Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. Research outputs

Browsing by Author BRESCIA, Massimo


Or, select a letter below to browse by last name
0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Showing results 58 to 77 of 89 < previous   next >
Issue DateTitleAuthor(s)Fulltext
2016Machine Learning Based Data Mining for Milky Way Filamentary Structures ReconstructionRICCIO, GIUSEPPE ; CAVUOTI, STEFANO ; SCHISANO, EUGENIO ; Brescia, Massimo ; MERCURIO, AMATA ; ELIA, Davide Quintino ; Benedettini, M. ; PEZZUTO, Stefano ; MOLINARI, Sergio ; Di Giorgio, Anna Maria open
2015Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2Cavuoti, S. ; BRESCIA, Massimo ; TORTORA, CRESCENZO ; Longo, G.; NAPOLITANO, NICOLA ROSARIO ; RADOVICH, MARIO ; LA BARBERA, Francesco ; Capaccioli, M.; de Jong, J. T. A.; GETMAN, FEDOR , et alopen
2015Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology SurveysMasters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram, et alopen
2017METAPHOR: a machine-learning-based method for the probability density estimation of photometric redshiftsCAVUOTI, STEFANO ; Amaro, V.; BRESCIA, Massimo ; Vellucci, C.; TORTORA, CRESCENZO ; Longo, G.open
2017METAPHOR: Probability density estimation for machine learning based photometric redshiftsAmaro, V.; CAVUOTI, STEFANO ; BRESCIA, Massimo ; Vellucci, C.; TORTORA, CRESCENZO ; Longo, G.open
2016Milky Way Analysis through a Science Gateway: Workflows and Resource MonitoringSCIACCA, Eva ; VITELLO, FABIO ROBERTO ; BECCIANI, Ugo ; COSTA, Alessandro ; Hajnal, Akos; Kacsuk, Peter; MOLINARI, Sergio ; DI GIORGIO, Anna Maria ; SCHISANO, EUGENIO ; LIU, Scige' John , et alopen
2020Nature versus nurture: relic nature and environment of the most massive passive galaxies at z < 0.5TORTORA, CRESCENZO ; NAPOLITANO, NICOLA ROSARIO ; RADOVICH, MARIO ; SPINIELLO, CHIARA ; HUNT, Leslie Kipp ; Roy, N.; Moscardini, L.; Scognamiglio, D.; SPAVONE, MARILENA ; BRESCIA, Massimo , et alopen
2018Neural Gas based classification of Globular ClustersANGORA, GIUSEPPE; BRESCIA, Massimo ; CAVUOTI, STEFANO ; RICCIO, GIUSEPPE ; Paolillo, Maurizio ; Puzia, Thomas H.open
2014Photometric classification of emission line galaxies with machine-learning methodsCAVUOTI, STEFANO ; BRESCIA, Massimo ; D'Abrusco, Raffaele; Longo, Giuseppe; Paolillo, Maurizio open
2015Photometric redshift estimation based on data mining with PhotoRApToRCavuoti, S. ; BRESCIA, Massimo ; De Stefano, V.; Longo, G.open
2013Photometric Redshifts for Quasars in Multi-band SurveysBRESCIA, Massimo ; CAVUOTI, STEFANO ; D'Abrusco, R.; Longo, G.; MERCURIO, AMATA open
2018Photometric redshifts for the Kilo-Degree Survey. Machine-learning analysis with artificial neural networksBilicki, M.; Hoekstra, H.; Brown, M. J. I.; Amaro, V.; Blake, C.; CAVUOTI, STEFANO ; de Jong, J. T. A.; Georgiou, C.; Hildebrandt, H.; Wolf, C., et alopen
2019Photometric redshifts for X-ray-selected active galactic nuclei in the eROSITA eraBRESCIA, Massimo ; Salvato, M.; CAVUOTI, STEFANO ; Ananna, T. T.; RICCIO, GIUSEPPE ; LaMassa, S. M.; Urry, C. M.; Longo, G.open
2012Photometric redshifts with the quasi Newton algorithm (MLPQNA) Results in the PHAT1 contestCAVUOTI, STEFANO ; BRESCIA, Massimo ; Longo, Giuseppe; MERCURIO, AMATA open
2020The search for galaxy cluster members with deep learning of panchromatic HST imaging and extensive spectroscopyAngora, Giuseppe ; Rosati, Piero ; Brescia, M. ; Mercurio, A. ; GRILLO, CLAUDIO; Caminha, Gabriel; Meneghetti, M. ; Nonino, M. ; Vanzella, E. ; BERGAMINI, PIETRO, et alopen
2015Shapley Supercluster Survey: construction of the photometric catalogues and i-band data releaseMERCURIO, AMATA ; MERLUZZI, Paola ; BUSARELLO, Giovanni ; GRADO, ANIELLO ; Limatola, L.; Haines, C. P.; BRESCIA, Massimo ; Cavuoti, S. ; Dopita, M.; DALL'ORA, Massimo , et alopen
2019Star formation rates for photometric samples of galaxies using machine learning methodsDELLI VENERI, MICHELE ; CAVUOTI, STEFANO ; BRESCIA, Massimo ; Longo, G.; RICCIO, GIUSEPPE open
2019Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxiesAmaro, V.; CAVUOTI, STEFANO ; BRESCIA, Massimo ; Vellucci, C.; Longo, G.; Bilicki, M.; de Jong, J. T. A.; TORTORA, CRESCENZO ; RADOVICH, MARIO ; NAPOLITANO, NICOLA ROSARIO , et alopen
2018Stellar formation rates in galaxies using Machine Learning modelsDELLI VENERI, MICHELE ; CAVUOTI, STEFANO ; BRESCIA, Massimo ; RICCIO, GIUSEPPE ; Longo, Giuseppeopen
2017The third data release of the Kilo-Degree Survey and associated data productsde Jong, Jelte T. A.; Verdoes Kleijn, Gijs A.; Erben, Thomas; Hildebrandt, Hendrik; Kuijken, Konrad; Sikkema, Gert; BRESCIA, Massimo ; Bilicki, Maciej; NAPOLITANO, NICOLA ROSARIO ; Amaro, Valeria, et alopen
Showing results 58 to 77 of 89 < previous   next >

Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE