Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28701
Title: SOPHIE velocimetry of Kepler transit candidates. XVIII. Radial velocity confirmation, absolute masses and radii, and origin of the Kepler-419 multiplanetary system
Authors: Almenara, J. M.
Díaz, R. F.
Hébrard, G.
Mardling, R.
Damiani, C.
Santerne, A.
Bouchy, F.
Barros, S. C. C.
Boisse, I.
Bonfils, X.
BONOMO, ALDO STEFANO 
Courcol, B.
Demangeon, O.
Deleuil, M.
Rey, J.
Udry, S.
Wilson, P. A.
Issue Date: 2018
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 615
First Page: A90
Abstract: Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 M<SUB>J</SUB> transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 M<SUB>J</SUB> non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR<SUP>-3</SUP> degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b's orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations. <P />Based on observations made with SOPHIE on the 1.93 m telescope at the Observatoire de Haute-Provence (CNRS), France.Table A.1 is also available in electronic form at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/615/A90">http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/615/A90</A>
URI: http://hdl.handle.net/20.500.12386/28701
URL: https://www.aanda.org/articles/aa/full_html/2018/07/aa32500-17/aa32500-17.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201732500
Bibcode ADS: 2018A&A...615A..90A
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
Almenaraetal_2018.pdfPDF editoriale18.91 MBAdobe PDFView/Open
Show full item record

Page view(s)

6
checked on Jan 18, 2021

Download(s)

2
checked on Jan 18, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE