Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/29047
Title: Clustering properties of TGSS radio sources
Authors: Dolfi, Arianna
Branchini, Enzo
Bilicki, Maciej
Balaguera-Antolínez, Andrés
PRANDONI, ISABELLA 
Pandit, Rishikesh
Issue Date: 2019
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 623
First Page: A148
Abstract: We investigate the clustering properties of radio sources in the Alternative Data Release 1 of the TIFR GMRT Sky Survey (TGSS), focusing on large angular scales, where previous analyses have detected a large clustering signal. After appropriate data selection, the TGSS sample we use contains ∼110 000 sources selected at 150 MHz over ∼70% of the sky. The survey footprint is largely superimposed on that of the NRAO VLA Sky Survey (NVSS) with the majority of TGSS sources having a counterpart in the NVSS sample. These characteristics make TGSS suitable for large-scale clustering analyses and facilitate the comparison with the results of previous studies. In this analysis we focus on the angular power spectrum, although the angular correlation function is also computed to quantify the contribution of multiple-component radio sources. We find that on large angular scales, corresponding to multipoles 2 ≤ ℓ ≤ 30, the amplitude of the TGSS angular power spectrum is significantly larger than that of the NVSS. We do not identify any observational systematic effects that may explain this mismatch. We have produced a number of physically motivated models for the TGSS angular power spectrum and found that all of them fail to match observations, even when taking into account observational and theoretical uncertainties. The same models provide a good fit to the angular spectrum of the NVSS sources. These results confirm the anomalous nature of the TGSS large-scale power, which has no obvious physical origin and seems to indicate that unknown systematic errors are present in the TGSS dataset.
URI: http://hdl.handle.net/20.500.12386/29047
URL: https://www.aanda.org/articles/aa/full_html/2019/03/aa34317-18/aa34317-18.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/201834317
Bibcode ADS: 2019A&A...623A.148D
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat 
Dolfi+19.pdfPdf editoriale912.64 kBAdobe PDFView/Open
Show full item record

Page view(s)

4
checked on Jan 19, 2021

Download(s)

2
checked on Jan 19, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE