Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/31235
Title: Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)
Authors: Schmidt, S. J.
Malz, A. I.
Soo, J. Y. H.
Almosallam, I. A.
BRESCIA, Massimo 
CAVUOTI, STEFANO 
Cohen-Tanugi, J.
Connolly, A. J.
DeRose, J.
Freeman, P. E.
Graham, M. L.
Iyer, K. G.
Jarvis, M. J.
Kalmbach, J. B.
Kovacs, E.
Lee, A. B.
Longo, G.
Morrison, C. B.
Newman, J. A.
Nourbakhsh, E.
Nuss, E.
Pospisil, T.
Tranin, H.
Wechsler, R. H.
Zhou, R.
Izbicki, R.
LSST Dark Energy Science Collaboration
Issue Date: 2020
Journal: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 
Number: 499
Issue: 2
First Page: 1587
Abstract: Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics.
URI: http://hdl.handle.net/20.500.12386/31235
URL: https://academic.oup.com/mnras/article/499/2/1587/5905416
ISSN: 0035-8711
DOI: 10.1093/mnras/staa2799
Bibcode ADS: 2020MNRAS.499.1587S
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
staa2799.pdfPDF editoriale4.76 MBAdobe PDFView/Open
Show full item record

Page view(s)

30
checked on Feb 8, 2023

Download(s)

19
checked on Feb 8, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE