

Publication Year	2009
Acceptance in OA@INAF	2024-03-19T15:05:52Z
Title	TUNINING OF PLANCK-LFI LNAS IN CPV: REQUIREMENTS SPECIFICATION
Authors	CUTTAIA, FRANCESCO; MENNELLA, ANIELLO; TERENZI, LUCA
Handle	http://hdl.handle.net/20.500.12386/34985
Number	PL-LFI-PST-SP-017

TITLE:

DOC. TYPE:	Technical Note	
PROJECT REF.:	PL-LFI-PST-SP-017	PAGE: I of IV, 11
ISSUE/REV.:	1.0	DATE: February, 2009

Prepared by	F. CUTTAIA (IASF- Bo) A. MENNELLA (IASF- Mi) L. TERENZI (IASF- Bo)	Date: Signature:	And manella Lu, Tan
Agreed by	C. BUTLER LFI Program Manager	Date: Signature:	R.C. Better
Approved by	N. MANDOLESI LFI Principal Investigator	Date: Signature:	<u>Aluence</u>

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 1

Form 8 pt

DISTRIBUTION LIST

Recipient	Company / Institute	E-mail address	Sent	
N. MANDOLESI	INAF/IASF – Bologna	mandolesi@jasfbo.inaf.it	Yes	
R.C. BUTLER	INAF/IASF – Bologna	butler@iasfbo.inaf.it	Yes	
M. BERSANELLI	UNI-Mi- Milano	marco.bersanelli@mi.infn.it	Yes	
J. L POUGET	IAS FR	jean-loup.puget@ias.u-psud.fr		
J. M. LAMARRE		jean-michel.lamarre@obspm.fr		
F. PAJOT		francois.pajot@ias.u-psud.fr		
L. VIBERT		Imacbn.vibert@gmail.com		
T. MACIASZEK	IAS FR	thierry.maciaszek@ias.u-psud.fr,		
T. PASSVOGEL		Thomas.Passvogel@esa.int	Yes	
G. CRONE	ESA	Gerald.Crone@esa.int	Yes	
L. PEREZ CUEVAS	ESA	leticia.perez.cuevas@esa.int	Yes	
R. LAUREIJS ESA		rlaureij@rssd.esa.int	YES	
L. MENDES	ESA	Imendes@rssd.esa.int	YES	
P. RHIET	THASF	patrick.rihet@thalesaleniaspace.com		
S. FOLEY	ESA	Steve.Foley@esa.int		
M. BAKER		Michelle.Baker@esa.int		
		enielle mennelle Oficies unimi it		
A. MENNELLA	UNI-Mi- Milano	aniello.mennella@fisica.unimi.it		
A. GREGORIO	UNI-Ts Trieste	anna.gregorio@ts.infn.it	Voo	
L. TERENZI	INAF/IASF – Bologna INAF/IASF – Bologna	terenzi@iasfbo.inaf.it	Yes	
G. MORGANTE F. CUTTAIA		morgante@iasfbo.inaf.it	Yes Yes	
F. CUTTAIA	INAF/IASF – Bologna	cuttaia@iasfbo.inaf.it	165	
ICWG		icwg@rssd.esa.int		

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 2

Form 8 pt

CHANGE RECORD

Issue	Date	Sheet	Description of Change	Release
1.0	06-02-09		1st issue	

I

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 3

Form

8 pt

TABLE OF CONTENTS

1	AC	RONYMS	ļ
2	AP	PLICABLE AND REFERENCE DOCUMENTS	5
	2.1	APPLICABLE DOCUMENTS	,
3	INT	RODUCTION	5
	3.1	ACKNOWLEDGMENTS	Ś
4	HY	PER MATRIX TUNING	7
	4.1 4.2 4.3	DESCRIPTION	3
5	LN	AS TUNING VERIFICATION WITH HFI 4K STAGE STEP11	L
	5.1 5.2	DESCRIPTION	l

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 4 **Form** 8 pt

1 ACRONYMS

- AIV Assembly, Integration, Verification
- TBC To be completed
- TBI To be included

Document No.: Issue/Rev. No.: Date: Page:

2 APPLICABLE AND REFERENCE DOCUMENTS

2.1 Applicable Documents

- [AD 1] PL-LFI-PST-TN-091 : "Proposal for bias tuning during the CPV phase after the CSL test campaign experience", Cuttaia, F., Mennella, A.
- [AD 2] PL-LFI-PST-PL-013, 'Testing Plan of the LFI instrument during the Planck Commissioning and CPV phase', L. Stringhetti, Bersanelli, M., Cuttaia, F., et al
- [AD 3] PL-LFI-PST-TN-090. 'Matrix Tuning Strategy for CSL', Cuttaia, Stringhetti

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 6

Form

8 pt

3 INTRODUCTION

This document describes the specification requirements(number of runs, thermal stability, duration, etc..) for LNAs bias Tuning to be performed during CPV. It is mainly oriented to highlight all the possible aspects of interest for HFI instrument.

Instead, for what concerns the detailed description of the tuning procedure, and the instrumental aspects of it, we refer to specific applicable and reference documents .

The document is divided by two parts, referring to two distinct procedures to be run for tuning bias of LFI radiometers.

- HYPER MATRIX LNAs BIAS TUNING [LFI-05]
- TUNING VERIFICATION WITH 4K LOAD TEMPERATURE STEP [LFI-07]

3.1 Acknowledgments

This document has been issued as a part of the activity performed under the ASI contract for Planck phase E2.

Document No.: Issue/Rev. No.: Date: Page:

Form

8 pt

4 HYPER MATRIX TUNING

The HYPER MATRIX TUNING is divided by three phases, logically related with the thermal condition of the 4KRL (commanded by HFI 4K Stage)

4.1 DESCRIPTION

PHASE 1:

The 4K Reference Load is in thermal steady state conditions at about 22K : this phase is considered an hold point before 4HI cooldown.

PHASE 2: HFI 4K stage is cooling down from 22K to 4K

PHASE 3:

The 4K Reference Load is in thermal steady state conditions at about 4K

The hyper Matrix Tuning procedure foresees a Pre-Tuning Run and the HYPER MATRIX TUNING itself (based on input data coming from Pre – Tuning Run results). The HYPER MATRIX TUNING implies 4 Bias RUNS

The content of different phases is displayed below:

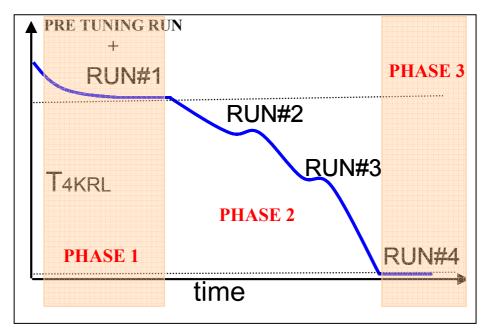


Figure 1 Hyper Matrix Tuning profile

INAF IASF-Bologna UNI-Mi LFI Project System Team

Document No.: Issue/Rev. No.: Date: Page:

- - - **Form** 8 pt

4.2 REQUIREMENTS

Tuning requirements come from the analysis of the two main errors committed when:

Finding the bias quadruplet producing the optimal noise temperature

Estimating the best performances (considering the non linear response of each radiometer).

In both cases we required that the final error be not larger than 1K.

Here follows the basic requirements relevant for HFI. Both goals and Reqs are indicated: goals would put LFI in a safer condition in which both conditions are satisfied simultaneously on all RCAs with a small margin.

The strategy used to stabilize the HFI 4K stage is here not considered, because it is in charge on HFI Team the definition of the optimal way to provide a stable 4K stage: however, it is useful to highlight that the Requirements base on the analysis of Tuning test performed during the CSL FM test campaign (2008), when the HFI stage was stabilized by using Heat switches, and fully met the performance obtained there.

PHASE 1

PRE-TUNING RUN

It must be logically performed before HYPER MATRIX RUN
DURATION: 26 h
Start: During DTCP.
Stop: N/A
SCS: Nominal (TSA is not strictly required to be already tuned)
HFI 4K STAGE : Temperature @ about 22K
4K Stage stability GOAL: ΔT < 20 mK / h
4K Stage stability REQ: ΔT < 25 mK / h
Time needed to analyze data and produce input for next step: ~ 24 h

HYPER MATRIX TUNING RUN #1

It must be logically performed after PRE TUNING RUN.

DURATION: 33 h

Start: During DTCP.

Stop: N/A

SCS: Nominal (TSA tuned @22K ; set point can not be changed))

HFI 4K STAGE : Temperature @ about 22K

4K Stage stability GOAL: **ΔT < 5 mK / h**

4K Stage stability REQ: **ΔT < 10 mK / h**

Time needed to analyze data and produce input for next step: data need to be verified only in their completeness; estimation 2 hours after receiving data. Data analysis is not required.

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 9

Form 8 pt

PHASE 2

HYPER MATRIX TUNING RUN #2

It must be logically performed after TUNING RUN #1.

DURATION: 33 h

Start: During DTCP.

Stop: N/A

SCS: Nominal (TSA tuned @22K; set point can not be changed)

HFI 4K STAGE Temperature: in the range 19K - 17K (depending on HFI capabilities) 4K Stage stability GOAL: **ΔT < 10 mK / h**

4K Stage stability REQ: ΔT < 25 mK / h

Time needed to analyze data and produce input for next step: data need to be verified only in their completeness; estimation 2 hours after receiving data; data analysis is not required.

HYPER MATRIX TUNING RUN #3

It must be logically performed after TUNING RUN #2

DURATION: 33 h

Start: During DTCP.

Stop: N/A

SCS: **Nominal** (TSA tuned @22K ; set point can not be changed)

HFI 4K STAGE Temperature: in the range 16K - 13K (depending on HFI capabilities and on the temperature of RUN#2: required at least 3K lower than RUN#2)

4K Stage stability GOAL: ΔT < 10 mK / h

4K Stage stability REQ: ΔT < 25 mK / h

Time needed to analyze data and produce input for next step: data need to be verified only in their completeness; estimation 2 hours after receiving data; data analysis is not required.

PHASE 3

HYPER MATRIX TUNING RUN #4 It must be logically performed after TUNING RUN#3 DURATION: **33 h** Start: During DTCP. Stop: N/A SCS: Nominal (TSA tuned @22K ; set point can not be changed) HFI 4K STAGE : Temperature @ **about 4K** 4K Stage stability GOAL: **ΔT < 5 mK / h** 4K Stage stability REQ: **ΔT < 10 mK / h** Time needed to analyze data and produce input for next step: 22 - 48 hours after receiving data.

INAF IASF-Bologna UNI-Mi

Form 8 pt

Main Requirements are summarized in the table below. The 4K Stage temperature is traced by using the **sensor**:

HD028260 HD028260_4Tt03_4K_Temp_K Cernox 4K (K)

PHASE	STEP	SCS	HFI 4K	4K STAGE	4K STAGE	TIME
		TSA		STABILITY	STABILITY	
				(GOAL)	(REQ)	
	PRE	NO		ΔT < 20 mK / h	ΔT < 25 mK / h	26h
1	TUN		~22K			
	RUN#1	YES		ΔT < 5 mK / h	ΔT < 10 mK / h	33h
	RUN#2	YES	19-17K	ΔT < 10 mK / h	ΔT < 25 mK / h	33h
2	RUN#3	YES	16-XK	ΔT < 10 mK / h	ΔT < 25 mK / h	33h
			(>10K)			
3	RUN#4	YES	~ 4K	ΔT < 5 mK / h	ΔT < 10 mK / h	33h

 Table 1 Hyper Matrix Tuning goals and requirements

In the table above, the 4K stage lowest temperature in step 2 RUN#3 is indicated as X: this comes from that the non linear behaviour is better characterized when the 4K temperature is close to 10K. However, basing on CSL experience, the 4K stage temperature started decreasing very abruptly when dropping below 15K.

