0.100000 GF1_dB = 35 GF2_dB = 35 TnF1_K = 20 TnF2_K = 20 ThF2_K = 20 GAF1_dB_dTFEphys_K = -0.0520000 dGF2_dB_dTFEphys_K = 0.0960000 dTndTFEphys_K = 0.0960000 There are 4 time windows tmin tmax 48.00 329.00 520.00 1482.00 1647.00 2454.00 2649.00 3291.00 Sky Sensor = SMON_TMP Ref Sensor = REF_TEMP FEM Sensor = FEM_TEMP SMON_TMP REF_TEMP FEM_TEMP I0.84904289 7.99991846 19.99995232 10.84972858 7.99995136 22.00032234 10.85003853 7.99995324 27.00074768

Radiometer outputs (K)	Radiometer outputs (K)
Tsky Tref	Tsky Tref
40.303937 38.681263	41.179062 39.344274
40.486213 38.896909	41.366961 39.556258
40.643911 39.091051	41.529726 39.749732
40.922819 39.447500	41.810886 40.094254
Tsky-r*Tref	Tsky-r*Tref
-0.042416157	-0.033969958
-0.087004205	-0.073701991
-0.17949789	-0.15312986
OUTPUT	OUTPUT
ftheo (K/K) fmeas (K/K)	ftheo (K/K) fmeas (K/K)
-0.027852 -0.027684	-0.024045 -0.024039

RCA25_SPR 1600

P.Battaglia & F.Villa

Mon May 22 11:45:20 2006

0.1 001

0.1.1 RANA_SPR_001

Data from file set: 044LFI25_RCA_FM_SPR_200605191600 Contained in directory: G:/CALIBRATION_DATA/FM/RCA25

Input Data

Frequency: 30 GHz Trigger Detector: A F_min: 33.00 GHz F_max: 50.00 GHz Step: 0.05 GHz Threshold: 0.0250 V/s Useful Data: 50.00 % Calibration File: D:/LIFE/v1r0p1/RaNA/RaNA_SPR/cal_FM_44_08022006.dat

Comments

RCA_SPR Test -32dBm power input Waveguide path: MAIN_1: 1A2B MAIN_2: 1A2B SIDE_1: 3C4D SIDE_2: 3C4D

Output Data

Table 1: Central frequency and equivalent bandwidth.

CHANNEL	Central Frequency	Equivalent Bandwidth
	(GHz)	(GHz)
A	44.90	5.91
В	45.85	4.17
\mathbf{C}	45.75	4.42
D	45.25	4.49

Derivative Plots

Figure 1: Data binned with a bin equal to 0.

Selected Plots

Figure 2: Data binned with a bin equal to 0.

Radiometer Spectral Response

Figure 3: Calibrated data.

Figure 4: Calibrated data in dB.

Figure 5: Uncalibrated data.

Report

RaNA

Tue May 23 10:50:15 2006

/root/RaNA-Mon-May-22-18:04:20-2006/rana-view

/root/RaNA-Mon-May-22-18:04:20-2006/rana-tn

/root/RaNA-Mon-May-22-18:04:20-2006/rana-oft

/root/RaNA-Mon-May-22-18:04:20-2006/rana-ling

4.1 rana_ling_mini_report_001

RANA_LING 001

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605210014 Contained in directory: /moredata

INPUT Channel: A Sky temperature source: RMON_TEMP Ref temperature source: SMON_TMP Changing voltage channel: Ref

