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Abstract

This project proposes the configuration of a locally optimized development environment for Artifi-
cial Intelligence projects, leveraging containers and Jupyter notebooks. While services like Google
Colab offer quick and convenient access to pre-configured cloud resources for machine learning,
subscription costs and resource limitations may be restrictive for some projects. To overcome
these challenges, the creation of a locally executable environment similar to Colab is suggested,
but deployable on-premise on a local server. This approach allows for full hardware customization,
including GPU selection, and eliminates subscription cost constraints. In the following chapters,
the necessary steps to configure this local environment will be outlined, starting from hardware
selection and proceeding with the installation of required dependencies and environment setup.
By following these guidelines, users will be able to establish a local machine learning develop-
ment environment that provides greater control and flexibility, while retaining the convenience
and familiarity associated with Google Colab.
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1
Introduction

In recent years, the field of machine learning has rapidly gained prominence, revolutionizing in-

dustries across the globe with its ability to derive insights, patterns, and predictions from vast

amounts of data. From healthcare to finance, from transportation to entertainment, the applica-

tions of machine learning are virtually limitless, offering unparalleled opportunities for innovation

and advancement.

Within this transformative landscape, the domain of radioastronomy stands out as a par-

ticularly compelling arena for the application of machine learning techniques. Radio telescopes

capture immense volumes of data from the depths of space, unveiling the mysteries of the cosmos

with unprecedented precision and detail. However, the sheer scale and complexity of these data

sets present significant challenges for traditional analysis methods. Here, the power of machine

learning emerges as a vital tool, enabling researchers to sift through terabytes of data, identify

subtle patterns, and extract meaningful insights about the universe.

Yet, harnessing the full potential of machine learning in radio astronomy requires more than

just sophisticated algorithms and innovative methodologies. It demands dedicated hardware in-

frastructure tailored to the specific demands of machine learning tasks. Building and deploying

machine learning models, especially those operating on vast astronomical datasets, necessitate

computational resources optimized for high-performance computing and parallel processing.

In response to these evolving needs, the development of dedicated machine-learning environ-

ments becomes imperative. These environments provide researchers and data scientists with the

computational power and specialized hardware required to train, test, and deploy machine learning
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models efficiently. By leveraging technologies such as Docker containers, which offer portability

and scalability, and platforms like Google Colab, which provide interactive and collaborative envi-

ronments, organizations can accelerate their machine learning initiatives and unlock new frontiers

in radioastronomy and beyond.

In this document, we explore the significance of establishing dedicated machine-learning envi-

ronments equipped with dedicated hardware.

1.1 Choosing the Right Hardware for Machine Learning En-

vironments

When it comes to building dedicated hardware infrastructure for machine learning environments,

one of the most crucial decisions revolves around the choice of GPUs. GPUs have emerged as one

of the best choices for modern machine learning, offering parallel processing capabilities ideal for

training deep neural networks and processing large datasets. However, selecting the appropriate

GPU architecture requires careful consideration of factors such as performance, cost-effectiveness,

and workload characteristics.

In the realm of GPUs, two primary categories dominate the landscape: gaming GPUs and

server-grade GPUs. While both types share fundamental architectural similarities, they are opti-

mized for distinct use cases and exhibit differences in terms of performance, reliability, and price.

Gaming GPUs, exemplified by popular consumer brands like NVIDIA GeForce and AMD

Radeon, are designed primarily for gaming enthusiasts and PC gaming rigs. These GPUs priori-

tize features such as high clock speeds, fast memory bandwidth, and advanced graphical rendering

capabilities to deliver immersive gaming experiences. While gaming GPUs can certainly be used

for machine learning tasks, they may not offer the same level of reliability as their server-grade

counterparts.

Boards like NVIDIA Tesla and AMD Instinct series, are purpose-built for High Power Comput-

ing (HPC) and data center applications. These GPUs are engineered to deliver exceptional compu-

tational power, reliability, and scalability, making them ideal for intensive machine-learning work-

loads. Server-grade GPUs often feature larger memory capacities, Error-Correcting Code (ECC)

memory, ensuring robust performance and stability under high demanding conditions.

The choice between gaming GPUs and server-grade GPUs depends largely on the specific re-
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quirements and constraints of the machine learning environment. For small-scale projects, research

labs, or individual developers on a budget, gaming GPUs may offer a cost-effective solution with

sufficient performance for training and experimentation. However, for enterprise-grade deploy-

ments, production environments, or applications demanding maximum performance and reliability,

server-grade GPUs are typically the preferred choice.

In scenarios where scalability, reliability, and support for enterprise-grade features are paramount,

server-grade GPUs shine. These include mission-critical applications in industries such as health-

care, finance, and autonomous vehicles, where downtime and performance bottlenecks can have

significant consequences. Additionally, tasks involving large-scale data processing, complex simu-

lations, and real-time inference benefit greatly from the raw computational power and optimized

drivers of server-grade GPUs.

In contrast, gaming GPUs may find favor in non-production environments, academic settings,

or projects with modest computational requirements and budget constraints. Gaming GPUs offer

competitive performance at a lower price point, making them accessible to a broader audience of

researchers, hobbyists, and enthusiasts.

In the context of the project outlined, the decision has been made to utilize gaming GPUs.

Given the project’s scope, budget considerations, and computational requirements, gaming GPUs

present a compelling choice that strikes a balance between performance and cost-effectiveness.

By leveraging gaming GPUs, the project team can access substantial computational power at a

more affordable price point, enabling efficient training and experimentation with machine learn-

ing models. This decision underscores the importance of aligning hardware choices with project

objectives, workload characteristics, and budgetary considerations, ensuring optimal performance

and resource utilization throughout the development lifecycle.

1.2 Nvidia GeForce RTX 4090: A low budget solution

The Nvidia GeForce RTX 4090 stands out as a high-end graphics card, boasting an advanced

architecture and formidable processing capabilities perfectly suited for machine learning tasks. Its

Ada Lovelace architecture represents a significant advancement over the Ampere architecture, de-

livering notable improvements in performance and power efficiency. Enhanced by 4th generation

Tensor Cores for AI operations and 3rd generation RT Cores for ray tracing, the RTX 4090 offers

exceptional computational power with its 16384 Compute Unified Device Architecture (CUDA)
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Figure 1.1: Two GPU NVIDIA RTX 4090, installed in a Supermicro server at the OAC.

Figure 1.2: ZOTAC GAMING GeForce RTX 4090 Trinity graphics card [1]

cores and a boost clock of 2.52 GHz. Furthermore, its 24 GB GDDR6X memory, featuring a

bandwidth >1000 GB/s, ensures rapid and efficient processing of large machine-learning models.

Facilitating faster data transfer, the Peripheral Component Interconnect express (PCIe) 5.0 inter-

face doubles the bandwidth compared to PCIe 4.0. Despite its high 450 W TDP, indicative of

its ability to handle demanding applications, the RTX 4090 maintains compatibility with major

machine learning frameworks such as TensorFlow, PyTorch, and CUDA, while boasting improved

power efficiency thanks to its architecture. When selecting a graphics card for machine learning

projects, considerations including model type, dataset size, and system resources must be weighed

carefully against the capabilities of the GeForce RTX 4090 to ensure optimal performance and

efficiency.

The RTX 4090 falls within a performance range similar to that of Ampere GPUs such as the
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Figure 1.3: One of the graphs extracted from the web comparing GPU performance in the market
relative to their price. [2]

A100 and A40, providing an intriguing alternative for machine learning and artificial intelligence

applications in desktop environments. The performance of the RTX 4090 also rivals with Tesla

V100 GPUs, an earlier model still widely utilized in professional settings.

When considering both acquisition and maintenance costs, the situation changes, Figure 1.3

depicts the performance per US dollar for various GPUs, taking into account 8 or 16-bit represen-

tation of numbers during inference and training. Utilizing this chart to identify the most suitable

GPU entails several key considerations. First and foremost is determining the required GPU mem-

ory capacity, with a rule of thumb suggesting a minimum of 12 GB for image generation and 24

GB for transformer work. Additionally, users should prioritize GPUs offering the highest relative

performance-to-cost ratio based on their chosen metric while ensuring the selected GPU meets
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their memory requirements.

While the RTX 4070 Ti and RTX 3080 emerge as the most cost-effective options for 8-bit and

16-bit inference respectively, it’s important to note that these GPUs may lack sufficient memory

for certain use cases. Nevertheless, they could serve as excellent entry-level cards for deep learning

enthusiasts, particularly for academic applications where model size may be less critical.

The chart also takes into account the electricity cost of ownership over five years, assuming a

15% GPU utilization rate and an electricity price of $0.175 per kWh. Notably, the electricity cost

for an RTX 4090 amounts to approximately $100 per year. Interpreting the chart reveals that a

desktop computer equipped with RTX 4070 Ti GPUs delivers roughly twice the 8-bit inference

performance per dollar compared to a system featuring an RTX 3090 GPU, highlighting the cost-

effectiveness of the former option.



2
Popular tools for ML Development

In Artificial Intelligence (AI) projects development, access to powerful tools and environments

is paramount to streamline workflows, facilitate collaboration, and accelerate experimentation.

The next sections describe some of the essential tools used in the machine learning landscape,

highlighting the significance of virtualized environments for code execution and collaboration.

2.0.1 Jupyter Notebooks

Jupyter Notebooks offers an interactive computing environment that mixes code, visualizations,

and narrative text in a single document. With support for multiple programming languages,

including Python, R, and Julia. By interleaving code cells with descriptive text and visualiza-

tions, practitioners can document their thought processes, experimental setups, and analysis re-

sults within a single, coherent narrative. This not only facilitates understanding for others but

also enhances the reproducibility of experiments, as each step can be explicitly documented and

executed sequentially.

Additionally, the ability to execute code cells interactively permits one to quickly prototype

algorithms, visualize intermediate results, and iterate on different approaches within the same

document. This iterative workflow encourages experimentation and facilitates the discovery of

optimal solutions to complex machine-learning problems.

Furthermore, the collaborative features of Jupyter Notebooks make them well-suited for team-

based research and development projects. Teams can easily share notebooks, collaborate on code
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Figure 2.1: Descriptive diagram of Google Colab, from user authentication to cloud resource
allocation.

and analysis, and provide feedback in real time. This collaborative environment promotes knowl-

edge sharing, accelerates the pace of innovation, and fosters a culture of teamwork within machine

learning teams.

2.0.2 Google Colab

Google Colab extends the capabilities of Jupyter Notebooks by providing a cloud-based environ-

ment for machine learning experimentation. Leveraging Google’s infrastructure, Colab offers free

access to GPUs and Tensor Processing Units (TPU)s, enabling users to train complex models

and process large datasets without the need for expensive hardware investments. Moreover, Colab

facilitates seamless collaboration through real-time editing and sharing of notebooks, allowing mul-

tiple users to work together on the same project simultaneously. Its integration with Google Drive

enables easy storage and access to datasets and trained models, further enhancing productivity

and collaboration.

Google Colab provides a virtualized environment pre-configured with commonly used dependen-

cies for machine learning, such as TensorFlow, NumPy, and Matplotlib. This environment allows

users to access and utilize these libraries without the need for manual installation or configuration.

As depicted in Figure 2.1 each time computational power is requested, Google Colab allocates a

fresh, clean instance of the virtual environment. This ensures consistency and reproducibility in

experiments, as users can start with a clean slate for each session, free from any residual artifacts

or modifications from previous runs.

Google Colab, while offering powerful capabilities for ML experimentation, does come with

certain limitations and considerations. Firstly, it’s important to note that Google Colab provides

a free tier with access to GPUs and TPUs, making it an attractive option for many developers.

However, this free tier has limitations in terms of resource availability and usage. For instance,
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there are restrictions on the duration of each session, typically capped at 12 hours, after which

the session is terminated. Additionally, there may be limits on the amount of GPU memory and

storage space available for each user.

Furthermore, Colab offers a paid version, known as Colab Pro, which provides access to ad-

ditional features and resources. These include longer session durations, priority access to GPUs,

and increased memory and storage quotas. While Colab Pro offers enhanced capabilities, it is a

subscription-based service, meaning users incur costs for accessing these premium features. The

pricing model for Colab Pro is based on a monthly subscription fee, with costs varying depending

on usage and resource requirements. It’s also worth noting that while Google Colab provides access

to powerful computing resources, these resources are shared among all users of the platform. As a

result, users may experience variability in performance and availability, particularly during peak

usage times when demand for resources is high.

In the current project, we aim to harness the advantages offered by Google Colab while opting

for a local runtime environment. This approach involves configuring a dedicated machine that

operates on the same principles as Google Colab but without the limitations associated with

subscription-based access and with the added benefit of customizable hardware. By adopting this

strategy, we seek to leverage the convenience and familiarity of the Google Colab environment

while gaining greater control over hardware resources and eliminating dependencies on external

services.

In the subsequent chapter, we will detail the steps required to set up a machine configured

in this manner. This includes selecting suitable hardware components, installing the necessary

software stack, and configuring the runtime environment to mirror the functionality and flexibility

of Google Colab.
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3
Setting Up a Local Environment

3.1 Docker configuration

To set up a local environment for running Google Colab-like runtimes on their machine, the user

should follow the detailed steps provided below:

1. Install Docker: The user must ensure that Docker is installed on their local machine. Docker

[3] is a platform that enables developers to build, package, and distribute applications as

lightweight, portable containers. They can download and install Docker from the official

website following the provided instructions.

2. Starting the Runtime: Once Docker is installed, the user can start a runtime using the

following command:

docker run -p 127.0.0.1:9000:8080 us-docker.pkg.dev/colab-

images/public/runtime

This command initializes a Docker container using the Google Colab runtime image (us-

docker.pkg.dev/colab-images/public/runtime). Docker images are lightweight, standalone,

and executable packages that contain all the necessary software components, including the

operating system, libraries, and dependencies, needed to run an application or service. It’s

worth noting that the Docker image is downloaded from the repository the first time it’s used,

and subsequently remains cached on the system, ensuring faster startup times for subsequent

runs.
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The -p flag specifies port mapping, where 127.0.0.1:9000 on the host machine is mapped to

port 8080 inside the container. This port mapping allows for communication between the

host and the Docker container.

It’s important to highlight that the Docker container provides an isolated and reproducible

environment, much like the virtualized environment used in Google Colab. This means that

all the required libraries, dependencies, and configurations, including those typically found in

a Colab environment, are pre-installed within the Docker image. This ensures consistency and

compatibility across different computing environments, allowing users to seamlessly transition

between local development and cloud-based workflows.

3. GPU Support: If GPU support is desired, the user should ensure that NVIDIA drivers and

the NVIDIA container toolkit are installed. To start the runtime with GPU support, the

following command should be executed:

docker run --gpus=all -p 127.0.0.1:9000:8080 us-docker.pkg.dev

/colab-images/public/runtime

This command is similar to the previous one but includes the –gpus=all flag, which instructs

Docker to allocate all available GPUs to the container.

4. Accessing the Backend: Once the container is started, a message containing the initial

backend URL used for authentication will be printed. The URL will be in the format

”’http://127.0.0.1:9000/?token=…”.

5. Enabling SSH Tunnel: If the user’s remote machine is accessed via SSH it is advisable to

create an SSH tunnel. This can be done using a command similar to the following:

ssh -N -f -L 9000:localhost:9000 user@remote_machine_ip

This command creates an SSH tunnel from the user’s local device to the remote machine

using the same port forwarded to the container.

6. Connecting to the Local Runtime from Colab: Lastly, the user should access Google Colab

website and click on the ”Connect” button. Select ”Connect to a local runtime…” and enter

the backend URL obtained in the previous steps in the dialog box. Click ”Connect,” and the

connection to the local runtime should be successfully established.
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3.2 Link Google Drive as volume

One of Colab’s advantages over its competitors is its ability to provide easy access to Google Drive

by integrating it into the filesystem of the containerized environment. One solution is to mount

Google Drive on the Linux system using Rclone [4]. Users can follow these steps:

1. Installation of Rclone: Rclone must first be installed on the Linux system. Users can refer

to the official Rclone documentation for installation instructions or utilize their system’s

package manager.

2. Configuration of Rclone for Google Drive: After installing Rclone, users need to configure

it for accessing Google Drive. They can initiate the configuration process by executing the

following command in a terminal:

rclone config

Following the guided prompts, users can add Google Drive as a new remote, obtain an access

token, assign a name to the remote (e.g., ”remote”), and complete the configuration.

3. Mounting Google Drive: Once Rclone is configured, users can mount their Google Drive on

the Linux system using the following command:

rclone mount gdrive: /path/on/the/system --allow-other --dir-

perms 775 --daemon

Users should replace ”/path/on/the/system” with the desired destination directory on the

Linux system. Upon executing this command, Google Drive will be mounted and accessible

as a local directory on the system.

4. File Management: With Google Drive mounted on the Linux system, users can navigate,

read, write, and modify files just like any other local file. All changes made to the files will

be automatically synced with Google Drive and vice versa.

5. Unmounting Google Drive: When users finish working with Google Drive, they can unmount

it from the Linux system using the following command:

fusermount -u /path/on/the/system

They should replace ”/path/on/the/system” with the path to the mount directory of Google

Drive on the Linux system.
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By following these steps, users can seamlessly mount Google Drive on their Linux system using

Rclone and efficiently manage their files between the system and Google Drive. This setup provides

a convenient solution for accessing and working with files, including large datasets, within a Linux

environment. At this point, it is possible to link the folder as a volume to the Docker container

using the -v option, enabling seamless navigation and interaction with the files within the container

environment.

docker run --gpus=all -p 127.0.0.1:9000:8080 -v /path/on/the/system:/

path/on/the/container us-docker.pkg.dev/colab-images/public/runtime

3.3 Automatize the process

The bash script described below automates the operations outlined in the preceding sections.

It establishes the connection with the remote machine, initiates the container, and returns the

backend URL for integration with Google Colab.

#!/bin/bash

# IP of the remote machine

REMOTE_IP="192.168.145.80"

# Username for accessing the remote machine

REMOTE_USER="neurabeast"

# Check if SSH tunnel is already active

if ! pgrep -f "ssh -N -f -L 9000:localhost:9000 $REMOTE_USER@$REMOTE_IP

" > /dev/null; then

# If SSH tunnel is not active , enable SSH tunnel

ssh -N -f -L 9000:localhost:9000 $REMOTE_USER@$REMOTE_IP > /dev/

null 2>&1

fi

# Check if the container is already running

container_id=$(ssh -o ConnectTimeout=10 $REMOTE_USER@$REMOTE_IP "docker

ps -q -f 'ancestor=us-docker.pkg.dev/colab-images/public/runtime'"
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)

# If the container is running , stop it

if [ -n "$container_id" ]; then

ssh $REMOTE_USER@$REMOTE_IP "docker stop $container_id"

fi

# Start a new container

remote_path=$(ssh -f -o ConnectTimeout=10 $REMOTE_USER@$REMOTE_IP "

docker run --quiet --gpus=all -p 127.0.0.1:9000:8080 -v /home/

neurabeast/data/:/content us-docker.pkg.dev/colab-images/public/

runtime" | grep -o -m 1 'http://127.0.0.1:9000/?token=[a-zA-Z0-9]*'

)

# Print the extracted path in green

echo -e "\e[32mBackend URL: $remote_path\e[0m"

To optimize the functioning of this script, it is useful to perform key exchange between the two

machines to avoid SSH password prompts, and Docker must be configured to run without requiring

sudo privileges. Below is a breakdown of its functionality:

1. The script verifies the status of the SSH tunnel by searching for the relevant process. If the

tunnel is inactive, it establishes a new SSH tunnel: utilizing the ‘pgrep‘ command to identify

the SSH tunnel process. In the absence of the process, the script initializes the tunnel with

the ‘ssh‘ command, employing options such as ‘-i‘ to specify the private key, ‘-N‘ to prevent

remote command execution, and ‘-f‘ to run SSH in the background. This newly created

tunnel forwards port 9000 from the local machine to the remote machine, facilitating secure

communication between the two endpoints.

2. The script checks if a container with the Colab image is already running on a remote host.

If such a container is found, it is stopped to ensure a clean state.

3. Subsequently, the script proceeds to launch the Docker container on the remote machine

through the ‘docker run‘ command: leveraging the ‘ssh‘ command to execute the container

remotely. Additionally, the ‘–quiet‘ option is employed to silence non-critical output from the
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Docker container, ensuring a streamlined execution process. It uses the ‘grep‘ command to

search for a specific pattern in the Docker container logs, extracting the URL that matches

the pattern.

4. Finally, the script prints the extracted backend URL.



Conclusions and Future Steps

In conclusion, this project introduces a pragmatic solution to the challenges faced by AI prac-

titioners in accessing and utilizing cloud-based resources for machine learning development. By

suggesting to make a development environment similar to Google Colab but usable on a local

server, this project deals with worries about subscription costs and limited resources that could

slow down some projects. This approach not only offers users full control over hardware cus-

tomization, including GPU selection but also eliminates the financial constraints associated with

subscription-based services. In the future, it would be advantageous to establish similar envi-

ronments for projects extending beyond machine learning, which require proper isolation and the

setup of pre-configured environments. This approach helps mitigate potential risks arising from

incorrect package or library installations, as well as from shared resource utilization.
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