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-SP-017 1.0 <u>February, 200</u> 11 8 pt

5 LNAs TUNING VERIFICATION WITH HFI 4K STAGE STEP

5.1 **DESCRIPTION**

Once the LFI radiometers and the DAE are tuned, a bias tuning verification is foreseen: it is based on noise properties optimization through a calibrated white noise measurement.

To do that a step in the 4KRL temperature is required.

The tuning verification consists of two runs of the LNAs bias, at temperatures T1 and T2. T1 is the nominal 4K stage temperature (about 4.5 K) T2 is a higher temperature.

The temperature step can be provided by HFI (as done in CSL, during FM test campaign, 2008) operating on the set point of the 4K stage PID by applying a ΔT of about 80 mK.

The same procedure of HYPER MATRIX Tuning is used when running bias.

This test is divided in two runs :

- RUN #1 @ ~4.5 K
- RUN #2 @ ~4.5K + ΔT

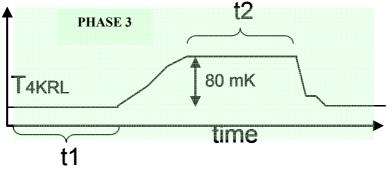


Figure 4K Tuning verification scheme

5.2 REQUIREMENTS

TUNING VERIFICATION RUN #1

It must be logically performed after HYPER MATRIX TUNING AND DAE TUNING

DURATION (GOAL) 33 h

DURATION (REQ) **16h** [(4X4X4X4) scheme + Vd verification]

Start: During DTCP (but not mandatory).

Stop: N/A

DAE: TUNED

SCS: Nominal (TSA tuned @22K or retuned @4K)

HFI 4K STAGE : Temperature @ about 4.5 K

4K Stage stability : according to HFI requirements on the HFI 4K PID

Time needed to analyze data and produce input for next step: data need to be verified only in their completeness; estimation 2 hours after receiving data. Data analysis is not required.

In the eventual case of failure in the procedure or in data storage (missing data) the entire procedure must be run again.

INAF IASF-Bologna UNI-Mi

Form 8 pt

TUNING VERIFICATION RUN #2

It must be logically performed after HYPER MATRIX TUNING AND DAE TUNING
DURATION (GOAL): 33 h
DURATION (REQ) 16h [(4X4X4X4) scheme + Vd verification]
Start: During DTCP (but not mandatory).
Stop: N/A
DAE: TUNED
SCS: Nominal (TSA tuned @22K or retuned @4K : the same condition as in RUN#1)
HFI 4K STAGE : Temperature @ RUN#1 + ΔT (~ 80 mK).
4K Stage stability : according to HFI requirements on the HFI 4K PID
Time needed to analyze data and produce input for next step: estimation 24-48 hours
after receiving data.
In the eventual case of failure in the procedure or in data storage (missing data) the
entire procedure (RUN#2) must be run again.

Main Requirements are summarized in the table below.

PHASE	STEP	SCS	HFI 4K	4K STAGE	DURATION	DURATION
			STAGE	STABILITY	(GOAL)	(REQ)
	RUN#1	TSA	~ 4.5 K	HFI NOMINAL PID	33h	16h
2				STABILITY		
3	RUN#2	TSA	~ 4.5 K +	HFI NOMINAL PID	33h	16h
			ΔT(> 60mK)	STABILITY		

Table 2 4K Tuning verification: requirements