Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/32145
Title: | Stellar Population Astrophysics (SPA) with TNG. Atmospheric parameters of members of 16 unstudied open clusters | Authors: | Zhang, R. LUCATELLO, Sara BRAGAGLIA, Angela Carrera, R. Spina, L. Alonso-Santiago, J. ANDREUZZI, Gloria Casali, G. Carretta, E. FRASCA, Antonio FU, Xiaoting MAGRINI, LAURA Origlia, L. D'Orazi, V. VALLENARI, Antonella |
Issue Date: | 2021 | Journal: | ASTRONOMY & ASTROPHYSICS | Number: | 654 | First Page: | A77 | Abstract: | Context. Thanks to the modern understanding of stellar evolution, we can accurately measure the ages of open clusters (OCs). Given their position, they are ideal tracers of the Galactic disc. Gaia data release 2, besides providing precise parallaxes, led to the detection of many new clusters, opening a new era for the study of the Galactic disc. However, detailed information on the chemical abundance for OCs is necessary to accurately date them and to efficiently use them to probe the evolution of the disc. <BR /> Aims: Mapping and exploring the Milky Way structure is the main aim of the Stellar Population Astrophysics project. Part of this work involves the use of OCs and the derivation of their precise and accurate chemical composition. Here, we aim to analyse a sample of OCs located within about 2 kpc from the Sun, with ages from about 50 Myr to a few gigayears. <BR /> Methods: We used HARPS-N at the Telescopio Nazionale Galileo and collected very high-resolution spectra (R = 115 000) of 40 red giant/red clump stars in 18 OCs (16 never or scarcely studied plus two comparison clusters). We measured their radial velocities and derived the stellar parameters (T<SUB>eff</SUB>, log g, v<SUB>micro</SUB>, and [Fe/H]) based on equivalent width measurement combined with a 1D - LTE atmospherical model. <BR /> Results: We discuss the relationship between metallicity and Galactocentric distance, adding literature data to our results to enlarge the sample and also taking age into account. We compared the result of observational data with the findings of chemo-dynamical models. These models generally reproduce the metallicity gradient well. However, at young ages we find a large dispersion in metallicity, that is not reproduced by models. Several possible explanations are explored, including uncertainties in the derived metallicity. We confirm the difficulties in determining parameters for young stars (age < 200 Myr), which is attributable to a combination of intrinsic factors (activity, fast rotation, magnetic fields, etc) which atmospheric models cannot easily reproduce and which affect the uncertainty on parameters. <P />Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Observatorio del Roque de los Muchachos. This study is part of the Large Program titled SPA - Stellar Population Astrophysics: the detailed, age-resolved chemistry of the Milky Way disc (PI: L. Origlia), granted observing time with HARPS-N and GIANO-B echelle spectrographs at the TNG. | URI: | http://hdl.handle.net/20.500.12386/32145 | URL: | https://www.aanda.org/articles/aa/full_html/2021/10/aa41188-21/aa41188-21.html | ISSN: | 0004-6361 | DOI: | 10.1051/0004-6361/202141188 | Bibcode ADS: | 2021A&A...654A..77Z | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
aa41188-21.pdf | PDF editoriale | 5.63 MB | Adobe PDF | View/Open |
Page view(s)
21
checked on Sep 24, 2023
Download(s)
15
checked on Sep 24, 2023
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.