Skip navigation
  • INAF logo
  • Home
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects
  • Explore by
    • Research outputs
    • Researchers
    • Organization units
    • Projects
  • Login:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
  • Italian
  • English

  1. OA@INAF
  2. PRODOTTI RICERCA INAF
  3. 1 CONTRIBUTI IN RIVISTE (Journal articles)
  4. 1.01 Articoli in rivista
Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12386/32061
Title: Euclid preparation. XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models
Authors: Euclid Collaboration
Bretonnière, H.
Huertas-Company, M.
Boucaud, A.
Lanusse, F.
Jullo, E.
MERLIN, Emiliano 
Tuccillo, D.
CASTELLANO, MARCO 
Brinchmann, J.
Conselice, C. J.
Poncet, M.
Popa, L.
POZZETTI, Lucia 
Raison, F.
Rebolo, R.
Rhodes, J.
Roncarelli, M.
Rossetti, E.
Saglia, R.
Schneider, P.
Dole, H.
Secroun, A.
Seidel, G.
Sirignano, C.
Sirri, G.
Stanco, L.
Starck, J. -L.
Tallada-Crespí, P.
Taylor, A. N.
Tereno, I.
Toledo-Moreo, R.
Cabanac, R.
Torradeflot, F.
Valentijn, E. A.
VALENZIANO, LUCA 
Wang, Y.
Welikala, N.
Weller, J.
Zamorani, G.
Zoubian, J.
Baldi, M.
BARDELLI, Sandro 
Courtois, H. M.
Camera, S.
FARINELLI, Ruben 
Medinaceli, E.
Mei, S.
Polenta, G.
Romelli, Erik 
Tenti, M.
Vassallo, T.
ZACCHEI, Andrea 
ZUCCA, Elena 
Castander, F. J.
Baccigalupi, C.
Balaguera-Antolínez, A.
BIVIANO, ANDREA 
BORGANI, STEFANO 
Bozzo, E.
BURIGANA, CARLO 
CAPPI, Alberto 
Carvalho, C. S.
Casas, S.
Castignani, G.
Duc, P. A.
Colodro-Conde, C.
Coupon, J.
de la Torre, S.
Fabricius, M.
FARINA, Maria 
Ferreira, P. G.
Flose-Reimberg, P.
Fotopoulou, S.
GALEOTTA, Samuele 
Ganga, K.
Fosalba, P.
Garcia-Bellido, J.
Gaztanaga, E.
Gozaliasl, G.
Hook, I. M.
Joachimi, B.
Kansal, V.
Kashlinsky, A.
Keihanen, E.
Kirkpatrick, C. C.
Lindholm, V.
Guinet, D.
Mainetti, G.
Maino, D.
Maoli, R.
Martinelli, M.
Martinet, N.
McCracken, H. J.
Metcalf, R. B.
MORGANTE, GIANLUCA 
Morisset, N.
Nightingale, J.
Kruk, S.
Nucita, A.
Patrizii, L.
Potter, D.
Renzi, A.
RICCIO, GIUSEPPE 
Sánchez, A. G.
Sapone, D.
Schirmer, M.
Schultheis, M.
Scottez, V.
Kuchner, U.
SEFUSATTI, Emiliano 
Teyssier, R.
Tutusaus, I.
Valiviita, J.
VIEL, MATTEO 
Whittaker, L.
Knapen, J. H.
Serrano, S.
Soubrie, E.
Tramacere, A.
Wang, L.
Amara, A.
AURICCHIO, NATALIA 
Bender, R.
Bodendorf, C.
BONINO, Donata 
Branchini, Enzo 
Brau-Nogue, S.
BRESCIA, Massimo 
Capobianco, Vito 
CARBONE, Carmelita 
Carretero, J.
CAVUOTI, STEFANO 
Cimatti, A.
Cledassou, R.
Congedo, G.
Conversi, L.
Copin, Y.
CORCIONE, Leonardo 
Costille, A.
Cropper, M.
Da Silva, A.
Degaudenzi, H.
Douspis, M.
Dubath, F.
Duncan, C. A. J.
Dupac, X.
Dusini, S.
Farrens, S.
Ferriol, S.
FRAILIS, Marco 
FRANCESCHI, ENRICO 
FUMANA, Marco 
GARILLI, BIANCA MARIA ROSA 
Gillard, W.
Gillis, B.
GIOCOLI, Carlo 
GRAZIAN, Andrea 
Grupp, F.
Haugan, S. V. H.
Holmes, W.
Hormuth, F.
Hudelot, P.
Jahnke, K.
Kermiche, S.
Kiessling, A.
Kilbinger, M.
Kitching, T.
Kohley, R.
Kümmel, M.
Kunz, M.
Kurki-Suonio, H.
LIGORI, Sebastiano 
Lilje, P. B.
Lloro, I.
MAIORANO, Elisabetta 
MANSUTTI, Oriana 
Marggraf, O.
Markovic, K.
Marulli, F.
Massey, R.
Maurogordato, S.
Melchior, M.
MENEGHETTI, MASSIMO 
Meylan, G.
Moresco, M.
Morin, B.
Moscardini, L.
Munari, Emiliano 
Nakajima, R.
Niemi, S. M.
Padilla, C.
Paltani, S.
Pasian, F.
Pedersen, K.
Pettorino, V.
Pires, S.
Issue Date: 2022
Journal: ASTRONOMY & ASTROPHYSICS 
Number: 657
First Page: A90
Abstract: We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg<SUP>2</SUP> as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec<SUP>−2</SUP>, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec<SUP>−2</SUP>. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 10<SUP>10.6</SUP> M<SUB>⊙</SUB> (resp. 10<SUP>9.6</SUP> M<SUB>⊙</SUB>) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
URI: http://hdl.handle.net/20.500.12386/32061
URL: http://arxiv.org/abs/2105.12149v3
https://www.aanda.org/articles/aa/full_html/2022/01/aa41393-21/aa41393-21.html
ISSN: 0004-6361
DOI: 10.1051/0004-6361/202141393
Bibcode ADS: 2022A&A...657A..90E
Fulltext: open
Appears in Collections:1.01 Articoli in rivista

Files in This Item:
File Description SizeFormat
aa41393-21.pdfPdf editoriale3.16 MBAdobe PDFView/Open
Show full item record

Page view(s)

62
checked on Mar 23, 2023

Download(s)

12
checked on Mar 23, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are published in Open Access, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research outputs
  • Researchers
  • Organization units
  • Projects

Informazioni e guide per autori

https://openaccess-info.inaf.it: tutte le informazioni sull'accesso aperto in INAF

Come si inserisce un prodotto: le guide a OA@INAF

La Policy INAF sull'accesso aperto

Documenti e modelli scaricabili

Feedback
Built with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE