Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12386/36083
Title: | Performance Verification of the EXtreme PREcision Spectrograph | Authors: | Blackman, Ryan T. Fischer, Debra A. Jurgenson, Colby A. Sawyer, David McCracken, Tyler M. Szymkowiak, Andrew E. Petersburg, Ryan R. Joel Ong, J. M. Brewer, John M. Zhao, Lily L. Leet, Christopher Buchhave, Lars A. Tronsgaard, René Llama, Joe Sawyer, Travis Davis, Allen B. Cabot, Samuel H.C. Shao, Michael Trahan, Russell Nemati, Bijan GENONI, Matteo PARIANI, Giorgio RIVA, Marco Fournier, Paul Pawluczyk, Rafal |
Issue Date: | 2020 | Journal: | THE ASTRONOMICAL JOURNAL | Number: | 159 | Issue: | 5 | First Page: | 238 | Abstract: | The EXtreme PREcision Spectrograph (EXPRES) is a new Doppler spectrograph designed to reach a radial-velocity measurement precision sufficient to detect Earth-like exoplanets orbiting nearby, bright stars. We report on extensive laboratory testing and on-sky observations to quantitatively assess the instrumental radial-velocity measurement precision of EXPRES, with a focused discussion of individual terms in the instrument error budget. We find that EXPRES can reach a single-measurement instrument calibration precision better than 10 cm s-1, not including photon noise from stellar observations. We also report on the performance of the various environmental, mechanical, and optical subsystems of EXPRES, assessing any contributions to radial-velocity error. For atmospheric and telescope related effects, this includes the fast tip-tilt guiding system, atmospheric dispersion compensation, and the chromatic exposure meter. For instrument calibration, this includes the laser fRequency comb (LFC), flat-field light source, CCD detector, and effects in the optical fibers. Modal noise is mitigated to a negligible level via a chaotic fiber agitator, which is especially important for wavelength calibration with the LFC. Regarding detector effects, we empirically assess the impact on the radial-velocity precision due to pixel-position nonuniformities and charge transfer inefficiency (CTI). EXPRES has begun its science survey to discover exoplanets orbiting G-dwarf and K-dwarf stars, in addition to transit spectroscopy and measurements of the Rossiter-McLaughlin effect. | URI: | http://hdl.handle.net/20.500.12386/36083 | URL: | https://iopscience.iop.org/article/10.3847/1538-3881/ab811d https://api.elsevier.com/content/abstract/scopus_id/85106817706 |
ISSN: | 0004-6256 | DOI: | 10.3847/1538-3881/ab811d | Fulltext: | open |
Appears in Collections: | 1.01 Articoli in rivista |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Blackman_2020_AJ_159_238.pdf | PDF editoriale | 6.98 MB | Adobe PDF | View/Open |
Page view(s)
19
checked on Apr 18, 2025
Download(s)
8
checked on Apr 18, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are published in Open Access, unless otherwise indicated.