Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29024
Title: Ring structure in the MWC 480 disk revealed by ALMA
Authors: Liu, Yao
Dipierro, Giovanni
Ragusa, Enrico
Lodato, Giuseppe
Herczeg, Gregory J.
Long, Feng
Harsono, Daniel
Boehler, Yann
Menard, Francois
Johnstone, Doug
Pascucci, Ilaria
Pinilla, Paola
Salyk, Colette
van der Plas, Gerrit
Cabrit, Sylvie
Fischer, William J.
Hendler, Nathan
Manara, Carlo F.
NISINI, Brunella 
RIGLIACO, ELISABETTA 
Avenhaus, Henning
Banzatti, Andrea
Gully-Santiago, Michael
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 622
First Page: A75
Abstract: Gap-like structures in protoplanetary disks are likely related to planet formation processes. In this paper, we present and analyze high-resolution (0.17''× 0.11'') 1.3 mm ALMA continuum observations of the protoplanetary disk around the Herbig Ae star MWC 480. Our observations show for the first time a gap centered at 74 au with a width of 23 au, surrounded by a bright ring centered at 98 au from the central star. Detailed radiative transfer modeling of the ALMA image and the broadband spectral energy distribution is used to constrain the surface density profile and structural parameters of the disk. If the width of the gap corresponds to 4-8 times the Hill radius of a single forming planet, then the putative planet would have a mass of 0.4-3 M<SUB>J</SUB>. We test this prediction by performing global three-dimensional smoothed particle hydrodynamic gas/dust simulations of disks hosting a migrating and accreting planet. We find that the dust emission across the disk is consistent with the presence of an embedded planet with a mass of 2.3 M<SUB>J</SUB> at an orbital radius of 78 au. Given the surface density of the best-fit radiative transfer model, the amount of depleted mass in the gap is higher than the mass of the putative planet, which satisfies the basic condition for the formation of such a planet. <P />The reduced image (FITS file) is only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (ftp://130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A75">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/622/A75</A>.
URI: http://hdl.handle.net/20.500.12386/29024
URL: https://www.aanda.org/articles/aa/full_html/2019/02/aa34157-18/aa34157-18.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201834157
Bibcode ADS: 2019A&A...622A..75L
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
liu2019.pdfpdf892.02 kBAdobe PDFView/Open
Show full item record

Page view(s)

4
checked on Jan 18, 2021

Download(s)

2
checked on Jan 18, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE