MAGRIN, DEMETRIODEMETRIOMAGRINVIOTTO, VALENTINAVALENTINAVIOTTOBeck, ThomasThomasBeckBruno, GiordanoGiordanoBrunoBaroni, MarcoMarcoBaroniTurella, AndreaAndreaTurellaMarinai, MassimoMassimoMarinaiBERGOMI, MariaMariaBERGOMIBIONDI, FEDERICOFEDERICOBIONDIMUNARI, MATTEOMATTEOMUNARIMARAFATTO, LucaLucaMARAFATTOFARINATO, JACOPOJACOPOFARINATOGREGGIO, DAVIDEDAVIDEGREGGIODIMA, MARCOMARCODIMASCANDARIATO, GAETANOGAETANOSCANDARIATOPAGANO, IsabellaIsabellaPAGANORAGAZZONI, RobertoRobertoRAGAZZONIRieder, MartinMartinRiederBusch, Martin DiegoMartin DiegoBuschPiazza, DanieleDanielePiazzaBandy, TimothyTimothyBandyBroeg, ChristopherChristopherBroegFortier, AndreaAndreaFortierHernandez, EduardoEduardoHernandezCessa, VirginieVirginieCessaBenz, WillyWillyBenzPiotto, GiampaoloGiampaoloPiottoGiannuzzo, EsterEsterGiannuzzoDami, MicheleMicheleDamiBattistelli, EnricoEnricoBattistelliSalatti, MarioMarioSalattiTommasi, ElisabettaElisabettaTommasiDe Angelis, LuigiLuigiDe AngelisDeep, AtulAtulDeepNgan, IvanIvanNganRatti, FrancescoFrancescoRattiGambicorti, LisaLisaGambicortiRando, NicolaNicolaRando2021-02-242021-02-242018978151061949497815106195000277-786Xhttp://hdl.handle.net/20.500.12386/30576CHEOPS is the first small class mission adopted by ESA in the framework of the Cosmic Vision 2015-2025. Its launch is foreseen in early 2019. CHEOPS aims to get transits follow-up measurements of already known exo-planets, hosted by near bright stars (V<12). Thanks to its ultra-high precision photometry, CHEOPS science goal is accurately measure the radii of planets in the super-Earth to Neptune mass range (1<Mplanet/MEarth<20). The knowledge of the radius by transit measurements, combined with the determination of planet mass through radial velocity techniques, will allow the determination/refinement of the bulk density for a large number of small planets during the scheduled 3.5 years life mission. The instrument is mainly composed of a 320 mm aperture diameter Ritchey-Chretien telescope and a Back End Optics, delivering a de-focused star image onto the focal plane. In this paper we describe the opto-thermo-mechanical model of the instrument and the measurements obtained during the opto-mechanical integration and alignment phase at Leonardo company premises, highlighting the level of congruence between the predictions and measurements.STAMPAenA comparison between the opto-thermo-mechanical model and lab measurements for CHEOPSConference paper10.1117/12.23134062-s2.0-85054872787000450864600084https://doi.org/10.1117/12.2313406https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10698/2313406/A-comparison-between-the-opto-thermo-mechanical-model-and-lab/10.1117/12.2313406.full2018SPIE10698E..3BMFIS/05 - ASTRONOMIA E ASTROFISICA