			44.0 GHz	radiometer			
T_{change} [K]	$\sigma T_{\rm change}$ [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed}$ [K]	$V_{\rm change}$ [V]	$\sigma V_{\rm change}$ [V]	$V_{\rm fixed}$ [V]	
8.1223984	0.00042186480	10.846000	0.0000000	0.15488059	0.00025139924	0.16173711	(
9.7140560	0.00061591557	10.846000	0.0000000	0.16292650	0.00027299065	0.16207622	(
11.909731	0.00092340010	10.897795	0.0076848129	0.17381222	0.00028140687	0.16274261	(
14.101195	0.0012419425	11.119487	0.019805765	0.18440530	0.00029648531	0.16417021	(
16.293547	0.0012031965	11.403072	0.031745821	0.19465033	0.00030910269	0.16596230	0
18.493633	0.0013364778	11.723660	0.038061414	0.20464003	0.00031901532	0.16798282	(
20.687559	0.00050475716	12.080558	0.028382350	0.21438699	0.00032939626	0.17030165	(
22.884939	0.00048026923	12.400681	0.040943764	0.22380659	0.00034045266	0.17230963	(
25.079792	0.00060092931	12.725376	0.048759017	0.23301702	0.00035283556	0.17438016	(
27.267574	0.00061342079	13.097605	0.028281266	0.24201386	0.00035383949	0.17680002	(
29.463646	0.00074809330	13.389616	0.033689551	0.25068994	0.00036991355	0.17863041	(
31.673006	0.00066137878	13.710905	0.028031461	0.25919348	0.00037718084	0.18067170	(
33.856815	0.00075800251	13.960006	0.043223180	0.26745971	0.00038588630	0.18230055	(

0.12614464

RESULTS

I [dB]	$\sigma I \; [dB]$	G [V/K]	$\sigma G [V/K]$
-12.697080	-0.081696881	0.0041154162	2.0046203e-05
L	σL	T _{noiso} [K]	$\sigma T_{\rm noise}$ [K]

28.362380

0.00057663505

COMMENTS

0.0021720858

Figure 4.1: Response linearity (differenced values)

Figure 4.2: Response linearity (changing temperature vs changing voltage

4.2 rana_ling_mini_report_002

RANA_LING 002

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605210014 Contained in directory: /moredata

INPUT Channel: B Sky temperature source: RMON_TEMP Ref temperature source: SMON_TMP Changing voltage channel: Ref

Figure 4.3: Deviation from linearity

	44.0 GHz radiometer					
T_{change} [K]	$\sigma T_{\rm change}$ [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed}$ [K]	V_{change} [V]	$\sigma V_{\rm change} [V]$	$V_{\rm fixed}$ [V]
8.1223888	0.00041652037	10.845995	6.5475790e-05	0.17497982	0.00033857851	0.18225207
9.7140379	0.00061255164	10.846000	0.0000000	0.18403733	0.00035768341	0.18254425
11.909758	0.00093274110	10.899006	0.0067585651	0.19634658	0.00037401687	0.18322869
14.101271	0.0012380847	11.109222	0.022961389	0.20828284	0.00038801198	0.18460820
16.293615	0.0012474812	11.396014	0.035505477	0.21987413	0.00040329758	0.18658544
18.493633	0.0013338038	11.726986	0.035621252	0.23121075	0.00041729192	0.18887346
20.687563	0.00050424680	12.073358	0.030534284	0.24230281	0.00042930547	0.19136675
22.884937	0.00048135081	12.405801	0.037261333	0.25309682	0.00044158427	0.19372505
25.079782	0.00060180039	12.743038	0.037120834	0.26359456	0.00045555288	0.19607053
27.267601	0.00059679640	13.101120	0.021861119	0.27385305	0.00046719764	0.19863256
29.463709	0.00073817134	13.398005	0.032244101	0.28379212	0.00047963037	0.20067649
31.672985	0.00067769439	13.702679	0.032445289	0.29349944	0.00048956221	0.20276396
33.856865	0.00076647021	13.976722	0.032564566	0.30299705	0.00049973805	0.20472625

RESULTS

$I [\mathrm{dB}]$	$\sigma I \; [\mathrm{dB}]$	G [V/K]	$\sigma G ~[V/K]$
-13.396556	-0.16724035	0.0047126478	2.1844208e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{\rm noise} [{\rm K}]$
0.0023979271	0.00070435482	28.157807	0.13250953

COMMENTS

Figure 4.4: Response linearity (differenced values)

4.3 rana_ling_mini_report_003

RANA_LING 003

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605210014 Contained in directory: /moredata

INPUT Channel: C Sky temperature source: RMON_TEMP Ref temperature source: SMON_TMP Changing voltage channel: Ref

Figure 4.5: Response linearity (changing temperature vs changing voltage

			44.0 GHz	radiometer			
T_{change} [K]	$\sigma T_{\rm change}$ [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed}$ [K]	$V_{\rm change}$ [V]	$\sigma V_{\rm change}$ [V]	$V_{\rm fixed}$ [V]	
8.1223745	0.00042347269	10.846000	0.0000000	0.16921562	0.00029148996	0.17611753	(
9.7139883	0.00060673745	10.846000	0.0000000	0.17771464	0.00030416836	0.17652121	(
11.909742	0.00091583247	10.897799	0.0066026850	0.18907254	0.00031755410	0.17727355	(
14.101342	0.0012341442	11.111430	0.026637109	0.19999912	0.00032535300	0.17873269	(
16.293688	0.0012931669	11.390529	0.036719218	0.21048210	0.00033685062	0.18062265	(
18.493631	0.0013365383	11.728599	0.034446672	0.22061918	0.00034628240	0.18290114	(
20.687546	0.00050393690	12.052341	0.052445188	0.23031339	0.00035751839	0.18506189	(
20.687557	0.00050342607	12.061239	0.040844720	0.23031730	0.00035672455	0.18511761	(
22.884945	0.00047951937	12.387382	0.045796119	0.23977924	0.00036561599	0.18736955	(
25.079781	0.00059969845	12.736526	0.040339023	0.24882316	0.00037356838	0.18968596	(
27.267576	0.00060476240	13.097185	0.023153100	0.25765978	0.00037322793	0.19217663	(
29.463579	0.00075745821	13.381475	0.039499480	0.26608394	0.00038447604	0.19407064	(
31.672956	0.00069503492	13.694785	0.039554790	0.27423251	0.00038972907	0.19612538	(
33.856831	0.00075666938	13.965352	$0.\overline{043571893}$	$0.\overline{28208615}$	0.00039369978	$0.\overline{19797529}$	(

RESULTS

I [dB]	$\sigma I \; [dB]$	G [V/K]	$\sigma G [V/K]$
-12.108357	-0.067726181	0.0040831472	2.2537374e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{\rm noise}$ [K]
0.0027473649	0.00060519852	31.744662	0.15261619

COMMENTS

Figure 4.6: Deviation from linearity

4.4 rana_ling_mini_report_004

RANA_LING 004

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605210014 Contained in directory: /moredata

INPUT Channel: D Sky temperature source: RMON_TEMP Ref temperature source: SMON_TMP Changing voltage channel: Ref

Figure 4.7: Response linearity (differenced values)

			44.0 GHz	radiometer			
T_{change} [K]	σT_{change} [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed}$ [K]	V_{change} [V]	$\sigma V_{ m change}$ [V]	$V_{\rm fixed}$ [V]	
8.1223726	0.00042420698	10.846000	0.0000000	0.16888924	0.00029027245	0.17677535	
9.7139854	0.00059695513	10.846000	0.0000000	0.17737158	0.00030328126	0.17717385	
11.909720	0.00091288338	10.897181	0.0070676664	0.18876213	0.00031680677	0.17793073	
14.101216	0.0012417050	11.118424	0.020557193	0.19980377	0.00032850427	0.17951845	
16.293558	0.0012030798	11.403550	0.035276819	0.21034048	0.00033861791	0.18146636	
18.493633	0.0013364778	11.723660	0.038061414	0.22056201	0.00034783156	0.18366923	
20.687559	0.00050384307	12.051123	0.038631249	0.23041052	0.00035689084	0.18593912	
22.884949	0.00048080983	12.390699	0.051654067	0.23994139	0.00036756766	0.18829931	1
25.079781	0.00059969845	12.736526	0.040339023	0.24913219	0.00037801726	0.19064447	
27.267548	0.00060911034	13.093114	0.024523761	0.25803978	0.00038355831	0.19310770	
29.463528	0.00075517170	13.373593	0.042100545	0.26654958	0.00038779125	0.19498690	
31.672989	0.00067431759	13.702969	0.030896382	0.27490549	0.00039509543	0.19723750	
33.856853	0.00075851800	13.973493	0.036205437	0.28289436	0.00040163381	0.19910083	

RESULTS

$I \; [\mathrm{dB}]$	$\sigma I \; [dB]$	G [V/K]	$\sigma G [V/K]$
-11.983385	-0.068304518	0.0040981767	2.1865103e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{\rm noise} [{\rm K}]$
0.0027748010	0.00062045673	31.233676	0.15184576

COMMENTS

Figure 4.8: Response linearity (changing temperature vs changing voltage

4.5 rana_ling_mini_report_005

RANA_LING 005

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605220154 Contained in directory: /moredata

INPUT

Channel: A Sky temperature source: SMON_TMP Ref temperature source: RMON_TEMP Changing voltage channel: Sky

	44.0 GHz radiometer					
T_{change} [K]	$\sigma T_{\mathrm{change}} \mathrm{[K]}$	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed} [{ m K}]$	$V_{\rm change}$ [V]	$\sigma V_{\rm change} \left[{ m V} ight]$	$V_{\rm fixed}$ [V]
10.846000	0.0000000	9.7140198	0.00061427971	0.16207414	0.00026082093	0.16292442
16.249411	0.00076470093	9.5068340	0.0012398893	0.18939112	0.00030200323	0.16329621
19.437681	0.0024268704	10.622848	0.010369997	0.20418999	0.00031892020	0.16922700
22.588179	0.0029288861	11.723482	0.0017054104	0.21792118	0.00033142573	0.17481394
25.728100	0.0042623514	12.781887	0.10185567	0.23137999	0.00034999861	0.18040762
28.859777	0.0027574631	13.783707	0.075847201	0.24442218	0.00035940052	0.18577640

RESULTS

Figure 4.9: Deviation from linearity

I [dB]	$\sigma I [\mathrm{dB}]$	G [V/K]	$\sigma G [V/K]$
-12.783009	-0.023298035	0.0043693945	4.2980296e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{\rm noise}$ [K]
0.0012885398	0.00057892251	25.705712	0.19585759

COMMENTS

4.6 rana_ling_mini_report_006

RANA_LING 006

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605220154 Contained in directory: /moredata

INPUT Channel: B Sky temperature source: SMON_TMP Ref temperature source: RMON_TEMP Changing voltage channel: Sky

Figure 4.10: Response linearity (differenced values)

	44.0 GHz radiometer					
T_{change} [K]	σT_{change} [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed} [{ m K}]$	$V_{\rm change}$ [V]	$\sigma V_{\rm change} \left[{ m V} ight]$	$V_{\rm fixed}$ [V]
10.846000	0.0000000	9.7140331	0.00060552248	0.18384306	0.00035535825	0.18533590
16.249449	0.00073918002	9.5068407	0.0012486890	0.21554302	0.00039559867	0.18604032
19.439087	0.0015486807	10.622922	0.010366376	0.23267042	0.00042013114	0.19282497
22.588802	0.0028926902	11.723282	0.0016621783	0.24872102	0.00044319884	0.19934044
25.728540	0.0043929378	12.782827	0.10179943	0.26446293	0.00046714131	0.20587499
28.857952	0.0047988123	13.782042	0.076136693	0.27967304	0.00047937281	0.21206770

RESULTS

$I [\mathrm{dB}]$	$\sigma I \; [dB]$	G [V/K]	$\sigma G [V/K]$
-12.465784	-0.025091719	0.0050557709	5.4503317e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{ m noise}$ [K]
0.0014900319	0.00082749506	24.789839	0.24711143

COMMENTS

4.7 rana_ling_mini_report_007

RANA_LING 007

Linearity, Isolation and Gain

Figure 4.11: Response linearity (changing temperature vs changing voltage

Data from file set: 044LFI25_RCA_FM_LIS_200605220154 Contained in directory: /moredata

INPUT Channel: C Sky temperature source: SMON_TMP Ref temperature source: RMON_TEMP Changing voltage channel: Sky

	44.0 GHz radiometer					
T_{change} [K]	$\sigma T_{\mathrm{change}} \mathrm{[K]}$	$T_{\rm fixed}$ [K]	$\sigma T_{\rm fixed} [{ m K}]$	V_{change} [V]	$\sigma V_{\rm change} \left[{ m V} ight]$	$V_{\rm fixed}$ [V]
10.846000	0.0000000	9.7140265	0.00060777034	0.17652462	0.00030376282	0.17771812
16.249758	0.00046776736	9.5067329	0.0013081717	0.20480823	0.00033112251	0.17857222
19.439474	0.0014457988	10.622745	0.010415452	0.21988141	0.00034751744	0.18497772
22.590452	0.0020686665	11.722779	0.0014509083	0.23388569	0.00035934079	0.19113950
25.729837	0.0045573860	12.783026	0.10199980	0.24730473	0.00037636611	0.19715151
28.858770	0.0037880649	13.781230	0.075437993	0.26016794	0.00038032225	0.20288703

RESULTS

I [dB]		$\sigma I \; [\mathrm{dB}]$	G [V/K]		$\sigma G [V/K]$	
-11.290569	-0.	012836993	0.0043040610		4.7978765e-05	
		_		r= = 1		
L		σL		$T_{\rm noise} [{ m K}]$	σT_{noise} [F	
0.00181758	84	0.00073256	5958	28.312200	0.2781182	8

COMMENTS

Figure 4.12: Deviation from linearity

4.8 rana_ling_mini_report_008

RANA_LING 008

Linearity, Isolation and Gain

Data from file set: 044LFI25_RCA_FM_LIS_200605220154 Contained in directory: /moredata

INPUT Channel: D Sky temperature source: SMON_TMP Ref temperature source: RMON_TEMP Changing voltage channel: Sky

	44.0 GHz radiometer					
T_{change} [K]	$\sigma T_{\mathrm{change}}$ [K]	$T_{\rm fixed}$ [K]	$\sigma T_{\mathrm{fixed}} [\mathrm{K}]$	V_{change} [V]	$\sigma V_{\rm change} \left[{ m V} ight]$	$V_{\rm fixed}$ [V]
10.846000	0.0000000	9.7140560	0.00061674835	0.17718437	0.00030400376	0.17738263
16.249710	0.00057988637	9.5068216	0.0012684925	0.20558842	0.00033596382	0.17799724
19.439623	0.0011481507	10.622758	0.010403489	0.22082311	0.00035041270	0.18434486
22.590334	0.0019972262	11.722800	0.0014647983	0.23489062	0.00036277923	0.19037635
25.730555	0.0032823654	12.785666	0.10195600	0.24855334	0.00038023167	0.19639170
28.858932	0.0044071293	13.782723	0.076088212	0.26166744	0.00038819689	0.20213882

RESULTS

Figure 4.13: Response linearity (differenced values)

I [dB]	$\sigma I \; [dB]$	G [V/K]	$\sigma G [V/K]$
-11.810969	-0.016558630	0.0043898151	4.5622087 e-05

L	σL	$T_{\rm noise} [{ m K}]$	$\sigma T_{\rm noise}$ [K]
0.0017404553	0.00068103771	28.096168	0.24990863

COMMENTS

Figure 4.14: Response linearity (changing temperature vs changing voltage

Figure 4.15: Deviation from linearity

Figure 4.16: Response linearity (differenced values)

Figure 4.17: Response linearity (changing temperature vs changing voltage

Figure 4.18: Deviation from linearity

Figure 4.19: Response linearity (differenced values)

Figure 4.20: Response linearity (changing temperature vs changing voltage

Figure 4.21: Deviation from linearity

Figure 4.22: Response linearity (differenced values)

Figure 4.23: Response linearity (changing temperature vs changing voltage

Figure 4.24: Deviation from linearity

Chapter 5

/root/RaNA-Mon-May-22-18:04:20-2006/rana-fft

Chapter 6

/root/RaNA-Mon-May-22-18:04:20-2006/rana-susc

Chapter 7

/root/RaNA-Mon-May-22-18:04:20-2006/rana-spr