Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/35679
Title: | The WISSH quasars project X. Discovery of a multi-component and highly-variable UV ultra-fast outflow in a z=3.6 quasar | Authors: | VIETRI, Giustina Misawa, T. PICONCELLI, Enrico FRANZETTI, Paolo LUMINARI , ALFREDO Travascio, A. BISCHETTI, Manuela BISOGNI, Susanna BONGIORNO, Angela BRUNI, Gabriele FERUGLIO, Chiara Giunta, A. NICASTRO, Fabrizio Saccheo, I. TESTA, Vincenzo TOMBESI, Francesco Vignali, C. ZAPPACOSTA, Luca FIORE, Fabrizio |
Issue Date: | 2022 | Journal: | ASTRONOMY & ASTROPHYSICS | Number: | 668 | First Page: | A87 | Abstract: | We report on the variability of a multi-component broad absorption line (BAL) system observed in the hyper-luminous quasar J1538+0855 at z=3.6. Observations from SDSS, VLT, LBT and Subaru telescopes taken at five different epochs, spanning 17 yr in the observed frame, are presented. We detect three (A, B, C) CIV variable troughs exhibiting extreme velocities ($\sim$40,000-54,000 km s$^{-1}$) similar to the ultra-fast outflows (UFOs) typically observed in the X-ray spectra. The A component of the BAL UFO ($\rm v_{ufo}$ $\sim$0.17 c) shows strength variations, while B ($\rm v_{ufo}$ $\sim$0.15 c) and C ($\rm v_{ufo}$ $\sim$0.13 c) components show changes both in shape and strength, appearing and disappearing at different epochs. In addition, during the last observation on June 2021 the entire BAL system disappears. The variability trends observed during the first two epochs (1.30 yr rest-frame) in the CIV, SiIV, OVI and NV absorption spectral regions are the same for B and C troughs, while the A component of the BAL varies independently. This suggests a change in the ionization state of the absorbing gas for B and C components and tangential motion for the A component, as causes of this temporal behavior. Accordingly, it is possible to provide an upper limit for distance of the gas responsible for the A component of $R\rm_{out}^{A}$$\le$58 pc, and in turn, a kinetic power of $\dot{E}\rm_{K,ufo}$ $\le$5.2 $\times$ 10$^{44}$ erg s$\rm^{-1}$. We also obtain $R\rm_{out}^{B,C}$ $\le$2.7 kpc for B and C components, which implies an upper limit estimation of $\dot{E}\rm_{K,ufo}$ $\le$2.1$\times$10$^{46}$ erg s$\rm^{-1}$ and $\dot{E}\rm_{K,ufo}$ $\le$1.4$\times$10$^{46}$ erg s$\rm^{-1}$, respectively. Future spectral monitoring with high-resolution instruments is mandatory to accurately constrain physical properties of the BAL UFO discovered in the UV spectrum of J1538+0855. | URI: | http://hdl.handle.net/20.500.12386/35679 | URL: | http://arxiv.org/abs/2205.06832v1 https://www.aanda.org/articles/aa/full_html/2022/12/aa43285-22/aa43285-22.html |
ISSN: | 0004-6361 | DOI: | 10.1051/0004-6361/202243285 | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
aa43285-22.pdf | Pdf editoriale | 1.21 MB | Adobe PDF | View/Open |
Page view(s)
54
checked on Apr 26, 2025
Download(s)
4
checked on Apr 26, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.