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ABSTRACT

Aims. We study the possibility that the gas in cool-core clusters of galaxies has non-negligible rotation support, the impact of gas
rotation on mass estimates from current X-ray observations, and the ability of forthcoming X-ray observatories to detect such rotation.
Methods. We present three representative models of massive cool-core clusters with a rotating intracluster medium (ICM) in equi-
librium in cosmologically motivated spherical, oblate, or prolate dark matter halos, represented by physical density–potential pairs.
In the models, the gas follows a composite-polytropic distribution, and has rotation velocity profiles consistent with current observa-
tional constraints and similar to those found in clusters formed in cosmological simulations. We show that the models are consistent
with available measurements of the ICM properties of the massive cluster population: the thermodynamic profiles, the shape of the
surface brightness distribution, the hydrostatic mass bias, and the broadening of X-ray emitting lines. Using the configuration for
the microcalorimeter onboard the XRISM satellite, we generated a set of mock X-ray spectra for our cluster models, which we then
analyzed to make predictions about the rotation speed that will be obtained with such an instrument. We then assessed what fraction
of the hydrostatic mass bias of our models could be accounted for by detecting the rotation speed with XRISM spectroscopy over the
range (0.1−1)r500, sampled with three nonoverlapping pointings.
Results. Current data leave room for rotating ICM in cool-core clusters, with peaks in the rotation speed as high as 600 km s−1. We
show that such rotation, if present, will be detected with upcoming X-ray facilities such as XRISM and that 60−70% of the hydrostatic
mass bias due to rotation can be accounted for using the line-of-sight velocity measured from X-ray spectroscopy with XRISM, with
a residual bias smaller than 3% at an overdensity of 500. In this way, XRISM will allow us to pin down any mass bias of a different
origin from the rotation.

Key words. galaxies: clusters: general – galaxies: clusters: intracluster medium – dark matter – X-rays: galaxies –
X-rays: galaxies: clusters

1. Introduction

Accurately estimating the mass of galaxy clusters is crucial to
understanding the formation and evolution of cosmic structures
and to constraining the parameters that define the cosmological
background (see Pratt et al. 2019 for a review). Clusters of galax-
ies are permeated by a hot (∼107−108 K), rarefied (∼10−2−10−4

particles per cm3), optically thin, gaseous component known as
the intracluster medium (ICM), which emits X-rays via ther-
mal Bremsstrahlung and emission lines from collisional exci-
tation of the inner shell electrons of heavy metals. Assuming
that the ICM is in hydrostatic equilibrium, X-ray observations
can thus be used to infer the mass of galaxy clusters (see
Ettori et al. 2013 for a review). Mass estimates obtained in this
way can be very precise but inaccurate (e.g., Ettori et al. 2019),
given that the hydrostatic equilibrium does not account for the
residual non-thermalized (kinetic) energy in the ICM (see e.g.,
Rasia et al. 2006; Piffaretti & Valdarnini 2008; Lau et al. 2009,
2013; Suto et al. 2013; Biffi et al. 2016; Angelinelli et al. 2020;
Gianfagna et al. 2021). This effect that brings hydrostatic masses
to underestimate the “true” mass is often referred to as hydro-
static mass bias. Measurements of this bias can be obtained by

comparison with more direct mass estimators (e.g., Zhang et al.
2010; Mahdavi et al. 2013; Lovisari et al. 2020). In particular,
being the most massive gravitationally bound structures in the
Universe, galaxy clusters are effective gravitational lenses that
provide a complementary and typically more accurate method of
inferring the total (i.e., baryon plus dark matter (DM)) mass (see
e.g., Meneghetti et al. 2010; Rasia et al. 2012). Alternatively, the
dynamical mass of a cluster can be estimated by exploiting mea-
surements of the orbital velocities of its member galaxies (see
e.g., Ferragamo et al. 2021).

Even though in the X-ray observations the gas clumpi-
ness, the temperature distribution, and the use of the spectro-
scopic measurements in reconstructing the thermal properties
of the ICM can contribute non-negligibly to the hydrostatic
mass bias (see e.g., Rasia et al. 2006; Roncarelli et al. 2013;
Pearce et al. 2020; Towler et al. 2023), most of this bias is
expected to be due to the motions in the ICM: in particu-
lar, turbulence bulk motion, and rotation (see e.g., Nagai et al.
2007b; Nelson et al. 2014; Biffi et al. 2016; Angelinelli et al.
2020). Most of these previous works have focused on the rel-
ative importance of bulk and random motions for the total
budget of the hydrostatic mass bias, with only a few studies
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dedicated to the contribution from the ICM rotational support
(e.g., Fang et al. 2009). There are essentially only two direct
ways of measuring gas rotation in galaxy clusters: the rota-
tional kinetic Sunyaev–Zeldovich effect (Cooray & Chen 2002,
Chluba & Mannheim 2002 and also Sunyaev & Zeldovich 1980;
see Baldi et al. 2018 and Altamura et al. 2023b for future per-
spectives) and the Doppler shift of the centroids of the X-ray
emitting lines or their Doppler broadening. The latter measure-
ments require X-ray spectrometers at high-energy resolutions
(∆E . 10 eV at E ≈ 6−7 keV is required to detect a line-
of-sight (LOS) speed of ≈500 km s−1; e.g., Sunyaev et al. 2003;
Bianconi et al. 2013), which are thus far reached only by a
calorimeter on board the International X-ray Astronomy Mission
ASTRO-H/Hitomi1 satellite (see Hitomi Collaboration 2016 for
its results). The loss of Hitomi has prevented us from depict-
ing a comprehensive overview of the kinematics of the ICM;
however, the forthcoming microcalorimeter Resolve on board
the X-Ray Imaging and Spectroscopy Mission2 (XRISM) satel-
lite (with ∆E ' 7 eV FWHM at E = 6 − 7 keV), launched
in September 2023, is expected to provide some key elements
that will improve our understanding of the ICM kinematics.
Nowadays, only upper limits on the velocity broadening of
X-ray emitting lines are available: using X-ray Multi-Mirror
Mission3 (XMM-Newton) reflection grating spectrometer (RGS)
data, Pinto et al. (2015) find, in most cool cores of clusters,
groups, and massive elliptical galaxies in their observed sam-
ple, broadening velocities of ≈500 km s−1 (see also Sanders et al.
2011 and Bambic et al. 2018). Even though some objects have
higher upper limits (of ≈1000 km s−1), we interpret 500 km s−1

as the current upper limit on the rotation speed of the ICM in
typical clusters, which leaves open the possibility that the ICM
has non-negligible rotation support in relaxed clusters4.

In the cosmological context, the rotation of both DM and
gas is expected to be induced primarily by the large-scale pro-
cesses involving the entire cluster (such as tidal torques from
neighbouring overdensities; Peebles 1969). In massive clusters
(virial masses &5 × 1014 M�) formed in cosmological N-body
hydrodynamical non-radiative simulations, Baldi et al. (2017)
have found that the rotation support of the ICM tends to be
higher than that of the DM, with values of the gas spin param-
eter on average 13% higher than those of the halo spin parame-
ter. In principle, the rotation support of the ICM can be further
enhanced by unimpeded radiative cooling, because of conser-
vation of angular momentum (see e.g., Kley & Mathews 1995),
but in real clusters heating mechanisms are also at work. In fact,
including radiative cooling, active galactic nucleus (AGN) and
stellar feedback models in cosmological simulations, Baldi et al.
(2017) have found that the rotation support of the ICM is similar
to that found in non-radiative simulations.

Based on the properties of the ICM in the central regions,
clusters of galaxies are classified as cool-core and non-cool-
core clusters (e.g., Sect. 6.4.3 of Cimatti et al. 2019). Given
that we are interested in rotation support of the ICM, in this
work we focus on cool-core clusters, which tend to be relaxed

1 See https://www.isas.jaxa.jp/en/missions/spacecraft/
past/hitomi.html
2 See https://xrism.isas.jaxa.jp/en/
3 See https://www.cosmos.esa.int/web/xmm-newton
4 Indications of rotation support of the galactic component have
been found in some clusters from spectroscopic observations of mem-
ber galaxies (see e.g., Oegerle & Hill 1992; Hwang & Lee 2007;
Ferrami et al. 2023). The differences in the rotation speed profiles of
the ICM and member galaxies are an interesting issue to be explored
with future facilities.

(e.g., Pratt et al. 2010; Mahdavi et al. 2013) and thus good tar-
gets for symmetric equilibrium models of the ICM. By defini-
tion, cool-core clusters are characterized by lower central ICM
entropy, which is broadly interpreted as a signature of cooling.
In fact, the measured values of the central entropy are much
higher than predicted in a standard cooling-flow model (e.g.,
McDonald et al. 2013). This suggests that, in a time-averaged
sense, over ∼10 Gyr, radiative cooling is balanced by some
form of heating, a picture also supported by the fact that radia-
tive cosmological simulations without heating suffer from the
“overcooling” problem, which produces photometric features
inconsistent with observations (e.g., Fang et al. 2009; Lau et al.
2011, 2012; Nagai et al. 2013). There is a growing consensus
that AGN feedback provides the dominant heating contribu-
tion in the inner cluster regions (see McNamara & Nulsen 2012;
Hlavacek-Larrondo et al. 2022 for reviews and Nobels et al.
2022; Huško et al. 2022 for recent results). However, it must
be stressed that modeling the complex interplay of heating
and cooling is also challenging for state-of-the-art simulations.
For instance, clusters formed in currently available cosmolog-
ical simulations including an AGN feedback model can suffer
from the “entropy-core” problem, in the sense that their inner
entropy profiles do not match those observed in real clusters
(Altamura et al. 2023a).

The rotation of the ICM could also be relevant to the energy
balance of cool cores, given that the ICM is known to be weakly
magnetized. If the magnetized, rotating ICM is unstable to the
magnetorotational instability (Balbus & Hawley 1991), the non-
linear evolution of the instability will lead to turbulent heating,
which could contribute to offsetting the radiative cooling of the
ICM and to halting the cooling flows, lending a hand to the AGN
feedback (see Nipoti & Posti 2014; Nipoti et al. 2015).

In this work, we propose three models representative of typ-
ical, nearby, massive cool-core clusters, with cosmologically
motivated dark halos of different shapes (Sect. 2) and a rotating
ICM with a rotation speed consistent with observed upper lim-
its (Sect. 3). In Sect. 4, we compare the intrinsic and observable
properties of the ICM in our cluster models to the observational
data of real galaxy clusters. In Sect. 5, we assess the detectabil-
ity of the rotation support of our models, building mock X-ray
spectra of the rotating ICM in our cluster models, and using the
configurations for Resolve. Section 6 concludes.

Throughout this article, when using the Hubble parameter
H(z) = H0E1/2(z), where E(z) =

√
ΩΛ,0 + Ωm,0(1 + z)3, we

assume Ωm,0 = 0.3, ΩΛ,0 = 0.7, and Hubble constant H0 =
70 km s−1 Mpc−1.

2. Dark matter halo models

We introduce here the gravitational potentials that we used to build
our cluster models. Given that the mass content of clusters is domi-
nated by the DM, these gravitational potentials must be essentially
representative of those produced by the cluster DM halos.

Cosmological N-body DM-only simulations predict for most
halos an aspherical shape, set at the time of the last major merger
(Allgood et al. 2006). In general, the angle-averaged density pro-
file of these simulated halos is well fitted by the Navarro–Frenk–
White (NFW; Navarro et al. 1996) profile

ρ(r) =
ρn(

r
rs

) (
1 + r

rs

)2 , (1)

where r is the distance from the halo center, ρn is a character-
istic density, and rs is the scale radius. The density distribution
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of DM in real clusters is also well represented by this profile:
for instance, from X-ray and Sunyaev-Zeldovich effect obser-
vations, Ettori et al. (2019) infer that the NFW profile success-
fully models the angle-averaged density profiles of the halos of
the observed clusters. It is thus natural to take the NFW den-
sity profile (Eq. (1)) as a reference for building realistic flattened
halo models. In the following sections we describe how we build
axisymmetric halo models by suitably modifying the spherical
NFW model.

2.1. Flattened NFW density–potential pairs

Ciotti & Bertin (2005) presented a technique for constructing
analytic axisymmetric and triaxial density–potential pairs by
modifying a parent spherical density distribution with the given
density profile ρ̃(r̃), where ρ̃ = ρ/ρn and r̃ = r/rs, with ρn a
characteristic density and rs a scale radius. The generic density–
potential pair of this family can be written in Cartesian coordi-
nates (x, y, z) as

ρ̃(x, y, z) = ρ̃(r̃) +
εỹ2 + ηz̃2

r̃
ρ′(r̃), (2)

where x̃ = x/rs, ỹ = y/rs, z̃ = z/rs, r̃ =
√

x̃2 + ỹ2 + z̃2, and
ρ′(r̃) = dρ̃/dr̃, and

Φ̃(x, y, z) = Φ̃0(r̃) + (ε +η)[Φ̃1(r̃)− Φ̃0(r̃)] + (εỹ2 +ηz̃2)Φ̃2(r̃), (3)

where Φ̃ = Φ/(4πGρnr2
s ), Φ is the gravitational potential, and

Φ̃0, Φ̃1, and Φ̃2 are functions depending on ρ̃(r), whose def-
initions can be found in Ciotti & Bertin (2005). Here ε > 0
and η > 0 are dimensionless parameters that must be such
that ρ̃(x, y, z) > 0 everywhere. We note that, though con-
structed exploiting the technique of the homeoidal expansion,
the density–potential pairs given by the above formulae do not
require ε and η to be much smaller than unity (see Sect. 2 of
Ciotti & Bertin 2005).

Here, we assumed as a parent spherical density profile the
NFW model (Eq. (1)), which in dimensionless form reads

ρ̃(r̃) =
1

r̃ (1 + r̃)2 . (4)

Using Eq. (4) as ρ̃, Eq. (2) becomes

ρ̃(x, y, z) =
1

r̃(1 + r̃)2 −
εỹ2 + ηz̃2

r̃
1 + 3r̃

r̃2(1 + r̃)3 . (5)

The dimensionless gravitational potential generated by the den-
sity profile Eq. (5) is given by Eq. (3), where

Φ̃0(r) = −
ln(1 + r̃)

r̃
, (6)

Φ̃1(r̃) = −
1
6r̃

+
2

3r̃2 −
ln(1 + r̃)

r̃3 −
1

3r̃3(r̃ + 1)
+

1
3r̃3 −

1
3(1 + r̃)

,

(7)

and

Φ̃2(r̃) =
1

2r̃3 −
2
r̃4 +

3 ln(1 + r̃)
r̃5 +

1
r̃5(r̃ + 1)

−
1
r̃5 . (8)

The second term in the r.h.s. of Eq. (5) breaks the spherical sym-
metry of the distribution, subtracting density along the ỹ and z̃
directions. It is evident that the dimensionless density distribution
Eq. (5) would assume negative values if the directional subtrac-
tion of parent density were sufficiently large. When we consider

the NFW as the parent density profile, the condition that at any
point of space ρ̃ > 0, with ρ̃ given by Eq. (5), imposes ε, η ≤ 1/3
(see Ciotti & Bertin 2005 for the method to limit ε and η).

In particular, in this work we consider prolate (η = ε) and
oblate (ε = 0) axisymmetric density–potential pairs, having as a
parent density distribution Eq. (4), which we refer to as prolate
NFW and oblate NFW models, respectively. The prolate NFW
model (η = ε), renaming x as z, and vice versa, has density dis-
tribution

ρ̃(R, z) =
1

r̃(1 + r̃)2 −
ηR̃2

r̃
1 + 3r̃

r̃2(1 + r̃)3 (prolate) (9)

(shown for η = 1/3 in the left panel of Fig. 1) and gravitational
potential

Φ̃(R, z) = −
ln(1 + r̃)

r̃
+ 2η

[
−

1
6r̃

+
2

3r̃2 −
ln(1 + r̃)

r̃3

−
1

3r̃3(r̃ + 1)
+

1
3r̃3 −

1
3(1 + r̃)

+
ln(1 + r̃)

r̃

]
(10)

+ ηR̃2
[

1
2r̃3 −

2
r̃4 +

3 ln(1 + r̃)
r̃5 +

+
1

r̃5(r̃ + 1)
−

1
r̃5

]
(prolate)

(shown for η = 1/3 in the left panel of Fig. 1), where R =√
x2 + y2 is the radius in the equatorial plane and R̃ = R/rs. The

oblate NFW model (ε = 0), maintaining now the names of the
variables x, y, and z as in Eqs. (2) and (3), has density distribution

ρ̃(R, z) =
1

r̃(1 + r̃)2 −
ηz̃2

r̃
1 + 3r̃

r̃2(1 + r̃)3 (oblate) (11)

(shown for η = 1/3 in the right panel of Fig. 1) and gravitational
potential

Φ̃(R, z) = −
ln(1 + r̃)

r̃
+ η

[
−

1
6r̃

+
2
3r̃
−

ln(1 + r̃)
r̃3 +

−
1

3r̃3(1 + r̃)
+

1
3r̃3 −

1
3(1 + r̃)

+
ln(1 + r̃)

r̃

]
(12)

+ ηz̃2
[

1
2r̃3 −

2
r̃4 +

3 ln(1 + r̃)
r̃5 +

1
r̃5(1 + r̃)

+

−
1
r̃5

]
(oblate)

(shown for η = 1/3 in the right panel of Fig. 1).
In both cases, z is the symmetry axis. Given that the first-

order terms of Eqs. (9) and (11) are ∝R̃2/r̃ or ∝z̃2/r̃, respec-
tively, the subtraction of the parent density is more significant
in the outer regions. For η → 1/3, it induces a peanut-shaped
distribution sufficiently far from the center (see Fig. 1).

2.2. Realistic halo models for massive clusters

A variety of halo shapes are expected from cosmological simu-
lations (e.g., Bett 2012; Henson et al. 2017; see also Sect. 7.5.3
of Cimatti et al. 2019), depending mainly on the halo merging
history. When approximating the halos as ellipsoids, even if
the majority of them is triaxial, the fact that the ratio of two
of the three principal semiaxes is close to unity justifies the
use of the spheroidal approximation for the description of these
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Fig. 1. Isodensity (dashed) and isopotential (solid) contours in the meridional plane of the prolate (left panel) and oblate (right panel) NFW models
with η = 1/3. The size of the box is ≈r200/rs (see Sect. 2.2).

halos. However, for one of our models we adopted the spheri-
cal approximation, which is appropriate when the smallest-to-
largest axial ratio is close to unity.

Using the density–potential pairs presented in Sect. 2.1, we
built our halo models as follows. The prolate and oblate NFW
models (represented by Eqs. (9)–(10) and (11)–(12), respec-
tively, which both give for η = 0 the spherical NFW model) were
parameterized by ρn, rs, and η. To be as far as possible consistent
with the predictions of cosmological simulations on the smallest-
to-largest axial ratio (see Allgood et al. 2006), in our spheroidal
halo models we assumed the largest possible flattening (η = 1/3)
compatible with a ubiquitously positive DM density distribution
(see Sect. 2.1).

When a spherical NFW model is considered in the cosmo-
logical context, the parameters ρn and rs can be expressed as
functions of two other parameters, the virial mass, M∆, and the
concentration, c∆, which are routinely measured in cosmological
simulations (e.g., Dutton & Macciò 2014) and estimated for the
halos of observed clusters of galaxies (e.g., Ettori et al. 2010).
M∆ is the mass measured within a sphere of the radius, r∆, within
which the average halo density is ∆ρcrit(z), where the dimension-
less quantity ∆ is the overdensity and ρcrit(z) = 3H2(z)/(8πG) is
the critical density of the Universe at redshift z. The halo con-
centration is c∆ = r∆/r−2, where r−2 is the radius at which the
logarithmic slope of the angle-averaged density profile is −2. For
the spherical NFW model rs = r−2 = r∆/c∆, where

r∆ =

[
M∆

(4/3)π∆ρcrit(z)

]1/3

, (13)

and we infer ρn from c∆ as

ρn =
∆

3
ρcrit(z)c3

∆

ln(1 + c∆) − c∆/(1 + c∆)
. (14)

We now focus on the case of the standard overdensity value
∆ = 200, and thus consider r200, M200, and c200 = r200/r−2. To
construct our specific spherical NFW, hereafter referred to as the
“spherical dark matter” (SDM) model, we set M200 = 1015 M�
and c200 = 3.98, in agreement with the mass–concentration rela-
tion of Dutton & Macciò (2014) at redshift z ≈ 0.

For the spheroidal halo models, we first computed the mass
within the sphere of radius r,

M(r) = 4π
∫ r

0

∫
√

r2−z2

0
ρ(R, z)RdR

 dz, (15)

where ρ(R, z) is given by Eqs. (9) or (11) for the prolate and
oblate NFW models, respectively. We then estimated r200 and
r−2 in the following way. The average density within the sphere
of radius r is 〈ρ〉(r) = 3M(r)/(4πr3), while the angle-averaged
density profile, ρshell(r), was estimated by measuring the average
density within concentric spherical shells,

ρshell(r) =
3[M(r + δr/2) − M(r − δr/2)]
4π[(r + δr/2)3 − (r − δr/2)3]

, (16)

where δr = 0.8 kpc is the thickness of the shell centered on the
radius r. r∆ was thus defined to be such that 〈ρ〉(r∆) ' ∆ρcrit(z),
and r−2 to be such that[
d ln ρshell

d ln r

]
r=r−2

' −2. (17)

The above equations could thus be used to estimate M200 =
M(r200) and c200 for our flattened halo models. In practice, to
build the oblate and prolate NFW halo models, hereafter referred
to as “oblate dark matter” (ODM) and “prolate dark matter”
(PDM) models, respectively, we selected pairs of values of ρn
and rs such that M200 ≈ 1015 M� and c200 is consistent with the
z ≈ 0 mass–concentration relation of Dutton & Macciò (2014).
The parameters of the SDM, PDM, and ODM halo models are
reported in Table 1. The corresponding density and gravitational
potential profiles along the symmetry axis and in the equatorial
plane are shown in Fig. 2. The upper panel of Fig. 2 shows that,
comparing models with approximately the same mass, because
of the outward-increasing directional subtraction of parent den-
sity discussed in Sect. 2.1 (see Fig. 1), the prolate model has a
steeper ρ(R, 0) and a shallower ρ(0, z) than the density profile of
the spherical model, and vice versa for the oblate model. Analo-
gous (but weaker) trends are found in the gravitational potential
profiles (lower panel of Fig. 2).
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Table 1. Parameters of the adopted NFW halo models.

Model ρn [g cm−3] rs [kpc] η M200 [M�] c200

SDM 4.8 × 10−26 519 0 1.00 × 1015 3.98
ODM 4.6 × 10−26 600 1/3 1.00 × 1015 3.96
PDM 4.8 × 10−26 700 1/3 1.01 × 1015 4.27

Notes. We refer to these Navarro–Frenk–White models as “spherical
dark matter” (SDM), “oblate dark matter” (ODM), and “prolate dark
matter” (PDM) models, respectively.

Fig. 2. Profiles of density (upper panel) and gravitational potential
(lower panel) of SDM (red lines), ODM (blue lines), and PDM (green
lines) halo models (see Table 1). In particular, for our axisymmetric
models we plot the density and gravitational potential profiles along the
symmetry axis (dashed lines) and in the equatorial plane (dotted lines).
The top axis in both panels indicates the distance from the center, nor-
malized to r500 of the SDM halo model (r500 = 1345 kpc; we note that
the values of r500 in our three halo models differ by less than 2%).

3. Building cool-core clusters models with a
rotating ICM

In this section, we present axisymmetric rotating models of the
ICM that, in the absence of net cooling or heating, is in equi-
librium in a given axisymmetric gravitational potential, repre-
sentative of an isolated cluster. The ICM is sufficiently dense
to cool on timescales much shorter than the Hubble time in the

cluster core, and thus to flow into the center of the gravitational
potential well. However, as already mentioned in the introduc-
tion, the effect of cooling is expected to be efficiently counter-
acted by heating mechanisms, such as AGN and stellar feedback.
Thus, the adoption of stationary models of the ICM is justified as
long as there is balance between cooling and heating in a time-
averaged sense (e.g., McCourt et al. 2012), provided the cluster
does not undergo major interactions.

3.1. The equilibrium of a rotating ICM in a cool-core cluster

Assuming that the total gravitational potential of the cluster,
Φ, is time-independent and axisymmetric, we can build sim-
ple models of a stationary rotating ICM by considering that the
angular velocity of the gas is stratified over cylinders (and thus
that the gas distribution is barotropic, i.e., with pressure strati-
fied over density5). Under these hypotheses, neglecting magnetic
fields (which are dynamically unimportant for the ICM; see, e.g.,
Bruggen 2013), the gas mass density, ρgas(R, z), and pressure,
p(R, z), are related by ∇p = −ρgas∇Φeff , where

Φeff(R, z) = Φ(R, z) − Φ(R?, z?) −
∫ R

R?

u2
φ(R′)

R′
dR′ (18)

is the effective potential, uφ(R) is the gas rotation velocity, and
(R?, z?) is a reference point (e.g., Tassoul 1978).

From observations and hydrodynamical simulations, there
is evidence that the ICM is well described by polytropic
distributions, essentially independent of the halo mass (e.g.,
Ghirardini et al. 2019b), in which the pressure is stratified over
the density as a power law, p = p?(ρgas/ρgas,?)γ

′

, where γ′ is the
polytropic index, p? = p(R?, z?), and ρgas,? = ρgas(R?, z?).

In this work, we model the ICM in a cool-core clus-
ter through a two-component composite polytropic distribu-
tion (e.g., Bianconi et al. 2013), by assuming polytropic index
γ′OUT > 1 in the outer region and γ′IN < 1 in the cool core.
It is convenient to adopt (R?, z?) = (Rbreak, 0), where Rbreak
is a model parameter that defines the size of the cool core.
For any outward-increasing axisymmetric potential, defining
∆Φeff(R, z) = Φeff(R, z) − Φeff(Rbreak, 0), we have ∆Φeff(R, z) > 0
in the outer region and ∆Φeff(R, z) ≤ 0 in the cool core. Assum-
ing the ideal gas equation of state, the polytropic distributions of
temperature and density of the ICM, in our models of cool-core
clusters, are given by

n(R, z) = n?

[
1 −

γ′OUT − 1
γ′OUT

µmp

kBT?
∆Φeff(R, z)

] 1
γ′OUT−1

(19)

and

T (R, z) = T?

(
n(R, z)

n?

)γ′OUT−1

, (20)

where ∆Φeff(R, z) > 0, and by

n(R, z) = n?

[
1 −

γ′IN − 1
γ′IN

µmp

kBT?
∆Φeff(R, z)

] 1
γ′IN−1

(21)

and

T (R, z) = T?

(
n(R, z)

n?

)γ′ IN−1

, (22)

5 More general (baroclinic) models, not explored in this work, have
vertical gradients of angular velocity, and pressure not stratified over
density.
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Table 2. Parameters of the cluster models with a rotating ICM.

Model Halo Rbreak [kpc] n? [cm−3] T? [keV] u0 [km s−1] R0 [kpc] γ′IN γ′OUT

SRM SDM 380 2.5 × 10−3 7.3 1900 280 0.83 1.19
ORM ODM 420 2.2 × 10−3 7.4 1800 180 0.82 1.20
PRM PDM 360 2.5 × 10−3 7.4 2300 280 0.84 1.19

Notes. We refer to these cluster models with a rotating ICM as the “spherical rotating model” (SRM), the “oblate rotating model” (ORM), and the
“prolate rotating model” (PRM), depending on the spherical, oblate, and prolate DM halo models assumed, respectively. The corresponding SDM,
PDM, and ODM halo models (cited in the second column) are defined in Sect. 2.2.

where ∆Φeff(R, z) ≤ 0. Here, n = ρgas/(µmp) is the gas number
density, n? = ρgas,?/(µmp), and T? = p?/(kBn?); µ, mp, and kB
are the mean molecular weight (taken equal to 0.6), the proton
mass and the Boltzmann constant, respectively.

3.2. Rotation law and effective potential

Though the ICM rotation velocity curve is poorly constrained
observationally (see Liu & Tozzi 2019, for an attempt), it is rea-
sonable to expect that it could have a relatively steep rise of
azimuthal velocity in the cluster center, a peak at intermediate
radii, and a gradual fall in the outskirts (see Baldi et al. 2017;
Altamura et al. 2023b). In particular, following Bianconi et al.
(2013), we adopted the rotation law

uφ(R) = u0
S

(1 + S )2 , (23)

where S ≡ R/R0, R0 is a reference radius and u0 a reference
speed.

Substituting the rotation law (23) in Eq. (18), and integrating
the rotational component of the effective potential, we get the
analytic effective potential associated with this rotation law,

Φeff(R, z) = Φ(R, z) − Φ(R?, z?) − [I(R) − I(R?)] , (24)

where

I(R′) = u2
0

1
3

(
1 +

R′

R0

)−3

−
1
2

(
1 +

R′

R0

)−2 . (25)

3.3. Three representative models of massive cool-core
clusters with a rotating ICM

Without focusing on a particular cluster, we propose three mod-
els with a rotating ICM representative of the observed population
of massive (M200 ≈ 1015 M�) cool-core clusters, dubbed “spheri-
cal rotating model” (SRM), “oblate rotating model” (ORM), and
“prolate rotating model” (PRM). In all these models, we assumed
that the gas follows a two-component composite polytropic distri-
bution described by Eqs. (19)–(22), and that the rotation law has
the functional form (23). The effective potential is thus in the form
of Eqs. (24)–(25). In all cases, to compute the intrinsic and emis-
sion properties of the ICM, we assumed a metallicity, Z = 0.3 Z�
(where Z� is the solar metallicity reported in Anders & Grevesse
1989), implying n/ne = 1.94, where n = ni +ne is the gas number
density, ne is the electron number density, and ni is the ion number
density (assuming full ionization).

In the SRM model the total gravitational potential, Φ, is given
by the spherical gravitational potential of the SDM halo model
described in Sect. 2.2. In the ORM and PRM models, the total
gravitational potential is axisymmetric, being, respectively, the

Fig. 3. Profiles of ICM rotation speed of our cluster models with spher-
ical (SRM; dashed blue curve), oblate (ORM; dash-dotted red curve),
and prolate (PRM; dotted green curve) halos. For comparison, we also
show as solid curves the average rotation speed profiles of the ICM
found in clusters formed in cosmological simulations: in particular, the
cyan and orange curves are obtained from the functional forms given by,
respectively, Baldi et al. (2017) and Altamura et al. (2023b), assuming
r∆ and M∆ as in the SDM model. In the top axis, the radial coordinate
in the meridional plane is normalized to r500 of the SRM model. The
vertical line indicates R = Rbreak for the spherical model, approximately
enclosing the cool-core region (red arrow), which has roughly the same
extent in all models (see Table 2).

potential of the ODM oblate halo model and of the PDM prolate
halo model, described in Sect. 2.2. The values of the plasma
parameters, Rbreak, n?, T?, γ′IN, and γ′OUT, and of the parameters
of the rotation pattern, R0 and u0, are reported for all the models
in Table 2. The ICM rotation speed profiles of the three models,
with peak rotation speeds in the range of 400–600 km s−1, are
shown in Fig. 3. In the same figure we plot, for comparison, the
average rotation speed profiles of clusters formed in the MUSIC6

(Baldi et al. 2017) and MACSIS7 (Altamura et al. 2023b)

6 The synthetic clusters of Baldi et al. (2017) were selected from the
MUSIC-2 sample (Sembolini et al. 2013) having M200 > 5×1014 h−1 M�,
where h = H0/(100 km s−1 Mpc−1). The corresponding curve in Fig. 3
was built using data taken from Table 4 of Baldi et al. (2017), for the
gas-VP2b rotation curve in the so-called AGN simulation.
7 The MACSIS cluster sample (Barnes et al. 2017) has friends-of-
friends masses &1015 M� at redshift z = 0. The corresponding curve
in Fig. 3 was built using data taken from Table B.2 of Altamura et al.
(2023b) for the M500 < 9.7 × 1014 M� subsample in the so-called gas-
aligned case.
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cosmological simulations. Our rotation speed profiles are in
between the average profiles found by Baldi et al. (2017) and
Altamura et al. (2023b), and can thus be considered, in this
sense, to be cosmologically motivated. Moreover, in Sect. 4 we
show that our three rotating models are realistic, in the sense
that they have properties consistent with the currently available
observational data of real massive clusters.

4. Comparison with observations

Here we compare with the observational data some properties of
the cool-core cluster models with a rotating ICM presented in
Sect. 3.3.

4.1. Thermodynamic profiles of the ICM

Two directly observable quantities of the ICM are the emission
measure, which is a proxy for the gas density, and the spectro-
scopic temperature (Tsp), which is the temperature associated
with the emission in the X-ray spectrum. Despite the difficulty of
finding an analytic expression of the spectroscopic temperature,
Mazzotta et al. (2004) found a good approximation of it, called
the spectroscopic-like temperature, which, for an axisymmetric
cluster with a symmetry axis, z, orthogonal to the LOS, is given
by

Tsl(x, z) =

∫ ∞

|x|

nineT 1/4r̂dr̂
√

r̂2 − x2

/∫ ∞

|x|

nineT−3/4r̂dr̂
√

r̂2 − x2
, (26)

where T is the gas temperature (in this work, given by Eqs. (20),
(22)) and r̂ is the radius in the plane at height z, parallel to the
equatorial plane. Here, x and z are the coordinates in the plane
of the sky, with the origin in the cluster center.

According to the cosmological framework of the formation
and evolution of cosmic structures, the population of galaxy
clusters is expected to be homogeneous, with “universal” profiles
of the thermodynamic quantities (density, temperature, pressure,
and entropy) of the ICM that depend only on the mass and red-
shift of the halo (see e.g., Vikhlinin et al. 2006; Pratt et al. 2010;
Arnaud et al. 2010; Eckert et al. 2012; Ghirardini et al. 2019a;
Ettori et al. 2023). This is particularly true in the regions domi-
nated by the action of gravity.

Recently, the combination of high-quality data of the ther-
mal Sunyaev–Zeldovich effect (Sunyaev & Zeldovich 1972) and
of X-ray observations has allowed Ghirardini et al. (2019a)
to reconstruct the universal thermodynamic profiles of the
XMM Cluster Outskirts Project (X-COP) sample (Eckert et al.
2017) out to r200 with an unprecedented accuracy8 (see also
Vikhlinin et al. 2006 and Nagai et al. 2007a for a discussion on
the reliability of the reconstruction method).

We thus compare our models of the rotating ICM in equi-
librium in cool-core clusters of M200 ≈ 1015 M� with these
thermodynamic profiles in Figs. 4–6, where the observed tem-
perature is Tsp. We note that in the inner regions of the cool
core (i.e., r < 60 kpc) the spectroscopic-like temperature of
the models departs significantly from the observed profile of
the spectroscopic temperature, but this discrepancy is not very

8 The X-COP sample consists of 13 nearby, massive galaxy clusters
selected on the basis of signal-to-noise ratio of the Sunyaev–Zeldovich
effect as resolved in the Planck maps (Planck Collaboration XXIX
2014). Five of these objects are classified as relaxed, cool-core systems
accordingly to their central entropy.

meaningful, given the observational limitations on the recovery
of the thermodynamic properties in such central regions. The
thermodynamic properties of the SRM, ORM, and PRM mod-
els, with different halo shapes and rotation patterns, are thus rea-
sonably representative of the average properties of the ICM in
massive cool-core clusters.

Once they have shown that the ICM pressure is stratified
over the ICM density following a piecewise power law function,
in the X-COP sample Ghirardini et al. (2019b) find polytropic
indices that, depending on the cluster radius, span from 0.75
(in the inner region) to 1.25 (in the outer region), independent
of the cluster mass. The polytropic indices of our rotating ICM
models (SRM, ORM, and PRM), γ′IN ' 0.8 and γ′OUT ' 1.2
(see Table 2), are fully consistent with those of the observed
clusters.

We note that reproducing the observed thermodynamic pro-
files under the assumption of a rotating ICM is not guaranteed:
this is discussed in Appendix A, where we present an illustrative
example of a model with a strongly rotating ICM, which fails to
reproduce some characteristic features of the observed popula-
tion of massive clusters.

4.2. Flattening of the X-ray surface brightness distributions

The gas rotation and halo flattening leave a trace in the shape of
the X-ray surface brightness distribution. Here, we compare the
shape of the X-ray surface brightness distribution in our mod-
els and in real massive clusters. One way to account for the
departure of the iso-surface brightness contours from the circular
shape is through an average axial ratio, based on the inertia ten-
sor of the surface brightness distribution (see Buote & Canizares
1992, 1994).

Assuming that our models are being observed edge-on (i.e.,
with a symmetry axis orthogonal to the LOS), the surface bright-
ness is

Σ(x, z) = 2
∫ ∞

|x|

nineΛ(T )r̂dr̂
√

r̂2 − x2
, (27)

where Λ(T ) is the cooling function (in particular we take Λ from
Tozzi & Norman 2001, for Z = 0.3 Z�).

Using Eq. (27), we computed the surface brightness distri-
bution of our models, which is shown for the ORM and PRM
models in Fig. 7.

Given that the inertia tensor of the surface brightness distri-
bution is in a diagonal form for a cluster observed edge-on, its
diagonal terms are I20 =

∑P
i=1 Σix2

i , and I02 =
∑P

i=1 Σiz2
i , where Σi

is the surface brightness (given by Eq. (27)) at the grid point of
plane-of-the-sky coordinates (xi, zi), called hereafter pixel, and
P is the total number of pixels. From the definition of diagonal
terms, it follows that the average axial ratio is ζ = Imin/Imax,
where Imax = max{I20, I02} and Imin = min{I20, I02}.

In this work, we compare our models to the results
obtained for the XMM Cluster Heritage Project (CHEX-MATE)
sample9 (Arnaud 2021), which contains both cool-core and
non-cool-core clusters observed within their r500. To match the
clusters of this sample, we computed the average axial ratio of

9 The CHEX-MATE sample is a signal-to-noise limited sample of 118
galaxy clusters detected by Planck via their Sunyaev–Zel’dovich effect;
it is composed by two subsamples: the Tier-1, including the population
of clusters at the most recent time (z < 0.2) and the Tier-2, with the most
massive objects to have formed thus far in the history of the Universe;
see http://xmm-heritage.oas.inaf.it/ for further details.
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Fig. 4. Thermodynamic profiles of the ICM in the SRM model. Upper panels: radial (dotted) and vertical (dashed) profiles of electron number
density (left panel) and spectroscopic-like temperature (right panel) for the SRM model (blue lines) compared with the corresponding average
observed profiles (solid red lines) and their scatter (shaded red band), taken from Ghirardini et al. (2019a, G19 in the legends). Here, ne,shell (solid
green line; left panel) is the angle-averaged (see Sect. 2.2) density profile of the SRM model, and Tsl,mean(RP) = [Tsl(RP, 0) + Tsl(0,RP)] /2 (solid
green line; right panel) is its average spectroscopic-like temperature profile. Lower panels: departure of average profile (solid green lines; see
above) of density (left panel) and spectroscopic-like temperature (right panel) of the SRM model from the average observed profiles (solid red
lines) with their scatter (shaded red band). The spherical radius, r, and the radius in the plane of the sky, RP =

√
x2 + z2, are given in kpc in the

bottom axis and normalized to r500 ' 1345 kpc in the top axis. The vertical, dash-dotted violet and black lines indicate Rbreak and r500, respectively.
The virial temperature of this model, defined as in Eq. (59) of Voit (2005), is T200 ' 6.46 keV.

Fig. 5. Density (left panel) and spectroscopic-like temperature (right panel) profiles of the ORM model. The figure display is the same as Fig. 4,
but for the ORM model r500 ' 1346 kpc and T200 ' 6.45 keV.

our cluster models only in the plane-of-the-sky region defined
by Rbreak ≤ |x| ≤ r500 and Rbreak ≤ |z| ≤ r500. In Fig. 8 we present
the cumulative distribution of the average axial ratios of CHEX-
MATE clusters, where the 25th, 50th, and 75th percentiles are
ζ = 0.77, ζ = 0.85, and ζ = 0.89, respectively (see also Fig. B.1
of Campitiello et al. 2022).

The SRM, ORM, and PRM models have, respectively, ζ =
0.96, ζ = 0.87, and ζ = 0.93, corresponding to the 93rd, 62nd,
and 85th percentiles of the distribution of the CHEX-MATE
sample, and thus are consistent with the less flattened popula-
tion of massive clusters. The halos formed in cosmological sim-
ulations (having an average ellipticity ≈0.5; e.g., Allgood et al.
2006) tend to be more flattened than our aspherical halo models
(having an ellipticity ∼0.3). The relatively high values of ζ of our

cluster models are a consequence of the method adopted to build
the density–potential pairs of our oblate and prolate halo mod-
els: given the requirement of a everywhere positive halo density,
the Ciotti & Bertin (2005) method prevented us from building
highly flattened halos (see Sect. 2). However, the flattening of
our ICM models is due only to rotation and halo shape, while
mergers, substructures, and anisotropic turbulence, all neglected
in our models, are likely present in real clusters, where they can
contribute to lower ζ.

4.3. Hydrostatic mass bias

The mass recovered under the assumption of hydrostatic equilib-
rium and spherically symmetric gravitational potential is (e.g.,
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Fig. 6. Density (left panel) and spectroscopic-like temperature (right panel) profiles of the PRM model. The figure display is the same as Fig. 4,
but for the PRM model r500 ' 1366 kpc and T200 ' 6.53 keV.

Fig. 7. Surface brightness maps of the ORM (left panel) and PRM (right panel) models. The boxes (with an origin in the cluster center) extend out
to ≈r500 (see white arrows).

Lau et al. 2013)

MHE(< r) = −
r2

Gρgas,shell

dpshell

dr
, (28)

where pshell and ρgas,shell are, respectively, the angle-averaged
(see Sect. 2.2) pressure and density profiles. The hydrostatic
mass bias profile is

b(r) = 1 −
MHE(< r)
Mtrue(< r)

, (29)

where Mtrue is the angle-averaged mass (Eq. (15)) of the halo
model that generates the gravitational potential, in which the
ICM is in equilibrium. Using Eqs. (28) and (29), we computed
b(r) for our cluster models, which we plot in Fig. 9, finding in
all cases that the hydrostatic mass bias, except for the central
region, tends to decrease with radius.

The mass estimates from weak gravitational lensing are
believed to be significantly less biased than those from X-ray
observations (e.g., Meneghetti et al. 2010; Lee et al. 2018), at
least for nonmerging clusters (Lee et al. 2023). Thus, when we
consider the hydrostatic mass bias of real clusters, we take the

cluster mass from weak lensing as an estimate of Mtrue. In par-
ticular, in Fig. 9 we compare the hydrostatic mass bias of our
cluster models to the following measurements:

– The error-weighted average of the hydrostatic mass biases
of the massive clusters in the X-COP sample, which are
classified as relaxed, at true (i.e., obtained from weak lens-
ing measurements) r500 and r200. The hydrostatic and weak
lensing masses were determined by Ettori et al. (2019) and
Herbonnet et al. (2020), respectively.

– The average hydrostatic mass bias of a large subsample of
the Planck Sunyaev–Zeldovich effect galaxy clusters (62
clusters of true masses in the range 3 × 1014−2 × 1015 M�,
at z < 0.5) at 1 Mpc and true r500. The hydrostatic masses
were determined by Lovisari et al. (2020), while the weak
lensing masses were taken from Sereno (2015).

– The average hydrostatic mass bias of the relaxed cluster sub-
sample (most of which are found to have prominent cool
cores) of the Canadian Cluster Comparison Project (50 clus-
ters at 0.15 < z < 0.55, selected with the X-ray spec-
troscopic temperature > 3 keV), at true r2500, r1000, and
r500. The hydrostatic and weak lensing masses were deter-
mined by Mahdavi et al. (2013) and Hoekstra et al. (2012),
respectively.
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Fig. 8. Comparison of the average axial ratio of surface brightness
distribution of the SRM, ORM, and PRM models (black, yellow, and
red vertical lines, respectively), with the cumulative distribution of the
average axial ratios measured for the CHEX-MATE clusters (blue) by
Campitiello et al. (2022).

Fig. 9. Profiles of the hydrostatic mass bias of the SRM (blue dashed
line), ORM (red dash-dotted line) and PRM (green dotted line) models,
compared to the observational measurements (points): in particular, to
average hydrostatic mass biases, taken from Fig. 5 of Ettori et al. (2019,
black points), from Tables 2 and 4 of Lovisari et al. (2020, orange
points), and from Table 4 of Mahdavi et al. (2013, brown points). The
vertical error bars of observational data indicate 1σ uncertainty for b.
In the bottom axis, the radius is normalized to r500 of the corresponding
model, with the SRM model radii, r2500, r1000, r500, and r200, reported on
the plot top. The top axis reports the corresponding overdensity, ∆, of
the SRM model (for the ORM and PRM models the overdensity values
are very similar to those of the SRM model). The radius corresponding
to a given overdensity was computed from the true mass profile, which,
in the case of observational data, was assumed to be obtained from the
weak gravitational lensing analysis. The red arrow indicates the extent
of the cool core.

As shown by Fig. 9, the rotation support assumed in our
cluster models is realistic, in the sense that it induces a hydro-
static mass bias comparable to or lower than those detected in
real clusters (with the exception of the estimate of Mahdavi et al.
2013 at r2500; see Sect. 5.4 for a discussion). On the basis of the
comparison of the thermodynamic profiles of the ICM, the shape
of the surface brightness distribution, and the hydrostatic mass
bias of our cluster models with observations, we conclude that

our models are consistent with the main cluster observables that
are currently able to constrain the rotation speed of the ICM in
cool-core clusters.

5. Measuring rotation with X-ray spectroscopy

In the near future, the advent of the microcalorimeters, soft X-ray
spectrometers such as Resolve on board XRISM, a JAXA/NASA
collaborative mission with ESA participation, will provide us
with X-ray spectra at high spectral resolutions (Tashiro et al.
2018), allowing us to measure the LOS component of the ICM
velocity (e.g., Ota et al. 2018), and thus estimate its rotation sup-
port. In this section, using the configurations for Resolve, we
present a set of mock X-ray spectra of the rotating ICM in our
cluster models and we assess the detectability of rotation with
X-ray spectroscopy.

5.1. Building mock spectra of the rotating ICM

Here, we present our mock spectra, focusing primarily on the
kinematic signatures. Given that, for a temperature of the ICM
higher than 3 keV, a mock multi-temperature source spectrum
(i.e., constructed from a multi-temperature model) and the best
fit to this spectrum with a single-temperature model are indis-
tinguishable in the X-rays (Mazzotta et al. 2004), we directly
simulated the X-ray thermal emission of the ICM of our mod-
els through a single-temperature model. In particular, we used
the velocity broadened astrophysical plasma emission code10

(BAPEC), in which a parameter accounts for a general broad-
ening of the X-ray emission lines, including the thermal broad-
ening of the ionized metals, and any other contribution in the
form of “Doppler broadening” due to the cumulative effect of
the different Doppler shifts caused by a distribution of the veloc-
ities of the ions. With this model, the Doppler shift of the lines
is parametrized by an effective redshift (zeff), which can be dif-
ferent from the cluster’s redshift, z0, due to the action of a coher-
ent, bulk motion, and their equivalent width is regulated by the
metallicity, which we fixed to 0.3 Z�. We observed our models
of cool-core clusters edge-on, to maximize the contribution of
rotation to the LOS velocity, which is thus

vlos(x, z) =
2

Σ(x, z)

∫ ∞

|x|

nineΛ(T )|x|uφ(r̂)dr̂
√

r̂2 − x2
, (30)

where Σ is given by Eq. (27) and uφ by Eq. (23), with parame-
ters u0 and R0 reported in Table 2. To decouple the rotation from
the contributions to the broadening of X-ray emitting lines, we
observed sufficiently large regions, to be spatially resolved by
the spectrometer Resolve, where the ICM was either approach-
ing or receding: in particular, we simulated the observation of
regions R1, R2, and R3, reported in Table 3. The LOS speed of
the ICM in our cluster models is consistent with the observed
upper limit on the rotation speed of 500 km s−1 in the cool cores
of real galaxy clusters (e.g., Sanders et al. 2011; Pinto et al.
2015; Bambic et al. 2018): for all models, |vlos| . 450 km s−1

in region R1, which belongs to the inner region. The energy shift
of a 6 keV line due to the rotation speed of 400 km s−1 is 8 eV.
Resolve, thanks to its energy resolution of ∼7 eV at E = 6 keV11,
has the potential to detect such an energy shift, unlike the cur-
rently available X-ray CCD detectors with an energy resolution

10 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/
node136.html
11 https://xrism.isas.jaxa.jp/research/analysis/
manuals/xrqr_v2.1.pdf
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Table 3. Characteristics of the mock pointings.

Region |x| [kpc] z [kpc] Radius [kpc]

R1 200 0 100
R2 650 0 150
R3 1150 0 250

Notes. Coordinates (second and third columns) and radius (fourth col-
umn) of circular regions of the mock observations in the plane of the
sky (with the origin in the cluster center).

Table 4. Input parameters of our mock spectra.

Model – Region T [keV] norm zeff(R) zeff(B)

SRM – R1 6.36 0.0072 0.0512 0.0488
SRM – R2 6.01 0.0014 0.0511 0.0489
SRM – R3 4.96 0.0007 0.0509 0.0491
ORM – R1 6.23 0.0078 0.0512 0.0488
ORM – R2 6.18 0.0014 0.0509 0.0491
ORM – R3 5.07 0.0007 0.0506 0.0494
PRM – R1 6.55 0.0061 0.0515 0.0485
PRM – R2 6.00 0.0012 0.0514 0.0486
PRM – R3 4.92 0.0005 0.0511 0.0489

Notes. The parameter norm accounts for the normalization of the spec-
trum. We quote the effective redshift (zeff) both for a receding (identified
by R) and an approaching (by B) ICM.

on the order of ≈100 eV. Assuming positive vlos for an approach-
ing ICM, we computed zeff as

zeff = (1 + z0)

√√
1 +

〈vlos〉

c

1 − 〈vlos〉

c

− 1, (31)

where we always take z0 = 0.05. In this section, 〈. . .〉 refers to
the average over the integration region in the plane of the sky:
following Roncarelli et al. (2018), we used nineΛ(T ) as a weight
for the average along the LOS, except for the spectroscopic-like
temperature, which was defined by Eq. (26).

At E > 2 keV, the strongest and better-modeled lines of the
X-ray spectra are due to the transitions of inner shell electrons
of the iron in the ICM (see e.g., Zhuravleva et al. 2012; Ota et al.
2018, and Fig. 10, where we show a typical spectrum of the ICM,
discussed in detail below). The iron thus represents the refer-
ence element for the calculations on the line broadening. Previ-
ous works have shown that, though being formally independent
of the line broadening, the best-fitting Doppler shift of X-ray
emitting lines is decisively affected by their broadening. In par-
ticular, on the basis of the results of the fits to mock observations
of the rotating ICM, Bianconi et al. (2013) point out that, at a
fixed signal-to-noise ratio, the best-fitting Doppler shift of the
centroids of the X-ray emission lines suffers from a higher error
when increasing their overall broadening above ≈300 km s−1.
Such a consideration leads us to take into account the follow-
ing contributions to the broadening of the strong iron-emitting
lines:

– The random motion of iron ions produces thermal broaden-
ing (σTH), which is accounted for by the spectroscopic-like
temperature (Eq. (26)) in the BAPEC model. In our mock
spectra, 90 km s−1 < σTH < 110 km s−1. We notice that the
adopted value of the spectroscopic-like temperature repre-
sents a weighted average of the observed distribution in the

integrated spectra, with typical dispersions around this cen-
tral value in the range (0.37−0.53) keV for all the models.

– The turbulence, which is believed to be ubiquitous in galaxy
clusters on the basis of hydrodynamical simulations (e.g.,
Vazza et al. 2017) and observations (e.g., Schuecker et al.
2004), is expected to induce a non-negligible contribution
(on the order of a few hundred km/s) to the broadening of
the iron-emitting lines, known as turbulent broadening, σturb
(e.g., Zhuravleva et al. 2012). In the following analysis, we
consider a σturb of either 0 or 500 km/s, the latter one con-
sidered as an upper limit on the turbulent velocity dispersion
in typical galaxy clusters (see e.g., Pinto et al. 2015).
In order to mimic an observation as realistically as possi-

ble, we introduced a typical absorption due to the Milky Way
(NH = 5× 1020 cm−2; e.g., HI4PI Collaboration 2016), using the
PHotoelectric ABSorption model12 (PHABS). Assuming also
the parameters of Table 4, an exposure time of 100 ks, and con-
volving in the range 0.5−8 keV with instrumental response func-
tions of Resolve13 in Xspec14 (Arnaud 1996), we built mock
spectra of the rotating ICM of our cluster models (see an exam-
ple in Fig. 10). We did not consider any background in our mock
spectra, working in the ideal condition of the analysis of very
bright regions. To account for the different behavior of response
matrices at different energies, for any region under considera-
tion, we present two mock spectra: one for an “approaching”,
blue-shifted ICM and another for a “receding”, red-shifted ICM,
with typical differences in energy of the line centroids of a few
tens of eV (see Fig. 10). Moreover, to assess the impact of the
turbulence on the fit to the shape of the emitting lines, for any
region under consideration we present a couple of mock spectra:
one with σturb = 500 km s−1 and another without turbulence. The
emission at 6–7 keV (yellow vertical band in the left-hand panel
of Fig. 10) provides the most valuable information for measuring
the LOS speed (see also Ota et al. 2018) because of the relatively
high emissivity of the iron-emitting lines FeXXV and FeXXVI
(see also the right-hand panel of Fig. 10).

Using the C-statistics (Cash 1979), as suggested by Ota et al.
(2018; see also Humphrey et al. 2009; Kaastra 2017), and thaw-
ing all the parameters except NH, we then fit the absorbed
BAPEC model to the mock spectrum in Fig. 10. With the pur-
pose of studying Resolve’s ability to detect the ICM rotation (see
Sect. 5.2), in Table 5 we report the expectation values and the sta-
tistical errors of the parameters of the fit to the X-ray emission
lines: the effective redshift, zeff (that regulates the energy shift
of their centroids), the turbulent velocity, σturb (that contributes
to their broadening), the metallicity Z (that regulates their inten-
sity), and the spectroscopic temperature, T (that is related to a
contribution to their broadening).

5.2. Significativity of the recovered observable quantities

In this section, we discuss how the BAPEC parameters zeff , σturb,
Z, and T were recovered from the fit of our mock spectra, once
convolved with the Resolve response matrices in the X-rays.

We thus introduce the significativity of the “best-fit” quan-
tity, Qout (reported in Table 5):

12 https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/
XSmodelPhabs.html
13 See https://heasarc.gsfc.nasa.gov/docs/xrism/
proposals/
14 See https://heasarc.gsfc.nasa.gov/xanadu/xspec/
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Fig. 10. Representative spectrumof the ICMinequilibriuminourclustermodels.Leftpanel:fit (upperpanel; red line) and residuals (lowerpanel) to the
mock spectrum of the receding ICM (black crosses), in equilibrium in the SRM model, for the plane-of-the-sky region R1, takingσturb = 500 km s−1.
FeXXV and FeXXVI (with rest-frame energies close to 6.7 and 6.9 keV, respectively), referred to as Fe–K, are the prominent emission lines in
the upper panel. In the lower panel, the green line traces the null residuals. We rebinned the data for display purposes (we recall that, using the
C-Statistics, the data without backgrounds are not binned). Right panel: zoom on the range 6−7 keV of the yellow band in the left panel, where the
emission lines FeXXV and FeXXVI are emphasized. Here, we rebinned the data in a different way from the left panel for display purposes.

Table 5. Results of the spectral analysis of the mock spectra of the ICM.

Model – Region σturb [km s−1] zeff(S eff) σturb [km s−1] Z[Z�](S Z) T [keV](S T)

SRM – R1-R 0 0.0512 ± 0.0001(0.0) 1 ± 46 0.28 ± 0.02(1.0) 6.37 ± 0.16(0.0)
SRM – R1-R 500 0.0513 ± 0.0002(0.5) 478 ± 57 0.29 ± 0.02(0.5) 6.16 ± 0.15(1.3)
SRM – R2-R 0 0.0511 ± 0.0001(0.0) 4 ± 66 0.27 ± 0.05(0.6) 5.96 ± 0.37(0.1)
SRM – R2-R 500 0.0515 ± 0.0005(0.8) 522 ± 151 0.36 ± 0.06(1.0) 6.07 ± 0.31(0.2)
SRM – R3-R 0 0.0510 ± 0.0002(0.5) 3 ± 79 0.31 ± 0.06(0.2) 5.13 ± 0.26(0.7)
SRM – R3-R 500 0.0517 ± 0.0005(1.6) 826 ± 252 0.31 ± 0.06(0.2) 5.17 ± 0.34(0.6)
ORM – R1-R 0 0.0512 ± 0.0001(0.0) 47 ± 43 0.28 ± 0.02(1.0) 6.33 ± 0.15(0.7)
ORM – R1-R 500 0.0512 ± 0.0002(0.0) 486 ± 49 0.30 ± 0.02(0.0) 6.28 ± 0.15(0.3)
ORM – R2-R 0 0.0509 ± 0.0001(0.0) 0 ± 79 0.33 ± 0.05(0.6) 5.82 ± 0.32(1.1)
ORM – R2-R 500 0.0503 ± 0.0005(1.2) 477 ± 123 0.26 ± 0.04(1.0) 5.80 ± 0.33(1.2)
ORM – R3-R 0 0.0507 ± 0.0002(0.5) 0 ± 105 0.31 ± 0.06(0.2) 5.59 ± 0.41(1.3)
ORM – R3-R 500 0.0504 ± 0.0004(0.5) 299 ± 161 0.38 ± 0.07(1.1) 4.87 ± 0.32(0.6)
PRM – R1-R 0 0.0515 ± 0.0001(0.0) 83 ± 67 0.27 ± 0.02(1.5) 6.53 ± 0.18(0.1)
PRM – R1-B 0 0.0485 ± 0.0001(0.0) 3 ± 69 0.29 ± 0.02(0.5) 6.83 ± 0.20(1.4)
PRM – R1-B 500 0.0484 ± 0.0002(0.5) 445 ± 62 0.29 ± 0.02(0.5) 6.49 ± 0.17(0.4)
PRM – R2-R 0 0.0514 ± 0.0001(0.0) 2 ± 83 0.32 ± 0.05(0.4) 5.36 ± 0.29(2.2)
PRM – R2-B 0 0.0486 ± 0.0001(0.0) 7 ± 68 0.30 ± 0.05(0.0) 6.21 ± 0.38(0.6)
PRM – R2-B 500 0.0483 ± 0.0005(0.6) 565 ± 169 0.37 ± 0.06(1.2) 5.72 ± 0.34(0.8)
PRM – R3-R 0 0.0512 ± 0.0002(0.5) 107 ± 85 0.37 ± 0.08(0.9) 5.86 ± 0.49(1.9)
PRM – R3-B 0 0.0489 ± 0.0003(0.0) 8 ± 158 0.23 ± 0.07(1.0) 5.20 ± 0.44(0.6)

Notes. Input conditions of the ICM (two columns to the left of the vertical black line): the name of the model of the rotating ICM (SRM, ORM, or
PRM), the name of the regions where the spectra are integrated (R1, R2, or R3, described in Table 3; first column), with the positive (identified by
-R) or negative (by -B) input 〈vlos〉 (first column) and the assumed turbulent velocity dispersion (second column). Output parameters (four columns
to the right of the vertical black line) and their statistical errors (at a 1σ confidence level) of the best fits in our mock spectra of the rotating ICM
in equilibrium in the SRM model, reporting in brackets the significance of the corresponding “best-fit” results (computed by using Eq. (32)).

S Q =

∣∣∣Qout − Qin
∣∣∣

errQ
, (32)

where Qin and errQ are the input parameter (reported in Table 4)
and the error of Qout to '68% of confidence (reported in Table 5),
respectively. S Q measures at which level of confidence the “best-
fit” parameters match the input values: S Q ≤ 1 means that
the spectral analysis recovers the input parameter Qin within

'68% of confidence. A lower S Q thus corresponds to a better
recovery of the observable property, Qin, via the spectral best-
fitting. Using Q = {T, zeff ,Z} in Eq. (32), we estimated their
significance, reported in Table 5, where we refer to the signif-
icance of zeff as S eff . The input parameters of the spectroscopic
temperature, metallicity, and effective redshift in most spectral
analyses were recovered within a 1σ confidence level. To illus-
trate the results of these mock observations, we focus on the
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best and worst recoveries of the rotation speed of the ICM.
First, we compare the effective redshift measured in region R1
of the SRM cluster model with a receding, nonturbulent ICM
(see the third column and the first row of Table 5) to the cor-
responding input zeff (see the fourth column and the first row
of Table 4): the output zeff perfectly matches the input zeff (i.e.,
S eff = 0, using Eq. (32)). Second, we compare the effective red-
shift measured in region R3 of the SRM cluster model with a
receding, turbulent ICM (see the third column and the sixth row
of Table 5) to the corresponding input, zeff (see the fourth col-
umn and the third row of Table 4): the output zeff matches the
input zeff at 1.6σ. Though each measurement depends on the
signal-to-noise ratio, this exercise shows the ability of Resolve
to measure the rotation speed of the ICM at a high significance,
assuming that the cluster cosmological redshift and Milky Way
absorption are known. We note that the statistical errors associ-
ated with the “best-fit” spectroscopic temperature, effective red-
shift, and metallicity (Table 5) depend on the signal-to-noise
ratio: these errors decrease by raising the signal-to-noise ratio; in
other words, by increasing the exposure time (here assumed to
be 100 ks) and enlarging the plane-of-the-sky integration region
(see Table 3). For instance, comparing the SRM-R3-R spectral
analyses with σturb = 0 and σturb = 500 km s−1 (see Table 5),
we note that, keeping the signal-to-noise ratio fixed, the increase
in σturb induces a greater error in the “best-fit” effective redshift
and turbulent velocity. Most importantly, in this case the input
zeff is recovered within 1σ if the input σturb = 0 and out of 1σ if
the input σturb = 500 km s−1. From the entire set of our results,
the significativity of the effective redshift appears to be sensi-
tive to the input turbulent velocity dispersion: the spectral best-
fitting recovers, on average, the input zeff with a higher S eff (i.e.,
within a higher confidence level) when we increase the input
σturb. This outcome is in line with the picture that emerged from
the X-ray mock observations of galaxy clusters from hydro-
dynamical simulations, where the increase in the complexity
of the velocity field (here, obtained with an increasing turbu-
lent velocity dispersion, at a fixed rotation speed) reduces our
ability to recover the kinematic properties of the ICM (e.g.,
Roncarelli et al. 2018).

We also studied the covariance among the BAPEC best-fit
parameters. We find that the off-diagonal correlation coefficients
are significantly lower than 0.2, implying no relevant cross-
correlation between zeff , σturb, Z, and T . A partial exception is
the ≈0.2 correlation coefficient between Z and σturb for all the
models: this weak correlation is due to the way Z is measured
(Z is estimated by measuring the equivalent width of emitting
lines). In conclusion, we find that the cross-correlations have
a negligible impact on our measurements of the ICM rotation
speed.

Using the configurations for Resolve, we conclude that, even
in the presence of the turbulence of 500 km s−1, the LOS com-
ponent of the rotation velocity is recovered through the fitting
procedure within a 1σ confidence level in most analyses of the
mock spectroscopic data. The analysis of our cool-core clus-
ter models shows that current observational constraints, such as
the rotation speed of the ICM based on the upper limits on the
broadening of the X-ray emitting lines, the measurements of the
thermodynamic profiles, and the flattening of the surface bright-
ness distribution and of the hydrostatic mass bias, leave room for
rotation of the ICM up to 600 km s−1 in typical clusters. Further
tests of our cluster models with rotating ICM will be provided by
future measurements of the LOS velocity with XRISM/Resolve
that will put stringent and direct constraints on the intrinsic kine-
matics of the ICM in galaxy clusters.

5.3. Assessing the hydrostatic mass bias with X-ray
spectroscopy

In our cluster models, the ICM is in equilibrium and departs from
the hydrostatic condition owing only to rotation. Here, we point
out the perspectives and limitations on the use of X-ray spec-
troscopy for the mapping of non-negligible rotation support of
the ICM.

As discussed above, the LOS velocity, vlos(x, z) (see
Eq. (30)), can be recovered from the measurements of the prop-
erties of the X-ray emitting lines (see e.g., Biffi et al. 2013;
Roncarelli et al. 2018). Thus, a proxy for the rotational con-
tribution to the hydrostatic mass bias, defined in Eq. (29), is
Mrot/Mtrue, where

Mrot(< r) =
v2

los(r, 0)r
G

(33)

is the mass associated with the gas rotation support, and Mtrue
the same halo mass as in Eq. (29).

Using in Eq. (33) the true LOS rotation speed, vlos, given by
Eq. (30), we computed the Mrot profiles of our cluster models
(see curves in Fig. 11). Then, to find the LOS velocity 〈vlos〉

as measured from the best fits to our mock spectra, we used
Eq. (31), where zeff is now the best-fit value to the mock spectrum
of the receding ICM without turbulence (reported in Table 5).
Substituting vlos(r, 0) with 〈vlos〉 in Eq. (33), where we consid-
ered the radius, r, equal to the value of the plane-of-the-sky x
coordinate (reported in Table 3 for the region under considera-
tion), we estimated the mass associated with gas rotation support
at the centers of the regions chosen for our mock observations.
Following this method, from the normal distribution with a mean
and standard deviation equal to the best-fit effective redshift and
its error (both reported in Table 5), respectively, we inferred the
errors (as 16th and 84th percentiles) on Mrot as estimated from
X-ray spectroscopy for our cluster models.

Figure 11 shows that Mrot estimated from the best-fit zeff

recovers within 1σ statistical errors (vertical error bars) the mass
associated with the rotation support estimated from the true LOS
velocity (Eq. (30)). This is consistent with the fact that the best-
fit effective redshift from the spectral analysis recovers within a
1σ confidence level the input effective redshift (Sect. 5.2). How-
ever, as shown by the curves in Fig. 11, Mrot/Mtrue based on
Eq. (33), where we take the true LOS speed, is lower than the
hydrostatic mass bias, b, measured from the theoretical angle-
averaged pressure profile of the ICM (see Sect. 4.3). The rea-
son for this discrepancy (pointed out also by Ota et al. 2018) is
that the mean LOS velocity at a projected distance d from the
symmetry axis is lower than the rotation speed of the ICM at an
intrinsic distance d from the symmetry axis.

Focusing on the hydrostatic mass biases of our cluster mod-
els as measured from X-ray spectroscopy (points with error bars
in Fig. 11), we conclude that the estimates of the rotation sup-
port over the range (0.1−1)r500 obtained through the “best-fit”
LOS rotation speed resolved by Resolve are able to account for
55−70% of the hydrostatic mass bias of our models. It follows
that a Resolve-like correction for the rotation support of the ICM
is expected to leave a residual hydrostatic mass bias due to rota-
tion smaller than 3% at r500 for systems similar to our model
clusters. The error bars in Fig. 11 are larger in the outermost bin
for all the models: this is a consequence of the increase in the sta-
tistical uncertainties of the spectral parameters due to the lower
signal present in those regions of our cluster models.

Moreover, the poor angular resolution of Resolve (with a
point spread function with a half power diameter of ≈1.7 arcmin)
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Fig. 11. Fraction of the hydrostatic mass bias due to rotation (b) of the
SRM (blue), ORM (red), and PRM (green) models, which we recovered
from the true (dashed lines) and best-fit (points) LOS velocities using
Eq. (33). The horizontal error bars indicate the extent of the region of the
mock observations, while the vertical error bars indicate the 1σ errors
on Mrot estimated from X-ray spectroscopy. The radius was normalized
to r500 as in Fig. 9, with the SRM radii, r2500, r1000, and r500, indicated in
the top axis.

prevented us from sampling the hydrostatic mass bias profile in a
larger independent number of radial bins. This will be possible in
the future with the Advanced Telescope for High Energy Astro-
physics15 (ATHENA; Nandra et al. 2013), thanks to its expected
arcsec resolution combined with the performance of the onboard
X-ray microcalorimeter X-IFU (see e.g., Roncarelli et al. 2018).

5.4. Discussion on the hydrostatic bias

In Sect. 4.3, we discussed how the measurements of the hydro-
static mass bias can be used to limit the rotation speed of
the ICM. In Table 6, we quote the hydrostatic mass bias due
to rotation in our cluster models at some characteristic over-
densities available to observations. A general trend is that
the observed hydrostatic mass bias decreases with increas-
ing overdensity (see e.g., Zhang et al. 2010; Mahdavi et al.
2013; Sereno & Ettori 2015; Lovisari et al. 2020). A similar
trend is also recovered in hydrodynamical simulations (see
e.g., Nagai et al. 2007b; Lau et al. 2009; Meneghetti et al. 2010;
Rasia et al. 2012; Gianfagna et al. 2021). This behavior results
in tension with the hydrostatic mass bias profiles recovered from
our models, which increase with increasing ∆ (see Fig. 9). Cos-
mological hydrodynamical simulations show that the support
from turbulence in galaxy clusters increases with radius (see
e.g., Fang et al. 2009; Lau et al. 2009; Towler et al. 2023), over-
coming the rotational contribution well within r500. Thus, the
observed trend of the hydrostatic mass bias is expected to follow
the increase in the turbulent support of the ICM moving out-
ward, with a non-negligible contribution from the rotation only
in the inner regions. Indeed, the few data available at r2500 (see
Fig. 9), where hydrodynamical simulations suggest comparable
support from rotation and turbulence, suggest a hydrostatic bias
marginally consistent (within 2σ) with the predictions of our
models.

15 The ESA satellite ATHENA, is scheduled to be launched not before
2036 (see https://www.the-athena-x-ray-observatory.eu/
en).

Table 6. Characteristic values of the hydrostatic mass bias of our cluster
models.

∆ b
SRM ORM PRM

2500 0.09 0.07 0.13
1000 0.06 0.04 0.09
500 0.05 0.03 0.07

Notes. We quote the hydrostatic mass biases (b) of our clusters models
(SRM, ORM, and PRM) at r∆ with ∆ = {2500, 1000, 500}.

In the near future, new instruments and space telescopes will
permit more accurate determinations of the hydrostatic mass bias
at different overdensities in a larger sample of galaxy clusters. In
particular, the aforementioned XRISM and eRosita16 (onboard
the Spectrum-Roentgen-Gamma mission and, only in the future,
the observatory Athena), together with currently available X-ray
observatories (XMM-Newton and Chandra17), will continue to
provide the measurements of the hydrostatic mass through X-ray
observations. The ESA optical/infrared space telescope Euclid18

and other ground-based campaigns will complement with weak
lensing mass estimates the information on the mass budget in
larger samples of galaxy clusters, allowing us to refine our com-
prehension of the statistical properties of the hydrostatic mass
bias.

6. Conclusions

In this work, we have presented three representative, realistic
models of massive (M200 ≈ 1015 M�) cool-core galaxy clusters
with rotating ICM in equilibrium in DM halos consistent with
observational findings and theoretical predictions on the halo
shape and mass-concentration relation (Sect. 2). While one of
the models has a spherical NFW halo, the other two have, respec-
tively, physically consistent oblate and prolate NFW halos, built
analytically using the method of Ciotti & Bertin (2005). Our
cool-core cluster models, which have a barotropic ICM rota-
tion with velocity peaks as high as 600 km s−1 (see Fig. 3),
have an ICM temperature and density profiles consistent with
the corresponding universal profiles of real clusters. Cosmolog-
ical hydrodynamical simulations can also be used to calibrate
these analytic models (for instance, on the location of Rbreak, the
parameter that defines the size of the cool core) once any over-
cooling problem (see e.g., Kravtsov & Borgani 2012) is properly
solved, and realistic cooling cores are produced in systems that
did not experience a major merger in the central region (e.g.,
Rasia et al. 2015). The shape of surface brightness contours, the
discrepancy between hydrostatic and true masses, and the broad-
ening of X-ray emission lines of the models are also consistent
with currently available observations.

We obtained a set of mock X-ray spectra of the rotating ICM
from the aforementioned three cluster models, using the config-
uration for the microcalorimeter Resolve onboard XRISM, for
different turbulence conditions. In this way, we estimated how
well the rotation speed and the hydrostatic mass bias due to rota-
tion are recovered based on the results of Resolve-like spectral
analysis (Sect. 5).

The main conclusions of this work are the following:

16 See https://www.mpe.mpg.de/eROSITA
17 See https://chandra.harvard.edu/
18 See https://sci.esa.int/web/euclid
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– The existence of realistic cluster models with peaks in the
rotation speed of the ICM in the range of 400–600 km s−1

leaves open the possibility that the rotation support of the
ICM is non-negligible in real cool-core galaxy clusters.

– Even with turbulent velocity dispersion as high as
500 km s−1, a Resolve-like X-ray spectral analysis recovers
the input LOS rotation speed at a high significance.

– Measuring the LOS velocity from X-ray spectroscopy with
XRISM accounts for 55−70% of the hydrostatic mass bias
due to rotation. In this way, XRISM will allow us to pin down
any mass bias of a different origin from the rotation (for
instance, due to turbulence; see e.g., Ettori & Eckert 2022).
On the one hand, improving spatial and spectral resolution in

X-rays will open a new window in which the combination of the
intrinsic thermodynamic profiles with the rotation and turbulent
velocity dispersion profiles can be used to validate models of the
ICM, providing robust estimates of the cluster mass. On the other
hand, Sect. 5.3 shows the need for a functional form that prop-
erly maps the intrinsic rotation speed through the LOS rotation
speed as resolved in massive clusters. Most of the limitations of
this mapping come from the possible degeneracy present in the
interpretation of the observational data. Possible contaminants
that can limit our interpretation of the physical state of the ICM
are, for example, unresolved gas clumps, multiphase gas, metal-
licity inhomogeneities, and complex velocity fields not properly
mapped, both in the plane of the sky and along the LOS (see
also Sect. 5.2). We postpone further study on this topic to future
work.

X-ray observations will enable us to guess both the rota-
tion axis and the maximal rotation speed (see e.g., Ota et al.
2018; Liu & Tozzi 2019) in some favorable conditions (broadly
speaking, bright enough sources and X-ray detectors with suf-
ficient spatial and spectral resolution). Once these X-ray obser-
vations are available, the kinetic Sunyaev–Zeldovich (see e.g.,
some observational constraints in Sayers et al. 2013, 2019;
Mroczkowski et al. 2019, for a review) can be resolved (thanks
also to the forthcoming ground-based Simons Observatory;
Ade et al. 2019) and compared to the X-ray constraints to pro-
vide a consistent picture of the ICM peculiar velocity along the
LOS.

The presented results strongly encourage future spec-
troscopic observations of relaxed galaxy clusters with
XRISM/Resolve (in the forthcoming decade) and/or
ATHENA/X-IFU (in the far future; see also Roncarelli et al.
2018) to quantify the level of the ICM rotation speed, and
to improve X-ray based mass estimates of real clusters, with
important implications for the use of galaxy clusters as accurate
cosmological probes (see e.g., Pratt et al. 2019).

As pointed out by Nipoti & Posti (2014) and Nipoti et al.
(2015), if the ICM is weakly magnetized (as found by the
observational works reviewed by Bruggen 2013) and signifi-
cantly rotating, the magnetorotational instability could also have
relevant effects. Thus, the possibility that the ICM has non-
negligible rotation support with a speed as high as 600 km s−1

in real clusters acquires a great interest for its implications not
only for the mass estimates, but also for our understanding of
the energy balance and evolution of the cool cores, because the
magnetorotational instability could play a role in regulating their
energetic budget.
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Appendix A: An extreme cluster model with a
rotating ICM

In this appendix, with the purpose of illustrating the effect of
strong ICM rotation on the observable properties of galaxy clus-
ters, we present a cluster model (of M200 ≈ 1015 M�) with
a rotating ICM, which, unlike the three models presented in
Sect. 3.3, is not realistic because, though it has a realistic gas
density distribution, it has a temperature distribution substan-
tially different from that of real clusters. This extreme clus-
ter model, which we refer to as the “extreme rotating model”
(ERM), has gravitational potential generated by the ODM halo
model (see Sect. 2.2) and the gas rotation law given by Eq. (23),
with values of the parameters u0 and R0 (see Tab. A.1) such that
the rotation speed peak is 750 km s−1 at a radius of 150 kpc (see
bottom panel of Fig. A.1). The values of the other gas parameters
(Rbreak, γ′IN, γ′OUT, n? and T?; see Tab. A.1) were chosen so that
the angle-averaged gas density profile of the ERM model is con-
sistent with the universal gas density profile of observed cool-
core clusters (top panel of Fig. A.1). However, this choice of
parameter values implies that, due to the strong rotation support,
the temperature profile of the ERM model is grossly inconsis-
tent with the universal temperature profile derived for observed
cool-core clusters (middle panel of Fig. A.1).

Given the rotation speed curve and the gravitational potential
assumed for the ERM model, we were not able to find a combi-
nation of values of the plasma parameters such that both the den-
sity and the spectroscopic-like temperature profiles are consis-
tent with those observed for massive cool-core clusters. Though
this does not allow us to place an upper limit on the peak of the
rotation speed of the ICM, it is a strong indication that rotation
speeds higher than ≈ 600 km s−1 are problematic not only for the
spectroscopic constraints on the broadening of the X-ray emis-
sion line, but also for constraints imposed by the shape of the
universal thermodynamic profiles. Comparing further the poly-
tropic indices, γ′IN and γ′OUT, of our ICM distributions to those
observed, we also note that the ERM model, which has lower
γ′IN and higher γ′OUT than our realistic models (see Tab.s 2 and
A.1), is in tension with the results of Ghirardini et al. (2019b) on
the polytropic indices of observed clusters (see Sect. 4.1).

Fig. A.1. Thermodynamic (top and middle panels) and rotation speed
profiles (bottom panel) of the ICM in the ERM model. Top and middle
panels: same as the left and right panels of Fig. 4, respectively, but for
the ERM model. Bottom panel: rotation speed profile of the ICM in the
ERM model. The red arrow indicates the approximate extent of the cool
core, defined as in Fig. 3.
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Table A.1. Parameters of the ERM model.

Model Halo Rbreak[kpc] n?[cm−3] T?[keV] u0[km/s] R0[kpc] γ′IN γ′OUT

ERM ODM 420 3 × 10−3 8.2 3000 150 0.58 1.58

Notes. Same as Table 2, but for the ERM model.
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