

Publication Year	2008
Acceptance in OA@INAF	2024-06-24T09:39:58Z
Title	Quick Look Data Analysis of LFI During EMC Test
Authors	BATTAGLIA, Paola Maria; CUTTAIA, FRANCESCO; FRANCESCHI, ENRICO; MENNELLA, ANIELLO; STRINGHETTI, LUCA; et al.
Handle	http://hdl.handle.net/20.500.12386/35217
Number	PL-LFI-PST-RP-030

TITLE: Quick Look Data Analysis of LFI During EMC Test

- DOC. TYPE: Test Report
- PROJECT REF.: PL-LFI-PST-RP-030 PAGE: I of IV, 16
- ISSUE/REV.: 1.0 DATE: February 2008

Prepared by	P. BATTAGLIA F. CUTTAIA E. FRANCESCHI D. MENNELLA L. STRINGHETTI M. TOMASI On Behalf of LFI IOT	Date: Signature:	February 2008
Agreed by Approved by	C. BUTLER LFI Program Manager N. MANDOLESI LFI Principal Investigator	Date: Signature: Date: Signature:	February 2008

Document No.: Issue/Rev. No.: Date: Page:

DISTRIBUTION LIST

Recipient	Company / Institute	E-mail address	Sent
N. MANDOLESI	INAF/IASF – Bologna	mandolesi@iasfbo.inaf.it	Yes
R.C. BUTLER	INAF/IASF – Bologna	butler@iasfbo.inaf.it	Yes
M. BERSANELLI	UNIMI – Milano	marco.bersanelli@mi.infn.it	Yes
M. BALASINI	TAS-I – Milan	maurizio.balasini@thalesaleniaspace.com	Yes
R. SILVESTRI	TAS-I – Milan	roberto.silvestri@thalesaleniaspace.com	Yes
P. LEUTENEGGER	TAS-I – Milan	paolo.leutenegger@thalesaleniaspace.com	Yes
M. MICCOLIS	TAS-I – Milan	maurizio.miccolis@thalesaleniaspace.com	Yes
G. CAFAGNA	TAS-I – Milan	gaetano.cafagna@thalesaleniaspace.com	Yes
A. MENNELLA	UNIMI – Milano	aniello.mennella@fisica.unimi.it	Yes
F. BERTINI	ESA	federico.Bertini@esa.int	Yes
L. PEREZ CUEVAS	ESA	leticia.perez.cuevas@esa.int	Yes
O. PIERSANTI	ESA	Osvaldo.Piersanti@esa.int	Yes
J.P.	TAS-F Cannes	jean-	Yes
CHAMBELLAND		philippe.chambelland@thalesaleniaspace.com	
B. COLLAUDIN	TAS-F Cannes	Bernard.Collaudin@thalesaleniaspace.com	Yes
P. RIHET	TAS-F Cannes	Patrick.Rihet@thalesaleniaspace.com	Yes
N. SEVILLE	TAS-F Cannes	Norbert.Seville@thalesaleniaspace.com	Yes
J.P. HAYET	TAS-F Cannes	Jean-pierre.hayet@thalesaleniaspace.com	Yes
LFI System PCC	INAF/IASF – Bologna	lfispcc@iasfbo.inaf.it	Yes

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-RP-030 1.0 February 2008 III

CHANGE RECORD

Issue	Date	Sheet	Description of Change	Release
0.1	January	All	First Draft of Document	Draft

1.0

IV

1	ACRO	NYMS	1
2	INTRO	DUCTION	2
		RPOSE AND SCOPE ST CONFIGURATION	
3	APPLI	CABLE AND REFERENCE DOCUMENTS	3
		PLICABLE DOCUMENTS FERENCE DOCUMENTS	
4	RE EM	C TEST EXECUTION-FIRST DAY	4
	4.1 Sw 4.1.1 4.1.2	TTCH ON LFI IN NOMINAL SCIENCE (NOMINAL UNIT) Procedure/ Test sequence Results and Conclusions	4
5	RS EM	C TEST SECOND DAY	7
	5.1.1 5.1.2	TA COLLECTION IN TYPE 5 Procedure/ Test sequence Results and Conclusions	8 9
6	NEW F	EATURES	14
	6.1.1 6.1.2 6.1.3	Current drops in RCA 23 (OLD) Scientific output crossing in RCA 25 (OLD) Spike. (NEW)	14

Document No.: Issue/Rev. No.: Date: Page: PL-LFI-PST-RP-030 1.0 February 2008 1

1 ACRONYMS

AIV	Assembly, Integration, Verification
ASW	Application Software
BEM	Back End Module
BEU	Back End Unit
CCS	Central Check-out System
CDMU	Central Data Management Unit
DAE	Data Acquisition Electronics
DPU	Digital Processing Unit
EGSE	Electrical ground Support Equipment
FEM	Front End Module
I-EGSE	Instrument EGSE
IST	Integrated Satellite Test
OBC	On Board Clock
RAA	Radiometer Array Assembly
REBA	Radiometric Electronic Box Assembly
S/C	Spacecraft
SCOE	Spacecraft Control and Operation System
SPU	Signal Processing Unit
SUSW	Start- Up Software
SVM	Service Module
TBC	To Be Checked
TBW	To Be Written
TC	Telecommand
ТМ	Telemetry
UFT	Unit Functional Test

2

2 **INTRODUCTION**

This document has been issued in the frame of ASI contract that has been released for the activities of Planck-LFI Phase E2

2.1 **Purpose and Scope**

Scope of this document is to give a first quick look analysis response of EMC tests RE/RS at system level. The tests are basically divided in two sets: the first one is dedicated to the Emission part where LFI will be switched on in nominal science production and the second one is the susceptibility tests where the satellite will be radiated by the frequencies chosen from the emission data.

The document is divided in two sections. The first section is related to the description of the work done that is to say the description of the LFI Log Book and the description of the performed tests. The second section is the summary of the results of each test coming from both real time and offline data analysis.

2.2 **Test configuration**

The test configuration is the following

SCOS 2 K HPCCS Version 2.0.787 LFI Gateway Version V0R9P1 TQL 3.1.2 LIFE Machine version OM 3.00

LFI Personnel involved during the test is:

LFI AIV	Luca Stringhetti IASF Bologna stringhetti@iasfbo.inaf.it
Manager	
LFI IOT	Francesco Cuttaia IASFBO cuttaia@iasfbo.inaf.it
	Enrico Franceschi <u>franceschi@iasfbo.inaf.it</u>
	Maurizio Tomasi UNIMI tomasi@lambrate.inaf.it
Calibration	Daniele Mennella UNIMI aniello.mennella@fisica.unimi.it
Scientist	
Industry support	Paola Battaglia TAS-I paola.battaglia@thalesaleniaspace.com

3 APPLICABLE AND REFERENCE DOCUMENTS

3.1	Applicable	Documonte
3.1	Applicable	Documents

[AD1]	Herschel/Planck Instrument Interface document Part A
	SCI-PT-IIDA-04624 Issue 3.3
[AD2]	Herschel/Planck Instrument Interface document Part B
	SCI-PT-IIDB-04142 Issue 3.1

- [AD3]Herschel/Planck Instrument Interface document Part BSCI-PT-IIDB-04142 Issue 3.1, Annex 3, ICD 750800115
- [AD4] Herschel/Planck Instrument Interface document Part A SCI-PT-IIDA-04624 Issue 3.3 Annex 10

3.2 Reference Documents

[RD1]	Planck Instrument Testing at PFM S/C levels
	H-P-3-ASP-TN-0676, Issue 1.0
[RD2]	Planck LFI User Manual
	PL-LFI-PST-MA-001 Issue 2.1
[RD3]	LFI Warm Functional Test Procedure (WFT)
	PL-LFI-PST-PR-017_2_1
[RD6]	Combined LFI EMC Tests at System Level
	PL-LFI-PST-PR-020

4 **RE EMC Test Execution-First Day**

For each modular block of procedure test results and conclusions are presented.

4.1 Switch on LFI in nominal science (Nominal Unit)

The test has been done using the nominal unit but the results could be used also for the redundant unit.

4.1.1 Procedure/ Test sequence

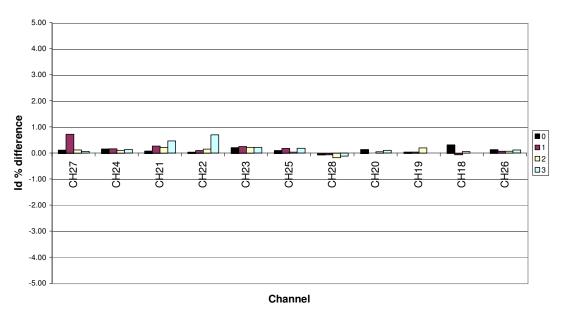
LFI	RE/EMC: Switch on (Nominal Unit)				1.09.00	
	Switch ON LFI			1	0.39.00	
	Go to Stand By Mode	OFF to standby	0.32.00	1	0.32.00	0.32.00
	Go to DAE Set Up Mode	Standby to DAE set up	0.07.00	1	0.07.00	0.39.00
	LFI in Normal Science (Warm test Config)			1	0.30.00	
	Setting Telemetry Rate	Nominal Values	0.02.00	1	0.02.00	0.41.00
	Event Packet Enabling		0.02.00	1	0.02.00	0.43.00
	Definition of science Processing Parameters	Naverage set to nominal	0.02.00	1	0.02.00	0.45.00
	Definition of science Processing Parameters	Upload Optimized Values	0.05.00	1	0.05.00	0.50.00
	Changing Processing Type to 5		0.05.00	1	0.05.00	0.55.00
	Spu Connection		0.02.00	1	0.02.00	0.57.00
	Science Activation Type 5		0.04.00	1	0.04.00	1.01.00
	RCA Activation		0.02.00	1	0.02.00	1.03.00
	Set DAE Default configuration		0.02.00	1	0.02.00	1.05.00
	Start Calibration Channel		0.02.00	1	0.02.00	1.07.00
	Start Monito function		0.02.00	1	0.02.00	1.09.00

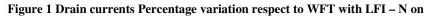
At the end of the Procedure LFI IOT checked the functionality of the LFI instrument because this test corresponds also to the first switch on after the vibration tests.

4.1.2 Results and Conclusions

The procedure has run on the 4th of February without any problem and the test has finished successfully.

Pass and Fail Criteria


No errors from the REBA HW Self check	PASSED
No un-expected event Packets	PASSED
REBA Power Consumption within the ranges of	PASSED
expected values	
EEPROM Check Sum passed	PASSED
REBA synchronization achieved	PASSED
DAE Power Consumption within the ranges of	PASSED
expected values	



DAE Synchronization achieved	PASSED
The FEM I Drain Currents obtained from	PASSED
Telemetry are within the ranges expected (5%)	
The DC voltages Outputs (Science Telemetry)	NOT
are within the ranges expected. (10%)	PASSED
No unexpected features in FFT spectrum (Spike,	On
Pop corn noise, currents drops)	Going

ld w.r.t WFT					
СН	<00>	<01>	<10>	<11>	
CH27	0.13	0.73	0.13	0.07	
CH24	0.17	0.18	0.10	0.14	
CH21	0.10	0.28	0.22	0.47	
CH22	0.05	0.11	0.16	0.70	
CH23	0.22	0.26	0.23	0.22	
CH25	0.11	0.19	0.04	0.18	
CH28	-0.06	-0.06	-0.18	-0.12	
CH20	0.15	0.00	0.05	0.10	
CH19	0.05	0.05	0.20	0.00	
CH18	0.33	-0.06	0.06	0.00	
CH26	0.15	0.08	0.07	0.11	

LFI ON: drain currents w.r.t WFT

INAF IASF-Bologna LFI Project System Team

PL-LFI-PST-RP-030 1.0 February 2008 6

ld w.r.t RAA					
СН	<00>	<01>	<10>	<11>	
CH27	0.19	0.07	0.19	0.13	
CH24	0.03	0.11	0.00	0.07	
CH21	0.15	0.62	0.34	0.62	
CH22	0.37	0.48	0.59	1.02	
CH23	0.72	0.63	0.62	0.33	
CH25	0.00	0.08	-0.04	0.07	
CH28	-0.12	0.06	-0.12	0.00	
CH20	0.56	0.45	0.36	0.60	
CH19	0.42	0.56	0.35	0.15	
CH18	0.77	0.17	0.37	0.56	
CH26	0.11	0.00	-0.11	0.00	

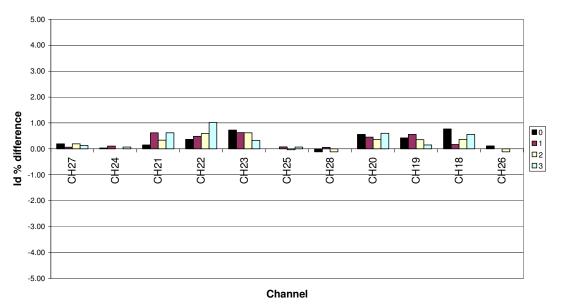


Figure 2 Drain currents Percentage variation respect toFM with LFI - N on

5 RS EMC Test Second day

5.1 Data Collection in type 5

During the night shift just after the SPIKE test Type 5 condition was recovered using a new Table for Scientific-Parameters for the REBA. The table is presented below.

RCA #			SCOS	GMF1	GMF2	Offset	S-Quant
		00	LP068320	1.0043	-0.2204	-7335.16	2.95
CH27	1	01	LP069320	0.9993	-0.2236	-7511.33	2.84
CHZY	2	10	LP070320	1.0018	-0.2226	-7186.45	3.48
	3	11	LP071320	0.9999	-0.2228	-6850.86	4.04
			LP072320	1.0000	-0.2207	-5307.74	5.62
CH24	5	01	LP073320	1.0000	-0.2822	-6128.72	5.34
CHET	6	10	LP074320	1.0000	-0.5414	-7344.87	4.45
	7	11	LP075320	1.0000	-0.4589	-6124.59	4.7
		_		-			
			LP076320	0.9997	-0.2425	-5150.08	
CH21		01	LP077320	1.0002	-0.1944	-5144.08	
	0A		LP078320	0.9997	-0.2278	-5204.64	
	OB	11	LP079320	1.0002	-0.2366	-5204.23	5.44
		_		-			
	OC		LP080320	0.9995	-0.2216	-5237.94	5.47
CH22	OD		LP081320	1.0001	-0.2252	-5257.99	5.43
	OE		LP082320	0.9995	-0.2287	-5226.54	5.45
	OF	11	LP083320	1.0006	-0.2248	-5257.35	5.43
		_		-			
			LP083320	1.0007	-0.2199	-5347.01	5.36
CH23		01	LP085320	0.9988	-0.2222	-5404.63	5.3
		10	LP086320	1.0002	-0.2229	-5437.54	5.26
	13	11	LP087320	0.9997	-0.2214	-5261.03	5.45
	1			1 000 1	0.0457	0100.01	E 45
		00	LP088320	1.0004	-0.3157	-6193.21	5.15
CH25	15	-	LP089320	0.9991	-0.286	-6197.8	5.27
		10	LP090320	1.0001	0.0325	-4088.08	7.08
	17	11	LP091320	1.0000	-0.5027	-7350.37	4.56
	40	00		0.0007	0.0040	0007.00	1.01
	18		LP092320	0.9997	-0.2242	-6207.29	4.61
CH28	19		LP093320	0.9948	-0.2262	-6566.17	4.19
	1A 1B		LP094320	0.9986	-0.2248	-6464.29 -6323.65	4.43
	ЦIВ	111	LP095320	0.9964	-0.2243	-6323.65	4.53
	40	00	0.0000000	0.0004	0.0040	5000.4.4	5.24
	1C 1D		LP096320	0.9991	-0.2316	-5329.14	<u>5.34</u> 5.37
CH20		10	LP097320 LP098320	0.9994	-0.2272 -0.2287	-5311.72 -5344.55	5.37
	1F	-	LP098320 LP099320	1.0004	-0.2287 -0.2385	-5365.61	5.33
			1211033320	1.0004	-0.200	-0000.01	0.20
	1.20	00	1.0100200	0.9997	0.2597	6215 40	5.28
	20		LP100320 LP101320	1.0003	-0.2587 -0.2279	-6315.19 -5273.21	5.20
CH19	22		LP101320	0.9991	-0.2279	-5273.21	5.36
	23	11	LP102320	1.0004	-0.229	-6359.75	5.05
	120			1.0004	-0.0070	-0553.75	0.03
	24	ne.	LP104320	0.9995	-0.2476	-5356.7	5.24
		00	LP104320 LP105320	1.0012	-0.2476	-6522.04	5.08
CH18	25	-	LP105320	1.0012	-0.2659	-6522.04	5.44
	26	11	LP106320	0.9993	-0.2213	-5296.18	5.33
	121		107320	0.9993	-0.2400	-0230.10	5.33
	122	00	LP108320	1.0001	0.5151	-7361.86	4.52
	28		LP108320 LP109320	0.9997	-0.5151 0.4507	-7361.86	4.52
CH26	29 2A		LP109320	1.0001	-0.3615	-2456.06	5.01
	2B		LP110320	0.9996	-0.3615	-8223.79	5.01
	120	111	ppm=111320	0.9996	-0.336	-0223.79	1 5.02

At the end of the test the procedure for SPIKE Test was designed to recover the same configuration as was at the beginning of the test, but LFI was in a different configuration from what Expected.

- Calibration Channel was not enabled.
- Type one telemetry was not delivered
- Type 3 Telemetry is enabled on Group B but no output channel is enabled.

The wrong configuration is only a software configuration and does not effect the electrical behaviour of the instrument so it was decided to give the go-ahead to proceed with the EMC RS tests

5.1.1 Procedure/ Test sequence

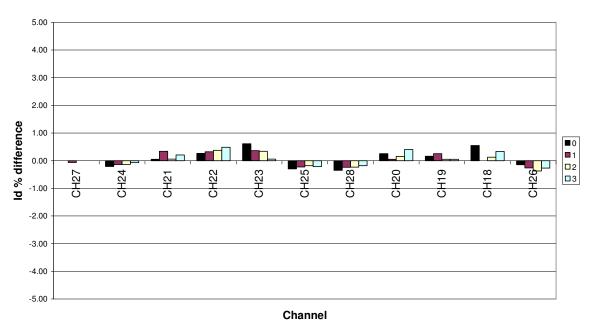
TMH/TQL is set to acquire data during the injection of EM disturbance. Data are checked in real time through displays but fine analysis will be performed off Line. Data acquisition has been divided in different set of data that could be summarized in the following table.

RS te				
Freq ID	Freq val in MHz	Level in V/m	Test name	
F1	0.1	1	TBD	
F2	0.13	1		
F3	0.18	1		
F4	0.25	1	AMB_131	
F5	1	1		
F6	2.5	1		
F7	3.44	1		
F8	10	1		
F9	16	1		
F10	20	1		
F11	30	1		
F12	35	1		
F13	40	1		
F14	46	1	AMB_132	
F15	52	1		
F16	60	1		
F17	69	1		
F18	80	1		
F19	92	1		
F20	100	1		

5.1.2 Results and Conclusions

The Pass/Fail criteria from the Requirement doc are:

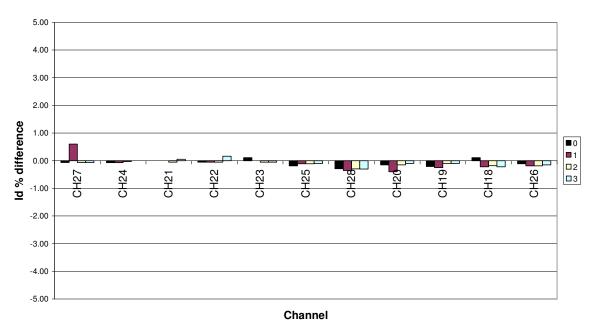
No un-expected event Packets	PASSED
No Alarm/Error packet	PASSED
Power consumption as expected	PASSED
No new features (i.e.Spikes) visible in FFT	See table
	below
The difference between the two signals for each	See table
radiometer output shall not exceed more than	below
three times the standard deviation of the	
undisturbed signal.	


Freq ID	Freq val in MHz	Spike	Differential	Comments
F1	0.1			
F2	0.13			
F3	0.18			
F4	0.25			
F5	1			
F6	2.5	TBC		
F7	3.44	Data		
F8	10	Analysis on	PASSED	
F9	16	going (see	All RCA < 1o	
F10	20	note below	except RCA25	
F11	30	on new	R1Do and RCA 26	
F12	35	Spike at	R1D1 < 1.5 σ	
F13	40	29Hz and	KIDI \$ 1.50	
F14	46	spike at		
F15	52	35Hz in FFT)		
F16	60			
F17	69			
F18	80			
F19	92			
F20	100			

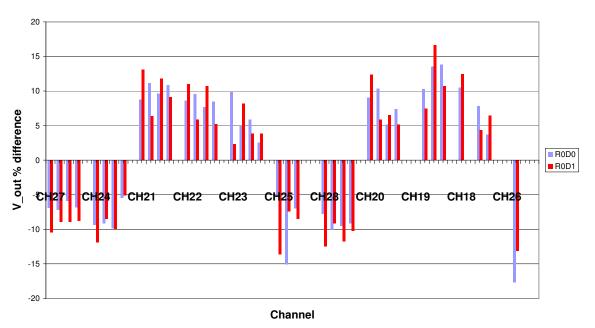
PL-LFI-PST-RP-030 1.0 February 2008 10

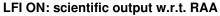
ld w.r.t RAA					
СН	<00>	<01>	<10>	<11>	
CH27	0.00	-0.07	0.00	0.00	
CH24	-0.21	-0.14	-0.14	-0.07	
CH21	0.05	0.34	0.06	0.21	
CH22	0.26	0.32	0.37	0.48	
CH23	0.61	0.37	0.34	0.06	
CH25	-0.30	-0.23	-0.18	-0.22	
CH28	-0.35	-0.24	-0.24	-0.18	
CH20	0.25	0.05	0.15	0.40	
CH19	0.16	0.25	0.05	0.05	
CH18	0.55	0.00	0.12	0.34	
CH26	-0.15	-0.26	-0.37	-0.26	

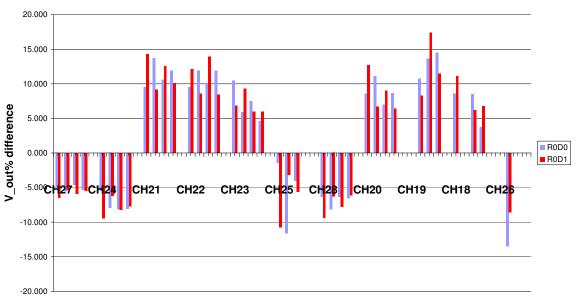
LFI ON: drain currents w.r.t. RAA



ld w.r.t WFT					
СН	<00>	<01>	<10>	<11>	
CH27	-0.06	0.60	-0.06	-0.07	
CH24	-0.07	-0.07	-0.03	0.00	
CH21	0.00	0.00	-0.06	0.05	
CH22	-0.05	-0.05	-0.05	0.16	
CH23	0.11	0.00	-0.06	-0.06	
CH25	-0.19	-0.11	-0.11	-0.11	
CH28	-0.29	-0.36	-0.29	-0.30	
CH20	-0.15	-0.40	-0.15	-0.10	
CH19	-0.21	-0.25	-0.10	-0.10	
CH18	0.11	-0.22	-0.18	-0.22	
CH26	-0.11	-0.19	-0.19	-0.15	


LFI ON: drain currents w.r.t WFT





LFI ON: scientific output w.r.t. WFT

Channel

From the two figures above you can see that the scientific output of the radiometers is sometimes surmounting the limit of the pass fail criteria. It could be

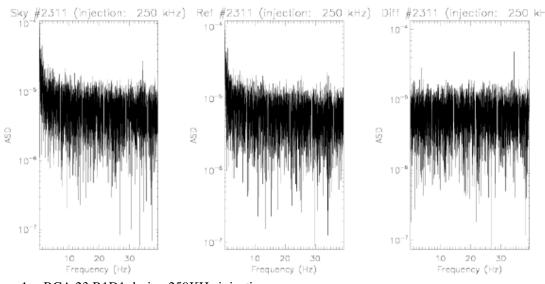
possible, from a quick analysis, that the reason of this could be found in a higher temperature of the BEU. This temperature is inside the soft limit, nevertheless LFI never operated at this temperature before. Indeed during previous tests there were at least 10 degree less at the same interface.

NEW FEATURES 6

Here below are presented unexpected features that are followed by already opened NCRs and that was agreed to monitor and new features found during this test.

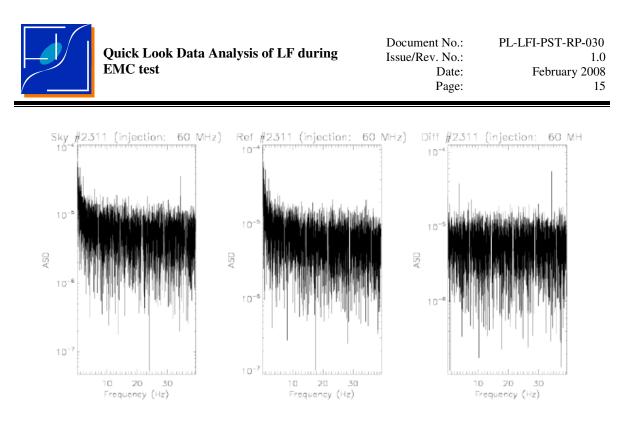
6.1.1 Current drops in RCA 23 (OLD)

No current drops were found during the execution of the test.

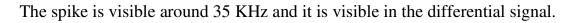

6.1.2 Scientific output crossing in RCA 25 (OLD)

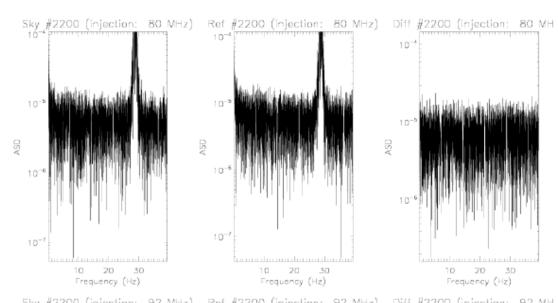
No Crossing has been seen during the test, but in any case the voltage output remains under the threshold that we expect can trigger the feature.

6.1.3 Spike. (NEW)

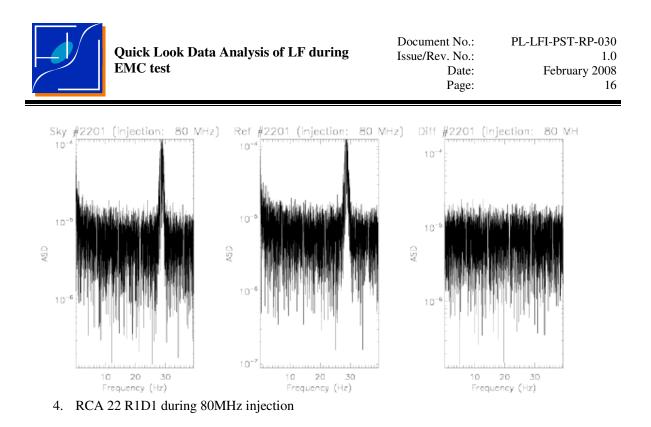

Even if the time when the disturbance signal is short, of the order of a few minutes, at higher frequency of the FFT the spectrum presents some features that were not expected. These features do not seem to be related to EMC tests because they appear even in the quite zone, when no disturbance is injected.

RCA23 R1D1




1. RCA 23 R1D1 during 250KHz injection

2. RCA 23 R1D1 during 60MHz injection



RCA22 R0D0

3. RCA22 R0D0 During 80 MHz signal injection

RCA 22 R0D1

INAF IASF-Bologna LFI Project System Team

The Huge Spike is visible in all the condition with or without the signal injection so it seems to be not related to EMC condition.

The full report will be included as attachment to the final version of the test report