Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28376
Title: Ceres' opposition effect observed by the Dawn framing camera
Authors: Schröder, Stefan E.
Li, Jian-Yang
Rayman, Marc D.
Joy, Steven P.
Polanskey, Carol A.
Carsenty, Uri
Castillo-Rogez, Julie C.
CIARNIELLO, Mauro 
Jaumann, Ralf
LONGOBARDO, ANDREA 
McFadden, Lucy A.
Mottola, Stefano
Sykes, Mark
Raymond, Carol A.
Russell, Christopher T.
Issue Date: 2018
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 620
First Page: A201
Abstract: Context. The surface reflectance of planetary regoliths may increase dramatically towards zero phase angle, a phenomenon known as the opposition effect (OE). Two physical processes that are thought to be the dominant contributors to the brightness surge are shadow hiding (SH) and coherent backscatter (CB). The occurrence of shadow hiding in planetary regoliths is self-evident, but it has proved difficult to unambiguously demonstrate CB from remote sensing observations. One prediction of CB theory is the wavelength dependence of the OE angular width. <BR /> Aims: The Dawn spacecraft observed the OE on the surface of dwarf planet Ceres. We aim to characterize the OE over the resolved surface, including the bright Cerealia Facula, and to find evidence for SH and/or CB. It is presently not clear if the latter can contribute substantially to the OE for surfaces as dark as that of Ceres. <BR /> Methods: We analyze images of the Dawn framing camera by means of photometric modeling of the phase curve. <BR /> Results: We find that the OE of most of the investigated surface has very similar characteristics, with an enhancement factor of 1.4 and a full width at half maximum of 3° ("broad OE"). A notable exception are the fresh ejecta of the Azacca crater, which display a very narrow brightness enhancement that is restricted to phase angles <0.5° ("narrow OE"); suggestively, this is in the range in which CB is thought to dominate. We do not find a wavelength dependence for the width of the broad OE, and lack the data to investigate the dependence for the narrow OE. The prediction of a wavelength-dependent CB width is rather ambiguous, and we suggest that dedicated modeling of the Dawn observations with a physically based theory is necessary to better understand the Ceres OE. The zero-phase observations allow us to determine Ceres' visible geometric albedo as p<SUB>V</SUB> = 0.094 ± 0.005. A comparison with other asteroids suggests that Ceres' broad OE is typical for an asteroid of its spectral type, with characteristics that are primarily linked to surface albedo. Conclusions: Our analysis suggests that CB may occur on the dark surface of Ceres in a highly localized fashion. While the results are inconclusive, they provide a piece to the puzzle that is the OE of planetary surfaces.
URI: http://hdl.handle.net/20.500.12386/28376
URL: https://www.aanda.org/articles/aa/abs/2018/12/aa33596-18/aa33596-18.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201833596
Bibcode ADS: 2018A&A...620A.201S
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
aa33596-18.pdfPdf editoriale6.52 MBAdobe PDFView/Open
Show full item record

Page view(s)

5
checked on Jan 17, 2021

Download(s)

4
checked on Jan 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE