Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/28798
Title: Star formation rates for photometric samples of galaxies using machine learning methods
Authors: DELLI VENERI, MICHELE 
CAVUOTI, STEFANO 
BRESCIA, Massimo 
Longo, G.
RICCIO, GIUSEPPE 
Issue Date: 2019
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 486
Issue: 1
First Page: 1377
Abstract: Star formation rates (SFRs) are crucial to constrain theories of galaxy formation and evolution. SFRs are usually estimated via spectroscopic observations requiring large amounts of telescope time. We explore an alternative approach based on the photometric estimation of global SFRs for large samples of galaxies, by using methods such as automatic parameter space optimisation, and supervised machine learning models. We demonstrate that, with such approach, accurate multiband photometry allows to estimate reliable SFRs. We also investigate how the use of photometric rather than spectroscopic redshifts, affects the accuracy of derived global SFRs. Finally, we provide a publicly available catalogue of SFRs for more than 27 million galaxies extracted from the Sloan Digital Sky Survey Data Release 7. The catalogue will be made available through the Vizier facility.
URI: http://hdl.handle.net/20.500.12386/28798
URL: https://doi.org/10.1093/mnras/stz856
https://academic.oup.com/mnras/article-abstract/486/1/1377/5420450?redirectedFrom=fulltext
ISSN: 0035-8711
DOI: 10.1093/mnras/stz856
Bibcode ADS: 2019MNRAS.486.1377D
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
DelliVeneristz856.pdfPdf editoriale4.31 MBAdobe PDFView/Open
Show full item record

Page view(s)

9
checked on Jan 19, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE