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Abstract

We present a simple criterion to predict the explodability of massive stars based on the density and entropy profiles
before collapse. If a pronounced density jump is present near the Si/Si–O interface, the star will likely explode. We
develop a quantitative criterion by using ∼1300 1D simulations where ν-driven turbulence is included via time-
dependent mixing-length theory. This criterion correctly identifies the outcome of the supernova more than 90% of
the time. We also find no difference in how this criterion performs on two different sets of progenitors, evolved
using two different stellar evolution codes: FRANEC and KEPLER. The explodability as a function of mass of the
two sets of progenitors is very different, showing: (i) that uncertainties in the stellar evolution prescriptions
influence the predictions of supernova explosions; (ii) the most important properties of the pre-collapse progenitor
that influence the explodability are its density and entropy profiles. We highlight the importance that ν-driven
turbulence plays in the explosion by comparing our results to previous works.

Unified Astronomy Thesaurus concepts: Supernova dynamics (1664); Core-collapse supernovae (304); Supernovae
(1668); Supernova neutrinos (1666); Gravitational collapse (662); Massive stars (732)

1. Introduction

The first attempts at describing the physics of core-collapse
supernovae (CCSNe; Burbidge et al. 1957; Hoyle & Fow-
ler 1960) postulated that the explosion could be powered by
thermonuclear burning of the material surrounding the core.
However, the first numerical simulations (Arnett 1966; Colgate
& White 1966) identified neutrinos as the primary energy source
for the explosion. In these models, the emitted neutrinos
traveling outwards will deposit enough energy behind the shock
(the so-called gain region) to energize the explosion started with
the core bounce. This is known as the “prompt neutrino-driven
mechanism” since there is no delay between the initial shock
expansion and the shock revival caused by neutrino heating.

With a more reliable equation of state (EOS), neutrino
opacities, and numerical algorithms, Bethe & Wilson (1985)
found instead that a “delayed neutrino-heating” after the initial
expansion could drive the explosion. That is, the shock stalls
inside the core for a few hundred milliseconds, and is then
revived by the neutrinos emitted inside the newly formed proto-
neutron star (PNS). However, modern spherically symmetric
(1D) codes that employ more accurate EOSs (Lattimer &
Swesty 1991; Chabanat et al. 1997; Shen et al. 1998; Hempel
& Schaffner-Bielich 2010; Steiner et al. 2013; Dutra et al.
2014; Schneider et al. 2017) and neutrino–matter interactions

(Bruenn 1985; Mezzacappa & Bruenn 1993a, 1993b, 1993c;
Thompson et al. 2000; Horowitz 2002; Burrows et al. 2006;
Fischer et al. 2017) do not self-consistently explode, except for
one zero-metallicity, 9.6 Me progenitor (Melson et al. 2015).
Finally, with the growth of computing power, the first

simulations of CCSNe in two (Miller et al. 1993; Herant et al.
1994) and three (Janka & Mueller 1996; Fryer & Warren 2002)
spatial dimensions became feasible. Currently, 3D simulations
routinely explode (Müller et al. 2012, 2019; Takiwaki et al.
2012; Lentz et al. 2015; Bruenn et al. 2016; Janka et al. 2016;
Takiwaki et al. 2016; O’Connor & Couch 2018a; Burrows
et al. 2020; Bugli et al. 2021; Nakamura et al. 2022) and are
becoming less computationally demanding. At the same time,
axisymmetric (2D) simulations now have a relatively small
computational cost compared to 3D ones. However, the
imposed axisymmetry has been shown to artificially enhance
turbulence (see, for example, Couch & Ott 2015).
Therefore, only 3D simulations can ultimately establish what

causes an explosion, and they have already shed light on
several aspects of the explosion mechanism (see review in
Müller 2016). A clear example that showcases the success of
3D simulations is neutrino-driven turbulent convection, which
is a key mechanism in triggering the explosion (Radice et al.
2016, 2018; Mabanta & Murphy 2018). Other new phenomena
such as the Lepton-number Emission Self-sustained Asymme-
try (Tamborra et al. 2014) and the Standing Accretion Shock
Instability (Blondin et al. 2003) have also been revealed by
simulations in three spatial dimensions. However, the impact of
these phenomena on the explosion is still a topic of active
research.
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Nevertheless, 3D simulations currently pose a computational
challenge, even for modern supercomputers. Moreover, there is
not a good agreement between 3D simulations from different
groups (Cabezón et al. 2018), except at very small (<50 ms)
times post-bounce. To a lesser extent, this is also true for 2D
simulations (see Table 1 from O’Connor & Couch 2018a),
although some promising benchmark work has been done (Pan
et al. 2019). The advantage of 1D simulations is that they run
faster and they are consistent across different codes (O’Connor
et al. 2018). This makes them an ideal tool to study the vast
parameter space of supernovae (SNe). The drawback is that the
explosion has to be artificially driven.

Different techniques to power an explosion in one dimension
have been devised over the last few decades (Blinnikov &
Bartunov 1993; Woosley & Weaver 1995; Ugliano et al. 2012;
Perego et al. 2015; Sukhbold et al. 2016; Couch et al. 2020;
Ghosh et al. 2022), based upon different parametric models.
Moreover, semianalytical models have been developed over the
years (Janka 2001; Pejcha & Thompson 2012; Müller et al.
2016a; Summa et al. 2016). These have attempted to identify
what causes one star to explode while another collapses into a
black hole. In this paper, we approach the problem of what
makes a star explode from an agnostic point of view. We do not
assume any predetermined explosion mechanism, but rather we
use the model described in Boccioli et al. (2021), whereby the
explosion is a natural consequence of ν-driven convection,
implemented in one dimension using a mixing-length theory
(MLT) approach from Couch et al. (2020). After determining
which stars explode, we ask the question: “What properties of
the progenitor star cause the explosion?” We summarize
previous studies addressing this question and motivating this
work in Section 2. We describe our numerical setup in
Section 3 and the calibration of our models in Section 4. We
outline our analysis method in Section 5 and present our results
in Section 6, as well as comparisons with previous works.
Finally, we present our conclusions in Section 7.

2. Previous Studies on the Explodability Problem

The question as to what causes an explosion has remained
unanswered for many years. Nevertheless, there have been
several attempts at describing the explosion process using
simple physical arguments. The first efforts are nicely
summarized in a review by Bethe (1990). In most of the early
work, the focus was on the interior of the PNS, where, if strong
convection is present, a large number of neutrinos can be
emitted, aiding the shock in its journey toward the outer mantle
of the star (Bethe & Wilson 1985; Wilson & Mayle 1988;
Wilson & Mathews 2003; Wilson et al. 2005). However, it is
by now well established that, although convection in the PNS is
present, it is not sufficient to liberate the amount of neutrinos
necessary to heat the material in the gain region (Bruenn &
Dineva 1996; Keil et al. 1996; Nagakura et al. 2020).

Guided by the numerical results, the first semianalytical
models were also developed. One of these models (Burrows &
Goshy 1993) introduced a key concept that is still in use: the
critical luminosity condition. At zeroth order, a supernova can
be regarded as being controlled by two parameters: the mass
accretion rate M and the neutrino luminosity Lν. For large mass
accretion rates, more mass falls through the shock, increasing
the ram pressure and inhibiting the explosion. At the same
time, large mass accretion rates imply more mass being added

to the PNS, which increases the neutrino luminosity and
therefore neutrino heating, which helps the explosion.
One can then consider this to be a bifurcation problem. In the
–L Mn  plane, there is a critical curve dividing solutions that

yield explosions (below) and failed SNe (above). This was
further developed in several studies that refined this model by
including the effects of ν-driven turbulence and rotation
(Janka 2001, 2012; Pejcha & Thompson 2012; Müller et al.
2016a; Summa et al. 2016). It is worth pointing out that the
inclusion of ν-driven turbulence was usually done by
increasing the shock radius by a factor proportional to the
post-shock Mach number. This however fails to capture the
complicated dependency of turbulence on the post-bounce
dynamics.
Other studies were also performed with the critical condition

in mind. Notably, Ertl et al. (2016) derived a criterion based on
the pre-collapse structure of the progenitor. This was later
applied to a wider set of progenitors by Sukhbold et al. (2016).
Specifically, they defined M4 and μ4 to be the location in mass
and the mass gradient, respectively, of the layer where the
entropy crosses a value of s= 4 kB baryon−1. They then argued
that there is a line in the μ4–M4μ4 plane that divides explosions
(below) and failed SN (above). This plane is analogous to the

–L Mn  plane described above. Using a 1D spherical model to
carry out the explosion of several progenitors stars, they indeed
found such a separating curve. More details of their model in
comparison to ours are given in Section 6.4.
Another attempt at understanding the behavior of SN

explosions was done by O’Connor & Ott (2011), who
introduced the compactness parameter ξM

( )
( )M M

R M M 1000 km
, 1

t t

M
bary

bounce

x =
=

=




where M is the value of the mass at which this parameter
should be evaluated. They used fully general relativistic
simulations to study in detail the trajectory of the shock until
black hole formation. They then derived a criterion that
connects ξ2.5 to the time it takes to form a black hole.
Large ξ2.5 leads to rapid black hole formation since the mass

of the PNS increases very quickly due to the large mass
accretion rates. Then, by artificially enhancing the neutrino
luminosity (a very crude but easy way to achieve an explosion
in one dimension), they derived a criterion stating that stars
with ξ2.5< 0.45 explode, and stars with ξ2.5> 0.45 collapse to
black holes.
This work was later expanded to study the dependency of

black hole formation on the EOS (Schneider et al. 2020). Since
1D models are well suited to a study of the collapse phase, the
results regarding black hole formation are very reliable.
However, ξ2.5 does not contain enough details to properly
account for all of the physical mechanisms in effect during the
explosion. Therefore, it cannot accurately predict the outcome
of the SN.
A new tool that models ν-driven convection was recently

developed by Couch et al. (2020), using a time-dependent MLT
approach that can be implemented in 1D simulations. There-
fore, neutrino heating is increased by a physically motivated
mechanism, seen in 3D simulations, rather than by an artificial
increase of the neutrino luminosity. Using this model one can,
within the uncertainties of MLT, recover approximately the
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same shock dynamics seen in 2D and 3D simulations, but at a
much smaller computational cost. This inspired us to perform
simulations for a wide range of progenitors and then, guided by
several of the studies mentioned above, find the dynamical
properties of such simulations that could explain the outcome
of the explosion. Finally, by connecting these dynamical
properties to the thermodynamic structure of the pre-collapse
progenitor, one can formulate a criterion that predicts the
outcome of the SN without the need of performing the
simulations.

3. Numerical Methods

For this work, we used two sets of stellar models for massive
stars: one set of progenitors based upon the KEPLER code
(Sukhbold et al. 2016), and one set based upon the FRANEC
code (Chieffi & Limongi 2020). For all of the figures in this
paper, we identify FRANEC progenitors with circles and
KEPLER progenitors with squares. We highlight that the pre-
SN progenitors from KEPLER suffer from a known bug that
alters neutrino cooling. The bug was later fixed in Sukhbold
et al. (2018) and was shown to have a small impact on the final
pre-SN structure. Despite this bug, we still decided to use the
old pre-SN progenitors, so that we could compare our results to
the works of Sukhbold et al. (2016) and Ertl et al. (2016).

To model the collapse and subsequent explosion of the
progenitor stars, we used the open-source code GR1D
(O’Connor & Ott 2010; O’Connor 2015). It is a spherically
symmetric, fully generally relativistic hydrodynamic code
coupled to a neutrino radiation transport module that solves
the Boltzmann equation using a two-moment (M1) scheme. We
included the effects of neutrino-driven turbulent convection
through a relativistic version of the time-dependent MLT
model of STIR (Couch et al. 2020), as described in Boccioli
et al. (2021). All of the simulations were performed using 700
radial zones extending out to 15,000 km, with a uniform
spacing of 0.3 km for the inner 20 km and a logarithmic
spacing outside. For the neutrino opacities, we used the tables
from NuLib (O’Connor 2015), with 18 neutrino energy groups
from 1 to ∼280MeV, and the same neutrino–matter interac-
tions used in Boccioli et al. (2022). All of the simulations were
performed using the SFHo EOS (Steiner et al. 2013).

4. Calibration of STIR

As mentioned in the previous section, in our 1D simulations,
the explosion can be achieved by virtue of STIR, a time-
dependent MLT model for ν-driven turbulent convection.
Therefore, the amount of turbulence generated (and subse-
quently dissipated) depends on a parameter αMLT of order
unity. For more details about this model, we refer the reader to
Mabanta & Murphy (2018), Couch et al. (2020), and Boccioli
et al. (2021).

As shown in Boccioli et al. (2021), the spatial and neutrino
energy resolutions change the value of αMLT that best
reproduces the results of 3D simulations. Therefore, we chose
to adopt the same numerical setup (described in 3) as in
Boccioli et al. (2021) and Boccioli et al. (2022). There, a value
of αMLT around 1.5 was selected, based upon comparisons with
3D simulations and observational constraints on the fraction of
stars that collapse to black holes. For this paper, we identify the
best-fit range 1.5� αMLT� 1.52.

To justify the range chosen, we show in Figure 1 the
explodability as a function of zero-age main sequence (ZAMS)
mass for different values of αMLT, extending slightly above and
below our best-fit range. Then, we show in Figure 2 the
corresponding explosion fractions. Only simulations with
αMLT� 1.5 lie within the observational constraint from
Neustadt et al. (2021), depicted as a green-shaded region.
Since we do not have simulations of progenitors with masses
<12 Me, to estimate the explosion fractions, we assume that
every progenitor with a mass lower than 12 Me explodes. This
assumption is justified by many 3D simulations of low-mass
progenitors, as well as by the 1D explodability studies by
Sukhbold et al. (2016), Couch et al. (2020), and Boccioli et al.
(2022).
Additionally, values that are somewhat larger than

αMLT= 1.5 are not compatible with the comparison to 3D
simulations performed in Boccioli et al. (2021) and Boccioli
et al. (2022). Specifically, the results with αMLT= 1.55 in
Boccioli et al. (2022) deviate substantially from the 3D data.
Also, Figure 2 in Boccioli et al. (2021) shows that αMLT= 1.5
yields the best match to the 3D explosion properties. However,
those simulations were run with a higher spatial resolution,
more neutrino energy groups, and slightly different neutrino
opacities. Therefore, as discussed in the appendix of Boccioli
et al. (2021), it is expected that a larger αMLT would be
required for the simulations in this paper. Thus, we chose our
upper limit to be αMLT= 1.52.
Further justification is provided by the fact that, for

FRANEC progenitors, αMLT= 1.52 is already near the upper
limit for the explosion fraction, as can be seen in Figure 2. On
the other hand, one could make the argument that the
calibration for αMLT can be different for KEPLER and
FRANEC progenitors. However, ν-driven convection only
depends on the mass accretion rate in the gain region and the
neutrino luminosity emitted from the PNS. Therefore, there is
no reason to assume that differences in the stellar evolution
codes would lead to different ν-driven convection. This is
confirmed by our simulations, where values around αMLT≈ 1.5
are compatible with the observed fraction of failed SNe for
both progenitor sets. To summarize, we identify our best-fit
range to be 1.5� αMLT� 1.52, and our best-fit value to be
αMLT= 1.51.
It’s important to point out that Figure 1 does not only show

the outcome of the SN for progenitors that were simulated but
also the outcome inferred by simulations of that progenitors at
different values of αMLT. In other words, if a star explodes for a
given value of αMLT, it will also explode for larger values.
Similarly, if a star does not explode for a given value of αMLT,
it will also not explode for smaller values. We can therefore
avoid running many simulations since, for this study, we are
mainly interested in the outcome of the SN rather than in the
details of the post-bounce dynamics.
As can be seen from Figure 2, the explodability is a steep

function of αMLT. This means that several progenitors do not
explode at a given value of αMLT but do explode for a slightly
larger value. To quantify how “close” to an explosion a
progenitor that results in a failed SN is, we consider the
advection and heating timescales.
The advection timescale τadv is a measure of how much time

the infalling material spends in the gain region before settling
onto the PNS. The heating timescale τheat indicates how long it
takes for neutrinos to deposit energy in the gain region. It is
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expected (Janka 2001; Buras et al. 2006; Radice et al. 2018)
that for a ratio τadv/τheat 1 the explosion becomes favorable
since the matter in the gain region is exposed to neutrino
heating for a long time before it can settle onto the PNS.

This is conceptually the same as defining a critical
luminosity condition, since larger M will correspond to smaller
τadv, and larger Lν will correspond to smaller τheat. In our 1D
simulations, we find that some failed SNe have τadv/τheat> 1.
Therefore, we expect those stars to be on the verge of shock
revival, and a slight increase of αMLT would result in
explosions.

There are several equivalent definitions of these timescales
(Buras et al. 2006; Marek & Janka 2009; Fernández 2012;
Müller et al. 2012; Radice et al. 2018), and particular care has
to be applied in the definition of τheat. We define the advection
timescale to be:

( )
M

M
, 2adv

gaint = 

where Mgain is the total mass in the gain region, and M is the
mass accretion rate calculated at 500 km.

The heating timescale is taken to be:

∣ ∣
( )

E
, 3heat

gain

net
t = 

where net
 is the net neutrino heating rate in the gain region,

and Egain is the binding energy in the gain region, defined as in

Müller et al. (2012):

{ [( ) ] } ( )E P W P W Vd . 4gain
gain

th
2ò a r r r= + + - - ~


Here α is the lapse function, ρ is the density, òth is the specific
internal thermal energy, P is the pressure, W is the Lorentz
factor, and V is the proper volume. Notice that Equation (4)
does not include the recombination energy of the matter, which
might be a significant contribution to the explosion energy
(Bruenn et al. 2016). However, to calculate the heating
timescale, one only needs the total energy of the matter at
that specific time and thermodynamic conditions, and therefore
the recombination energy should not be included (Fernán-
dez 2012; Radice et al. 2016).
In the evaluation of the timescales, it is very important to use

the correct expression for òth. Usually, the internal energy
provided by the EOS includes the binding energy of nuclear
matter and therefore differs from the actual thermal energy. An
approximate way to calculate òth is to calculate the internal
energy from the EOS ò(T, ρ, Ye) minus the internal energy for
the same density and electron fraction but at zero temperature
ò(0, ρ, Ye).
This definition of òth= ò(T, ρ, Ye)− ò(0, ρ, Ye) is accurate

enough if one needs a rough estimate of the diagnostic
explosion energy (Müller et al. 2012; Betranhandy &
O’Connor 2020; Boccioli et al. 2021), but should not be

Figure 1. Explodability as a function of progenitor mass for different values of αMLT for the FRANEC progenitors (top) and KEPLER progenitors (bottom).
Simulations resulting in successful shock revival are shown in green, and simulations resulting in a failed SN are shown in black. Not every band corresponds to an
actual simulation. In some cases, the outcome of the simulation (i.e., the color of the band) is inferred from simulations of the same progenitors at different values of
αMLT. If a star explodes for a given value of αMLT it will also explode for larger values. Conversely, if a star results in a failed SN for a given value of αMLT, it will
also fail to explode for smaller values. Gray regions correspond to stars that were not simulated and no information could be inferred from results at different values
of αMLT.
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applied to the calculation of the heating timescale. For that, we
resort to the definition of òth used by Bruenn et al. (2016) and
Harada et al. (2020):

( )k T
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 The first term in Equation (5) is the contribution of the heavy
nuclear species treated as an ideal gas, where Xh and Ah are the
mass fraction and number of nucleons of a representative heavy
nucleus, as provided by the EOS table. The second term is the
contribution from an ideal photon gas, where a is the radiation
constant and T is the temperature. The third term is the internal
energy of the electron-positron gas minus the contribution from
the rest mass of the electron. Here, mu is the atomic mass unit,
and kB is the Boltzmann constant.

5. Shock Dynamics during the Post-bounce Phase

5.1. Accretion of a Steep Density Gradient

Several 3D simulations have shown that progenitors with
steep density gradients near the Si/Si–O interface often lead to
explosions (Burrows et al. 2018; Vartanyan et al. 2021),
confirming what had been argued in the past. In particular, as
explained in Section 2, Ertl et al. (2016) formulated a criterion
to predict the outcome of the explosion based on the pre-
collapse structure of the progenitor star. The choice of s= 4 kB
baryon−1 in their criterion (later applied to a wider set of
progenitors by Sukhbold et al. 2016) was motivated by the fact
that the Si/Si–O interface is generally located at entropies per
baryon around that value.

However, Couch et al. (2020) and Boccioli et al. (2021)
found the explodability as a function of progenitor mass to be
very different from the one predicted by Ertl et al. (2016) and
Sukhbold et al. (2016). Both of those studies employed STIR in
1D simulations with full ν transport. Hence, it appears that
explosions achieved via ν-driven turbulent convection do not
obey the explosion criterion proposed by Ertl et al. (2016).
Since 3D simulations from Burrows et al. (2020) seem to agree
with the explodability predicted by STIR, we are confident that
one can develop a simple explosion criterion based upon the
shock dynamics during the accretion of the Si/Si–O interface.
In spherically symmetric simulations, the accretion of the Si/

Si–O interface creates a sudden decrease in the ram pressure.
This induces a temporary expansion—or surge—of the shock.
Several semianalytical models have been used to investigate
how fluctuations in pre-shock thermodynamic quantities affect
the expansion of the shock (Blondin et al. 2003; Nagakura et al.
2013, 2019). In these studies, it was concluded that these
fluctuations can both act as seeds for fluid instabilities that can
potentially revive the shock, and also relieve the ram pressure
on the shock enough for heating caused by ν-driven turbulence
to trigger an explosion. Therefore, in 1D simulations, where ν-
driven turbulence is not present, the shock is slowly pushed
back down after the initial expansion, continuing its recession
toward the PNS. This temporary expansion is almost always
caused by the accretion of the Si/Si–O interface, although there
are some exceptions.
If the surge is large enough and occurs between ∼70 ms and

∼400 ms after bounce, one can expect a 3D simulation to
produce an explosion for that progenitor. To quantify the surge,

Figure 2. The explosion fraction is calculated by weighing the explodability shown in Figure 1 with a Salpeter initial mass function. All stars from 9–12 Me are
assumed to result in explosions, consistent with results from multidimensional simulations. The black symbols are the explosion fractions assuming the explodability
shown in Figure 1 for FRANEC (circles) and KEPLER (squares) progenitors, for different values of αMLT. The latest observational data from Neustadt et al. (2021)
estimate the fraction of failed SNe to be f 0.16fSNe 0.12

0.23= -
+ with90% confidence. The interval and median values are represented as a shaded green region and

horizontal line, respectively. Notice that the explosion fraction is 1 − ffSNe.
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we follow the methods outlined in Schneider et al. (2020).
Since the surge is connected to a drop in the mass accretion
rate, Schneider et al. (2020) defined a smooth shock radius
Rshock as a fit to the actual shock radius Rshock without the
inclusion of the region where the accretion rate drops
significantly, which is indeed the signature of a surge.

In our case, we instead define the start of the surge as the
time when the density jump (as defined in Section 5.1) is
accreted through the shock. The two definitions agree very
well, which confirms that our definition of the density jump is
physically sound since its accretion almost always causes a
surge. Moreover, by using our definition, we avoid all of the
numerical complications derived from having to perform
derivatives of the mass accretion rate.10

Our fitting procedure is as follows: if the accretion of the
density jump happens earlier than 100 ms, we exclude the time
window from the accretion until 50 ms after. We then fit a
second-degree polynomial to the shock radius versus time post-
bounce. Otherwise, we do a linear fit to the inverse of the shock
radius versus time post-bounce, for a time window of 100
ms.11An example of the fitting procedure, as well as the
difference between the simulations with and without STIR, is
shown in Figure 3. The surge is then defined as
R R Rsurge shock shock= -  . The maximum of the surge is
δRsurge. The larger δRsurge, the more likely the explosion of
that progenitor in realistic 3D simulations.

The above definition of Rsurge can only be applied to
nonexploding simulations. During an explosion, the shock
expands farther after the surge, and therefore it is not possible
to quantify how much of the expansion is solely due to the
accretion of the jump. Hence, in order to quantify Rsurge, we
performed a standard 1D simulation for every progenitor,
without the inclusion of ν-driven turbulence, in addition to the
simulations with STIR. To distinguish between these two sets
of simulations, we refer to the simple spherically symmetric
simulations as “1D,” and to the spherically symmetric
simulations with STIR as “1D+” since they incorporate ν-
driven convection, a multidimensional effect.

It is worth pointing out that if one uses a loose definition of
the density jump (e.g., the location of the s= 4 kB baryon−1

layer), there is a mismatch between when the surge occurs and
when that layer is accreted. Therefore, we give a more accurate
description of how the jump is defined in the next Section.

5.2. Definition of the Density Jump

As density decreases as a function of enclosed mass, entropy
increases. In particular, in layers where the composition
changes abruptly, the decrease in density and increase in
entropy are very steep, as can be seen in Figure 4. Due to the
small range of entropies involved (3–5 kB baryon−1), it is more
practical to use the entropy to identify the zones that make up
the jump. We define the starting zone of a jump as the ith zone

such that:

( )s s

s
1%, 6i i

i

1 - >+


where s is the entropy per baryon. The end of a jump happens
at the ith zone such that:

( )s s

s

s s

s
1% and 1%. 7i i

i

i i

i

1 2 1

1

-
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-
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 The reason for the double condition in Equation (7) is that
sometimes, along the jump, the entropy might not significantly
increase in one zone, but keeps increasing after that. Using only
the first condition would then underestimate the size of the
jump since a fluctuation along the jump would incorrectly be
identified as the end.
After finding all of the jumps in the progenitor, one has to

determine which one will cause the surge. If the jump is located
at low densities, it will be accreted very late. Therefore, it will
not cause any surge since the shock is already overwhelmed by
the ram pressure of the infalling material, and is inevitably
receding. On the other hand, if the jump is located at high
densities, it will be accreted right after bounce, when the shock
is still expanding and neutrino heating is not yet fully
developed. Therefore, it will not cause any surge. We then
conservatively chose a range of densities between 9× 105 g
cm−3 and 2× 107 g cm−3 where the entropy jump can be
located. This allows us to include discontinuities that are
accreted very early ∼60 ms after bounce, and very late ∼600
ms after bounce. If no jump is present in this density range, the
progenitor will not explode (see Section 6.1 for more details).
If more than one jump is present within this density range

(which is often the case), we select the one where the maximum
of δρ2/ρ2 occurs. Here, δρ is the difference between the density
at the start and the end of the jump. The reason for this choice
will become clear when we discuss our results in Section 6. An
example of a typical jump in entropy and density is shown in
Figure 4. For the remainder of this paper, any quantity “q”
calculated at the start (i.e., closer to the center of the star) of the
jump will be labeled as q*. If it refers to the end (i.e., closer to
the atmosphere of the star) of the jump, it will be labeled as
q end

*
. The size of the density jump will be labeled as δρ*.

6. Results

To formulate an explosion criterion, we selected dynamical
properties of the post-bounce phase that correlate with an
explosion and then connected them to the properties of the
progenitor.
Intuitively, simulations that cause a large δRsurge should

correlate with explosions. At the same time, if the surge
happens too early, neutrino-driven convection is not fully
developed yet, and therefore there is not enough heating behind
the shock to support further expansion. If the surge happens too
late, when the shock has already receded too much, the
expansion caused by the accretion of the density jump is not
large enough to trigger an explosion. This is summarized in
Figure 5, where δRsurge and the time of accretion of the jump
taccr are shown for all of our 1D simulations. The dashed line
y=−1.5 + 1/x, drawn to simply guide the eye, shows that one
can separate explosions and failed SN reasonably well.
Specifically, surges at early times have to be larger for an
explosion to develop, the reason being that neutrino-driven

10 Sometimes the accretion happens very close to the maximum of the shock
radius, where the definition of the surge becomes ambiguous. At early times,
the mass accretion rate quickly decreases. Therefore, even if it drops as a
consequence of the accretion of the jump, the overall trend will not be affected
significantly.
11 Early accretions before 100 ms happen around the maximum of the shock
radius. Therefore, one expects the shock radius to be roughly quadratically
dependent on time. For late-time accretion, one expects Rshock ∝ 1/t instead.
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convection is not fully developed yet, and therefore the heating
behind the shock is not sufficient to sustain an explosion. The
next step is to connect these two quantities to the properties of
the progenitor right before collapse.

A simple argument can be used to quantitatively derive
δRsurge. After the initial expansion, the shock stalls at a fixed
radius. This radius then decreases quasi-statically until either an
explosion is triggered or a black hole is formed. Therefore, the

Figure 3. The solid black line shows the shock radius for a standard 1D simulation (i.e., without ν-driven turbulence) of the 21 Me progenitor shown in Figure 4. The
solid red line shows the shock radius for a 1D+ simulation (i.e., with ν-driven turbulence) of the same progenitors. The gray dashed lines show the time of accretion
taccr and the radius at which the jump is accreted through the shock Raccr. As one can see, the explosion is triggered right after the accretion of the jump. The black
dashed line is a fit that shows the trajectory of the shock if no surge was present. The dotted line is the difference between the solid line and the dashed black lines. The
maximum of the dotted line is Rsurge, i.e., how much the shock expands as a consequence of the accretion of the jump.

Figure 4. Example of a typical profile for the 21 Me progenitor from Sukhbold et al. (2016). In panel (a) the black solid line shows the entropy as a function of
density. The dots correspond to the location of the computational grid. The vertical dashed lines show the zones corresponding to the beginning and the end of the
jump, located at densities ρ* and endr

*
, respectively. There are only a few computational zones along the jump, since both density and entropy vary rapidly with mass

and radius, as can be seen in panel (b). We also show some of the most common elements that can be found outside the iron core: oxygen (yellow), sulfur (blue),
silicon (red), and calcium plus argon (green). In this case, the jump is located inside the silicon shell, and corresponds to the appearance of a pocket of oxygen, whereas
the Si–O interface is located at much lower densities, around ρ = 2 × 105 g cm−3. Panel (b) shows entropy (black) and density (red) as a function of enclosed mass for
the same progenitor. The sudden jump corresponding to an increase in entropy and decrease in density is located at ∼1.5 Me. A zoom-in of the jump is also shown,
where dots correspond to the location of the computational grid.
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shock can be approximated as a standing accretion shock with
zero net velocity vshk= 0. Right before the accretion of the
density jump, matter is infalling with a momentum density ρ*
vinfall. The infall velocity is given by v GM R2infall accr=
(Janka 2001; Müller et al. 2016a), where Raccr is the shock
radius at the time of accretion, and M is the interior mass. After
the accretion, the infall velocity has not significantly changed,
and therefore the momentum density of the infalling material is

vend
infallr

*
, with endr r dr- =

* * *
. Since momentum has to be

conserved, the shock gains a momentum density:

( )v v . 8shk shk infallr dr=
*


Conservation of energy sets the maximum expansion δRsurge

that the shock can experience:

( )v g R
1

2
, 9shk shk

2
shk surger r d=


where g=GM/Raccr is the local gravitational acceleration.
Plugging Equation (8) into Equation (9) and using the
expression for vinfall given above, one finds:

( )
R

R
. 10

surge

accr

2

shk
2

2

2

d dr

r

dr

r
= µ* *

*
 Since Raccr∝ 1/taccr, one expects the separation found in
Figure 5 to be characterized by a single number: δRsurge/Raccr.
We will show later in this Section that this is indeed confirmed

by our criterion. However, there is a caveat. Figure 5 shows
that progenitors for which taccr 0.4 s result in failed SNe,
despite having a nonzero δRsurge. This happens because, at such
late accretion times, the shock has already receded too much
and is inevitably going to fall back onto the PNS. The decrease
in ram pressure caused by the accretion of the density jump is
therefore not enough to trigger explosions at such late times.
These progenitors should therefore be treated separately,

without the need of performing the simulations to obtain taccr.
To do that, one has to estimate taccr only from the pre-collapse
profile. Therefore, one can calculate the freefall time of the
infalling layer:

¯ ( )t G4 , 11ff p r=


where ¯ ( )M r4 3 3r p= is the average density below the
infalling layer. The accretion time is a fraction of tff but is
defined with respect to the time of bounce, whereas tff is
defined with respect to the onset of collapse. Taking all of this
into account, one can estimate the accretion time using only the
pre-collapse density profile, and define taccr as:

¯
( )t Ct t C

G
t

4
, 12accr ff 0 0

p
r

= - = -


where C is a constant smaller than 1, and t0 is the time of
bounce. It’s worth noting that the time of bounce will be
different for each progenitor, but the spread is relatively small,

Figure 5.We show how much the shock expands after the accretion of the jump vs. the time after bounce when the accretion happens. Each point corresponds to a 1D
KEPLER (squares) or FRANEC (circle) simulation. The color of each point indicates that the respective 1D+ simulation with αmLT = 1.51 has exploded (green) or
resulted in a failed SN (black) The dashed line is y = −1.5 + 1/x, and its purpose is simply to guide the eye and show that there is some separation between
explosions and failed SN.
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as can be inferred from Figure 6. Therefore, we consider t0 as a
single representative value for all of the times of bounce.

Depending on when the simulation starts (i.e., how close to
bounce), these constants will be different. Specifically, in this
paper, we use progenitor stars from both KEPLER (a
hydrodynamic code) and FRANEC (a hydrostatic code).
Therefore, the onset of collapse will be at different pre-bounce
times, which will change C and t0 in the above expression.
Consequently, we fit KEPLER and FRANEC progenitors
separately.

Using taccr from our 1D simulations, we fit Equation (12) and
find (C, t0)|KEPLER= (0.78, 0.13 s) and (C, t0)|FRANEC= (0.54,
0.11 s), as shown in Figure 6. C is a dimensionless quantity,
whereas t0 is in units of seconds.

6.1. Explosion Criterion

To determine whether a progenitor explodes or not, we use
the 1D+ simulations with αMLT= 1.51, as explained in
Section 4. We can now formulate two explosion criteria:
criterion (a) based upon dynamical properties (δRsurge/Raccr and
taccr); and criterion (b) based upon pre-collapse properties
( 2 2dr r
* *

and taccr ).
The first part of our criteria reads:

1. if taccr> 0.4 s, the star will not explode. Otherwise, the
star can explode, based on the discussion that follows.

2. if t 0.4 saccr > , the star will not explode. Otherwise, the
star can explode, based on the discussion that follows.

This leads to the prediction that 17 progenitors do not
explode. Of these, only the 22.8 Me KEPLER progenitor
explodes despite having t 0.430 saccr = and taccr= 0.401 s, and
is therefore misclassified by both criteria. After determining
that progenitors with taccr> 0.4 s (t 0.4accr > s) do not explode,
we exclude them from the subsequent discussion. Moreover,
we also exclude the progenitors that do not have any density
jump satisfying the definition given in Section 5.1. None of
these progenitors explode, as expected.
Based on the discussion above, the remaining progenitors

should follow Equation (10), and as can be seen from Figure 7,
that is indeed the case. For completeness, progenitors with
t 0.4 saccr > are shown as shaded symbols, but they are not
included in the analysis. It is interesting to note that some of
them have very large 2 2dr r

* *
but small δRsurge/Raccr. However,

for accretions at very late times, it is very hard to estimate the
surge correctly, and therefore these variations are likely to be a
consequence of numerical noise.
Interestingly, on the right side of Figure 7, there are some

progenitors with δRsurge/Raccr> 0.25 and others with
0.42 2dr r >

* *
that seem to significantly deviate from the

best-fit line, shown as a dashed black line. We verified that in
the case of the progenitors with δRsurge/Raccr> 0.25, δRsurge

has been overestimated by our fitting algorithm. This also
partially explains the vertical spread around the best-fit line of
all progenitors, since, as discussed in previous sections, the
estimation of δRsurge suffers from numerical noise.

Figure 6. We show the accretion time calculated directly from the simulation vs. the accretion time calculated from the pre-collapse progenitor using Equation (11).
Each point represents a different 1D simulation of KEPLER (squares) and FRANEC (circle) progenitors. The color of each point indicates that the respective 1D+
simulation with αmLT = 1.51 has exploded (green) or resulted in a failed SN (black). The dashed lines are two separate least-squares fits for the KEPLER and
FRANEC progenitors, i.e., Equation (12). The fit for the KEPLER progenitor yields taccr = 0.78 × tff −0.13. The fit for the FRANEC progenitor yields
taccr = 0.54 × tff −0.12.
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Analogously, for the progenitors with 0.42 2dr r >
* *

, δRsurge

has been underestimated.
We find that our fitting procedure is relatively simple,

physically justified, and has an overall good performance.
Therefore, we believe that fine-tuning it to properly account for
these outliers defeats the purpose of finding a simple criterion
that can connect dynamical and pre-collapse properties.
Moreover, none of these outliers are misclassified, and
therefore changing the fitting procedure would not change the
results. The only change would be a better correlation between
δRsurge/Raccr and

2 2dr r
* *

, which we only use as a consistency
check for Equation (10), but it does not enter in our criterion.

We can now formulate the second part of our explosion
criteria:

1. If δRsurge/Raccr> 0.04, the progenitor explodes. Other-
wise, it results in a failed SN.

2. If 0.082 2dr r >
* *

, the progenitor explodes. Otherwise, it
results in a failed SN.

Criterion (a), formulated using dynamical properties,
produced ∼9% false positives and ∼1% false negatives. Some
of these are located near the horizontal line in Figure 7, which
represents δRsurge/Raccr= 0.04, and can be considered statis-
tical fluctuations. The imbalance between false positives and
negatives is partially due to the definition of δRsurge, which can
be affected by numerical noise and lead to an overestimation of
δRsurge, especially when the accretion happens close to the

maximum of the shock radius. This generates a significant
number of false positives in the top-left quadrant of Figure 7,
that are however correctly classified by criterion (b). A few
more false positives can be found in the top-right quadrant of
Figure 7, and are quite far from the horizontal line. All of them
are KEPLER progenitors and, as explained later in the section,
some of them explode at slightly larger values of αMLT. They
are also misclassified by criterion (b).
Criterion (b), formulated using pre-collapse properties,

produced ∼5% false positives and ∼4% false negatives. Some
of these are located near the vertical line in Figure 7, which
represents 0.082 2dr r =

* *
, and can be considered statistical

fluctuations. However, some misclassifications are quite far
from the dividing line and deserve an explanation. Like in
criterion (a), some misclassifications happen in the top-left
quadrant, but in this case, these are false negatives, i.e.,
progenitors with 0.082 2dr r <

* *
that nevertheless explode.

These are all FRANEC progenitors, and the ones with the
smallest values of 2 2dr r

* *
have all very low compactnesses

ξ2.5< 0.05.
Because of their low compactness, these progenitors are

characterized by very steep density profiles and low mass
accretion rates. Therefore, the ram pressure exerted on the
shock is small. This means that even density discontinuities
accreted very late can be sufficient to trigger an explosion.
Moreover, they generally tend to be easier to explode, and
some of them can indeed explode very early without the need
for the accretion of a density jump. A more nuanced criterion is

Figure 7. Each point corresponds to either a KEPLER (squares) or FRANEC (circle) progenitor. The quantity on the y-axis has been calculated using 1D simulations,
whereas the quantity on the x-axis has been calculated from the pre-collapse density profile with the procedure outlined in Section 5.1. The color of each point
indicates that the respective 1D+ simulation with αmLT = 1.51 has exploded (green) or resulted in a failed SN (black). The dashed line shows the least-squares fit
y = 0.51x + 0.013. The horizontal line is located at δRsurge/Raccr = 0.04 and divides explosions (above) from failed SNe (below) according to criterion (a). The
vertical line is located at 0.082 2dr r =

* *
and divides explosions (right) from failed SNe (left) according to criterion (b).
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likely needed to describe these progenitors, but this goes
beyond the purposes of this paper and will be addressed in
future work. Finally, several misclassifications of KEPLER
progenitors happen in the top-right quadrant, as already
described for criterion (a). A more detailed analysis of why
such misclassifications arise is given in Section 6.3.

The analysis presented so far was done on the combined set
of progenitors. However, it is interesting to apply the criteria to
the KEPLER and FRANEC sets separately. The results are
reported in Table 1. Criterion (a) performs equally well on both
sets, with no remarkable differences. This is a consequence of
the overestimation of δRsurge that occurs in some cases due to
uncertainties in the fitting algorithm.

Criterion (b), instead, has significantly different perfor-
mances on the two sets. The false positives are much higher for
the KEPLER progenitors. This can be attributed to the outliers
in the top-right quadrant in Figure 7, which, as discussed in
Section 6.3, can be accounted for by tweaking αMLT. By doing
that, the false positives drop from 7.1% to 2.6%, which is much
closer to the value of 3.1% found for FRANEC progenitors.

The false negatives are instead much higher for FRANEC
progenitors. This can be attributed to the finer resolution of
FRANEC progenitors with masses M< 13 Me, compared to
KEPLER. These progenitors have very low compactness and,
as described above, are likely to explode even in absence of the
accretion of a strong density jump. If one excludes from the
analysis progenitors with ξ2.5< 0.05, the false negatives for
FRANEC progenitors drop from 6.9% to 3.3%. This indicates
that low compactness progenitors can explode even without the
presence of a strong density jump.

Interestingly, KEPLER progenitors with ξ2.5< 0.05 obey the
criterion since the 12.5 Me and 12.75 Me do not explode,
contrary to the expectation that low compactness progenitors
should be more susceptible to explosions. Therefore, one can
only surmise that a more nuanced criterion is needed to account
for the behavior of low compactness progenitors, but this goes
beyond the scope of this paper.

6.2. Comparison with Wang et al. (2022)

A similar study was very recently carried out by Wang et al.
(2022), who used 100 2D simulations to calibrate their criterion

instead of our 1D+ approach. Moreover, they only applied this
criterion to KEPLER progenitors, whereas we also included
FRANEC models.
The first difference is in the fact that Wang et al. (2022) use

the ram pressure Pram instead of density as the main quantity in
their criterion. However, the two are interchangeable, since
P vram infall

2r= , and since the infall velocity vinfall does not
change when the jump is accreted, one finds that
δPram/Pram≈ δ ρ/ρ.
The selection of the density jump of Wang et al. (2022) is

very similar to the one we adopted, described in Section 5.1. In
our case, we look for the maximum of δ ρ2/ρ2 in the density
range between 9× 105 and 2× 107 g cm−3, whereas Wang
et al. (2022) looked for the maximum of δPram/Pram in the
region between the outer envelops and the Si–O interface.
In their paper, Wang et al. (2022) defined the Si–O interface

as “the density discontinuity closest to the inner boundary of
the oxygen shell in which the oxygen abundance is above
15%.” Therefore, with this definition, the Si–O interface is
sometimes well inside the silicon shell. For example, for the
profile shown in Figure 4, the definition of the jump by Wang
et al. (2022) agrees with ours, and the density jump is entirely
inside the silicon shell. For that reason, in this paper, we have
used the expression “Si/Si–O interface” rather than “Si–O
interface” since the drop in density is not necessarily located at
the bottom of the oxygen layer.
Quantitatively, our criterion agrees extremely well with the

one by Wang et al. (2022). In their case, they predict
explosions for progenitors where ( )P Pmax 0.28ram ramd > .
Since δPram/Pram≈ δ ρ/ρ, this condition becomes

( )max 0.0782 2dr r > , which is almost exactly the same as
our 0.082 2dr r >

* *
. The small discrepancy is due to slight

differences in the definition of the density jump. Wang et al.
(2022) defined δ Pram= Pram(t+ δ t)− Pram(t), where δ t= 10
ms, and t is calculated using Equation (11). Basically, instead
of calculating the density jump directly from the pre-collapse
progenitor, as we do, they use the density profile to calculate
the accretion time and look at density variations in 10 ms
windows. Therefore, the actual values they obtain might be
slightly different from ours, but the agreement is still excellent.
We can therefore conclude that this is a robust criterion to

predict the explodability of massive stars. In their criterion,
Wang et al. (2022) used 2D and 3D simulations computed with
Fornax to determine the explodability of stars. In our
criterion, we use 1D+ simulations computed with GR1D, a
completely different code where ν-driven turbulence is added
through a time-dependent MLT model. This serves as further
confirmation that the main ingredient missing from 1D
simulations is ν-driven turbulence, and that STIR does a good
job simulating it in spherical symmetry.

6.3. Dependency of the Explosion Criteria on αMLT

To understand the origin of the top-right quadrant mis-
classification, i.e., progenitors resulting in failed SNe despite
being expected to explode according to both criteria (a) and (b),
it is useful to analyze how the criteria change as a function of
αMLT. In this analysis, we do not require that FRANEC and
KEPLER progenitors are simulated using the same value of
αMLT. The percentage of misclassifications is shown in
Figure 8. Even without forcing the two progenitor sets to have
the same αMLT, both criteria give the best predictions in the

Table 1
Performance of Criteria (a) and (b) for both FRANEC and KEPLER

Progenitors

Criterion (a) Combined FRANEC KEPLER

False positives 8.5% 8.8% 8.4%
False negatives 1.0% 1.2% 0.6%

Total 9.5% 10.0% 9.0%

Criterion (b) Combined FRANEC KEPLER

False positives 5.0% 3.1% 7.1%
False negatives 3.8% 6.9% 0.7%

Total 8.8% 10.0% 7.8%

Note. The total misclassification percentage is reported for each individual
progenitor set and for both of them combined, broken down into false positives
and negatives.
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range 1.5� αMLT� 1.52 for both KEPLER and FRANEC
models.

The same best-fit range was derived in Section 4 based on
the calibrations of Boccioli et al. (2022), as well as on the total
explosion fraction shown in Figure 2. This serves as further
confirmation of the robustness and consistency of STIR. A
more detailed analysis of Figure 8 shows that the best
performance of both criteria is obtained with αMLT= 1.51 for
FRANEC progenitors and αMLT= 1.52 for KEPLER progeni-
tors. This partially explains the misclassifications in the top-
right quadrant of Figure 7. Two of those KEPLER progenitors
explode at αMLT= 1.52, and three more have τadv/τheat> 1.1,
which means that they are very close to an explosion. Only two
progenitors are then left unaccounted for in the top-right
quadrant.

By fine-tuning αMLT and allowing αMLT= 1.51 for
FRANEC progenitors and αMLT= 1.52 for KEPLER progeni-
tors, one can improve both criteria. Additionally, one can go a
step further and consider as successful explosionseven the 1D
+ KEPLER simulations where the shock is not revived, but
where τadv/τheat> 1.1. The latter condition is based on the
concept that even if the 1D+ simulation does not explode, a
slightly more efficient ν-driven convection would yield a
successful explosion, because of the large τadv/τheat. That
would improve both criteria, yielding a 7.5% misclassification
rate for criterion (a) and a 7% misclassification rate for
criterion (b).

This criterion was however developed based on very general
principles. Therefore, too much fine-tuning does not add
anything to the actual physical interpretation of the criteria,
even though it explains the origin of a few KEPLER outliers.
The more significant result is that both criteria yield very low
misclassification rates even when using the same value of
αMLT= 1.51. Therefore, it can be inferred that STIR does not
depend on the pre-collapse history of the progenitor, but simply
on the post-bounce thermodynamic conditions in the gain
region, as expected.

6.4. Comparison with Ertl et al. (2016)

The present study was partially motivated by a mismatch
between the explodability found by Ertl et al. (2016) and that
found by Couch et al. (2020) and Boccioli et al. (2021). It is
therefore useful to understand where the discrepancy comes
from. In this section, we address this difference by focusing
only on the KEPLER progenitors from Sukhbold et al. (2016)
since they were used in Ertl et al. (2016).
In the simulations of Ertl et al. (2016), the explosion was

triggered using the engine from Ugliano et al. (2012), which
was calibrated from observations (i.e., explosion energy and
ejected nickel mass) of CCSNe. In their model, they replace the
PNS with an inner boundary from which neutrinos are emitted.
The luminosity of the emitted neutrinos is calculated based on
the mass accretion rate as well as on the thermodynamic
properties of the infalling material. The inner boundary’s
contraction follows an analytical prescription fitted to repro-
duce the explosion energy and ejected nickel mass of SN 1987a
(Sonneborn et al. 1987), assuming a 20 Me progenitor. The
luminosities in these models tend to be overestimated by a
factor of ∼2–3 compared to realistic 3D simulations.
First, by looking at Figure 9, it is very clear that our

predicted explosions do not follow the criterion from Ertl et al.
(2016). They find that there is a line in the μ4−M4μ4 plane
that separates explosions (below the line) from failed SN
(above the line). We find almost the exact opposite, although
no line can separate our predicted explosions from failed SN.
The reason behind the mismatch is that large μ4 typically occur
for progenitors with a large δρ*/ρ*, which explode according
to our criterion. A similar mismatch was found in Couch et al.
(2020), whose Figure 13 is very similar to our Figure 9. Since
they also use STIR to trigger explosions in one dimension, this
does not come as a surprise. Instead, it serves as further
evidence that what is causing this mismatch is the inclusion of
ν-driven turbulence via STIR.
The bottom two panels of Figure 7 from Ertl et al. (2016)

show that progenitors that have large mass accretion rates right

Figure 8. Explodability criteria as a function of αMLT. Panel (a) shows criterion (a), i.e., the one formulated with δRsurge/Raccr and taccr. Panel (b) shows criterion (b),
i.e., the one formulated with δρ*/ρ* and taccr . The y-axis shows αMLT used for the FRANEC models, while the x-axis shows αMLT used for the KEPLER models. The
color bar shows how many misclassifications the criterion yields. Notice that KEPLER and FRANEC progenitors do not necessarily have to be run with the same
value of αMLT. However, the best performance for both criteria is around αMLT = 1.51 for both sets of progenitors.
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after the infall of the layer with s= 4 result in failed SNe. This
suggests that in their explosion models, this is the most
important feature. Indeed, to trigger the explosion, one needs a
small ram pressure ahead of the shock, a condition that is
satisfied by small mass accretion rates. The results that they
find are in line with the critical luminosity condition criterion.
However, their luminosities are much larger than what is seen
in 3D simulations, and most importantly their results suggest
that all progenitors with mass accretion rates above a certain
value lead to failed SNe, regardless of the luminosity.

In our SN simulations, it is ν-driven turbulence that provides
extra pressure behind the shock, and therefore even large ram
pressures can be overcome if the neutrino heating (aided by
turbulence) is large enough. An example of this can be seen in
the progenitors with masses 22<M< 25 Me. These have the
largest mass accretion rates among the progenitors simulated,
as a consequence of their large compactness ξ2.5> 0.3.
According to the criterion by Ertl et al. (2016), these
progenitors should not explode, whereas we find the opposite.
For these progenitors, the mass accretion rates are counter-
balanced by large neutrino heating. This is only possible with
the inclusion of ν-driven convection.

This is also evident in Figure 10, to be compared with Figure
6 from Müller et al. (2016a), who found qualitatively similar
results to Ertl et al. (2016). For completeness, we show both the
KEPLER progenitors in the left panel and the FRANEC
progenitors in the right panel. It is clear that even progenitors
with large ξ2.5, predicted to fail by a simple criterion based on
compactness, can successfully explode. Furthermore, no clear

explodability trend can be seen in either the ZAMS mass or the
compactness.
The mass range 22<M< 25 Me coincides with the largest

compactness progenitors in the KEPLER set. Again, despite
being predicted to fail by the criterion of Ertl et al. (2016), these
models explode. We emphasize that it is ν-driven convection
that generates the heating necessary for these progenitors to
sustain shock expansion after the accretion of the density jump.
This can be inferred by the –M Qn  plane in Figure 11. Panel (a)
shows the tracks of a few 1D models (i.e., without STIR),
whereas panel (b) shows the tracks for the same 1D+ models.
The reason we chose the –M Qn  plane rather than M L- n is

that the latter does not show the influence of ν-driven
convection. The luminosity is determined by the thermody-
namic properties of the PNS, whereas the contribution from ν-
driven convection is only present in the gain region, and
therefore cannot be captured by the –M Ln plane.
The tracks in Figure 11 show that the largest difference

between 1D and 1D+ is for progenitors with ξ2.5> 0.3. This
indicates how, for these progenitors, the contribution of ν-
driven convection is particularly important. Instead, in the
M L- n plane, there would be no significant difference
between 1D and 1D+. The same holds for the FRANEC
progenitors, shown for completeness in Figure 12. The
difference, as can be seen in the right panel of Figure 10, is
that for FRANEC progenitors, ξ2.5> 0.3 corresponds to
progenitor masses with M> 25 Me.
To summarize, it appears that in progenitors with large mass

accretion rates, which can be achieved for large compactnesses

Figure 9. This is the plane defined by Ertl et al. (2016), where M4 is the mass location of the s = 4 kB baryon−1 layer, and μ4 is a measure of the mass gradient and is
defined as ( ) ( )

M

r M M r M

0.3 1000 km

0.34 4

´
+ -



. The dashed line represents the condition relative to the N20 engine of Ertl et al. (2016). The squares are the KEPLER progenitors from

Sukhbold et al. (2016), colored in green if they explode, according to our 1D+ simulation, and black if they do not. It is expected that progenitors resulting in
explosions (failed SN) lie below (above) the line. This is not the case for our simulations.
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ξ2.5> 0.3, ν-driven convection is very efficient. This is the
reason why in previous studies, like the one by Ertl et al.
(2016), these progenitors did not explode. Their models did not
account for this very important mechanism.

This analysis shows that different methods of triggering the
explosion are more dependent on certain properties of the
progenitor than others. In this case, the method of Ugliano et al.
(2012) appears to strongly depend on μ4 and M4, whereas our
method strongly depends on δρ*/ρ*. This might seem like a
moot point, but it needs to be stressed that just because one
method can produce an explosion using a physically motivated
model, it does not mean that Nature operates in the same way.

There are still many uncertainties in stellar evolution
prescriptions. These arise in part from using different codes
(Chieffi & Limongi 2020) as well as different reaction rates

(Sukhbold & Adams 2020; Chieffi et al. 2021). In addition to
that, there are many uncertainties in the collapse and explosion
phase affecting the nuclear matter EOS, neutrino physics, and
neutrino transport algorithms.
In this work we only considered radial perturbations in

density, that remain roughly constant during the accretion onto
the shock. However, previous studies (Kovalenko & Ere-
min 1998; Lai & Goldreich 2000; Takahashi & Yamada 2014;
Nagakura et al. 2019) have shown that nonradial perturbations
(i.e., l> 0) can significantly grow during accretion, with larger
l yielding larger amplifications. From this, one can conclude
that progenitor asphericities likely play a very important role in
determining the outcome of the explosion, as shown by several
3D simulations (Müller et al. 2016b; O’Connor &
Couch 2018b; Fields & Couch 2021).

Figure 10. Compactness ξ2.5 for the KEPLER progenitors from Sukhbold et al. (2016) is shown in the left panel and that for FRANEC progenitors from Chieffi &
Limongi (2020) is shown in the right panel, as a function of ZAMS mass. The color of each point indicates that the respective 1D+ simulation with αmLT = 1.51 has
exploded (green) or resulted in a failed SN (black). There is no correlation between explodability and ξ2.5 or ZAMS mass. Moreover, it should be noted that for
ξ2.5 > 0.3 both panels predicts explosions, whereas Ertl et al. (2016) and Müller et al. (2016a) predict failed SNe. The reason is that ν-driven turbulence in our
simulations is particularly efficient.

Figure 11. In all plots, only KEPLER progenitors are shown. The same plots for FRANEC progenitors are shown in Figure 11. Red lines correspond to progenitors
with ξ2.5 > 0.3, whereas blue lines correspond to all the others. Panel (a) shows the mass accretion rate M calculated at 500 km as a function of time after bounce for
1D+ simulations. Panel (b) shows the net neutrino heating Qn in the gain region as a function of time after bounce for the same 1D+ simulations. The bottom panels
only show a subset of the simulated progenitors, to avoid cluttering. Panel (a) shows the evolution track in the –M Q  plane for the 1D simulations for selected
progenitors. The square points mark the time of accretion of the density jump taccr. Panel (b) is the same as panel (a) but for 1D+ simulations. Time goes from right
to left.
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Finally, in this study, we do not definitively claim that we
can provide the true explodability of massive stars. By looking
at the differences between the upper and bottom panels of
Figure 1, it is clear that large uncertainties in the stellar models
can significantly affect the explodability of SNe. Our goal,
however, has been to show that ν-driven convection plays an
important role in reviving the shock together with the accretion
of large density discontinuities.

7. Conclusions

In this paper, we have studied the pre-collapse properties that
can best predict the explodability of CCSNe. To do that, we
used STIR, a new model that simulates neutrino-heated
turbulence in 1D CCSNe simulations. We have performed
∼1300 core-collapse simulations of two progenitor sets from
Sukhbold et al. (2016) and Chieffi & Limongi (2020).

One of the main findings of this paper is that the outcome of
the explosion is particularly sensitive to whether there is a
density jump near the Si/Si–O interface. The accretion of the
jump causes a decrease in the ram pressure, and therefore a
surge of the shock, which causes the shock to temporarily
expand. If the accretion occurs too early after bounce, when
neutrinos are not yet generating significant heating, the surge
has to be very large for the shock to break out. If this accretion
occurs too late (i.e., 400 ms after bounce), then the shock will
have already receded and its fate will always be to fall back
onto the PNS and form a black hole.

First, we calibrated STIR using the results of Boccioli et al.
(2022), as well as general considerations based on what values
of αMLT yield explosion fractions compatible with observa-
tions. Then, we presented two criteria that predict whether a
given progenitor explodes. Criterion (a) is based on dynamical
quantities from the core-collapse simulations: (i) if taccr> 0.4 s,
the star will not explode; (ii) if taccr< 0.4 s, the star will
explode if δRsurge/Raccr> 0.04. Then, we showed that there is a
correlation between δRsurge/Raccr and

2 2dr r
* *

, where ρ* is the
density at which the density jump occurs, and δρ* is the size of
the jump.

Therefore, criterion (b), which does not need any input from
simulations, can be formulated: (i) if taccr> 0.4 s, the star will
not explode, where taccr is defined in Equation (12); (ii) if
t 0.4 saccr < , the star will explode if 0.082 2dr r >

* *
. Criterion

(a) yields ∼9.5% misclassifications, and criterion (b) yields
∼9% misclassifications. Criterion (b) can be used without the
need of performing any core-collapse simulations, which
makes it a powerful and robust tool to predict whether a given
star will explode, based on its density profile.
A similar criterion, developed using 2D and 3D simulations,

was recently published by Wang et al. (2022). Our results agree
extremely well, which is an indicator that criterion (b) is very
robust since it can be obtained independently using multi-
dimensional simulations as well as our 1D+ simulations.
Moreover, the agreement between our 1D+ model and the
results from Wang et al. (2022) confirms that the main
ingredient missing from 1D simulations is ν-driven turbulence,
which is however included in our 1D+ simulations via STIR.
Finally, we compared our results to those of Ertl et al.

(2016), who performed a similar study but used a different
model to trigger the explosion. We analyzed the differences
between the two methods and how they can affect the
simulations, ultimately resulting in different explodabilities
versus progenitor mass. The cause of these discrepancies can
be traced to the fact that the models from Ertl et al. (2016) do
not take the effects of ν-driven turbulence into account, which
are a very important ingredient, as shown in this paper.
A word of caution is in order, underlying the fact that large

uncertainties still exist both in 1D and 3D models: both the
EOS and neutrino opacities necessitate more accurate models,
neutrino transport algorithms are still imperfect, the effects of
GR are not yet fully understood, etc. This work points out
another significant uncertainty that should not be under-
estimated: stellar evolution models. We showed that two
different stellar evolution codes, KEPLER and FRANEC, yield
different explosion patterns (see Figure 1). Therefore, it is hard
to determine whether a star of a given mass explodes or not
since the uncertainties affecting stellar evolution propagate all
the way through core collapse.
Nonetheless, the agnostic nature of our criterion, based only

on the density profile of the progenitor, proves that the most
relevant feature of the progenitor star is the presence of a
density jump near the Si/Si–O interface. Indeed, our criterion
performs equally well on both FRANEC and KEPLER models.
This shows that, although differences in stellar evolution
prescriptions cause different explodabilities, the quantity to

Figure 12. Same as Figure 11 but for FRANEC progenitors.
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which the explosion is most sensitive remains the density jump
near the Si/Si–O interface.

This criterion shows very good agreement with simulation
results, with a success rate above 90%. Its simplicity and
straightforward physical interpretation make it a robust tool that
can be used to quickly predict the explodability of massive
stars.
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