Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/26532
Title: Distribution of water in the G327.3-0.6 massive star-forming region
Authors: Leurini, Silvia 
Herpin, F.
van der Tak, F.
Wyrowski, F.
Herczeg, G. J.
van Dishoeck, E. F.
Issue Date: 2017
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 602
First Page: A70
Abstract: <BR /> Aims: Following our past study of the distribution of warm gas in the G327.3-0.6 massive star-forming region, we aim here at characterizing the large-scale distribution of water in this active region of massive star formation made of individual objects in different evolutionary phases. We investigate possible variations of the water abundance as a function of evolution. <BR /> Methods: We present Herschel/PACS (4'× 4') continuum maps at 89 and179 μm encompassing the whole region (Hii region and the infrared dark cloud, IRDC) and an APEX/SABOCA (2'× 2') map at 350 μm of the IRDC. New spectral Herschel/HIFI maps toward the IRDC region covering the low-energy water lines at 987 and 1113 GHz (and their H<SUB>2</SUB><SUP>18</SUP>O counterparts) are also presented and combined with HIFI pointed observations toward the G327 hot core region. We infer the physical properties of the gas through optical depth analysis and radiative transfer modeling of the HIFI lines. <BR /> Results: The distribution of the continuum emission at 89 and 179 μm follows the thermal continuum emission observed at longer wavelengths, with a peak at the position of the hot core and a secondary peak in the Hii region, and an arch-like layer of hot gas west of this Hii region. The same morphology is observed in the p-H<SUB>2</SUB>O 1<SUB>11</SUB>-0<SUB>00</SUB> line, in absorption toward all submillimeter dust condensations. Optical depths of approximately 80 and 15 are estimated and correspond to column densities of 10<SUP>15</SUP> and 2 × 10<SUP>14</SUP> cm<SUP>-2</SUP>, respectively, for the hot core and IRDC position. These values indicate an abundance of water relative to H<SUB>2</SUB> of 3 × 10<SUP>-8</SUP> toward the hot core, while the abundance of water does not change along the IRDC with values close to some 10<SUP>-8</SUP>. Infall (over at least 20″) is detected toward the hot core position with a rate of 1-1.3 × 10<SUP>-2</SUP>M<SUB>☉</SUB> /yr, high enough to overcome the radiation pressure that is due to the stellar luminosity. The source structure of the hot core region appears complex, with a cold outer gas envelope in expansion, situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and rather centered away from the hot core. <BR /> Conclusions: The distribution of water along the IRDC is roughly constant with an abundance peak in the more evolved object, that is, in the hot core. These water abundances are in agreement with previous studies in other massive objects and chemical models. <P />Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
URI: http://hdl.handle.net/20.500.12386/26532
URL: https://www.aanda.org/articles/aa/abs/2017/06/aa30387-17/aa30387-17.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201730387
Bibcode ADS: 2017A&A...602A..70L
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa30387-17.pdfPDF editoriale2.02 MBAdobe PDFView/Open
1703.08973.pdfpostprint1.96 MBAdobe PDFView/Open
Show full item record

Page view(s)

43
checked on Feb 5, 2023

Download(s)

35
checked on Feb 5, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE