Aubourg, ÉricÉricAubourgBailey, StephenStephenBaileyBautista, Julian E.Julian E.BautistaBeutler, FlorianFlorianBeutlerBhardwaj, VaishaliVaishaliBhardwajBizyaev, DmitryDmitryBizyaevBlanton, MichaelMichaelBlantonBlomqvist, MichaelMichaelBlomqvistBolton, Adam S.Adam S.BoltonBovy, JoJoBovyBrewington, HowardHowardBrewingtonBrinkmann, J.J.BrinkmannBrownstein, Joel R.Joel R.BrownsteinBurden, AngelaAngelaBurdenBusca, Nicolás G.Nicolás G.BuscaCarithers, WilliamWilliamCarithersChuang, Chia-HsunChia-HsunChuangComparat, JohanJohanComparatCroft, Rupert A. C.Rupert A. C.CroftCuesta, Antonio J.Antonio J.CuestaDawson, Kyle S.Kyle S.DawsonDelubac, TimothéeTimothéeDelubacEisenstein, Daniel J.Daniel J.EisensteinFont-Ribera, AndreuAndreuFont-RiberaGe, JianJianGeLe Goff, J. -M.J. -M.Le GoffGontcho, Satya Gontcho A.Satya Gontcho A.GontchoGott, J. RichardJ. RichardGottGunn, James E.James E.GunnGuo, HongHongGuoGuy, JulienJulienGuyHamilton, Jean-ChristopheJean-ChristopheHamiltonHo, ShirleyShirleyHoHonscheid, KlausKlausHonscheidHowlett, CullanCullanHowlettKirkby, DavidDavidKirkbyKitaura, Francisco S.Francisco S.KitauraKneib, Jean-PaulJean-PaulKneibLee, Khee-GanKhee-GanLeeLong, DanDanLongLupton, Robert H.Robert H.LuptonMagaña, Mariana VargasMariana VargasMagañaMalanushenko, ViktorViktorMalanushenkoMalanushenko, ElenaElenaMalanushenkoManera, MarcMarcManeraMaraston, ClaudiaClaudiaMarastonMargala, DanielDanielMargalaMcBride, Cameron K.Cameron K.McBrideMiralda-Escudé, JordiJordiMiralda-EscudéMyers, Adam D.Adam D.MyersNichol, Robert C.Robert C.NicholNoterdaeme, PasquierPasquierNoterdaemeNuza, Sebastián E.Sebastián E.NuzaOlmstead, Matthew D.Matthew D.OlmsteadOravetz, DanielDanielOravetzPâris, IsabelleIsabellePârisPadmanabhan, NikhilNikhilPadmanabhanPalanque-Delabrouille, NathalieNathaliePalanque-DelabrouillePan, KaikeKaikePanPellejero-Ibanez, MarcosMarcosPellejero-IbanezPercival, Will J.Will J.PercivalPetitjean, PatrickPatrickPetitjeanPieri, Matthew M.Matthew M.PieriPrada, FranciscoFranciscoPradaReid, BethBethReidRich, JamesJamesRichRoe, Natalie A.Natalie A.RoeRoss, Ashley J.Ashley J.RossRoss, Nicholas P.Nicholas P.RossRossi, GrazianoGrazianoRossiRubiño-Martín, Jose AlbertoJose AlbertoRubiño-MartínSánchez, Ariel G.Ariel G.SánchezSamushia, LadoLadoSamushiaGénova-Santos, Ricardo TanausúRicardo TanausúGénova-SantosScóccola, Claudia G.Claudia G.ScóccolaSchlegel, David J.David J.SchlegelSchneider, Donald P.Donald P.SchneiderSeo, Hee-JongHee-JongSeoSheldon, ErinErinSheldonSimmons, AudreyAudreySimmonsSkibba, Ramin A.Ramin A.SkibbaSlosar, AnžeAnžeSlosarStrauss, Michael A.Michael A.StraussThomas, DanielDanielThomasTinker, Jeremy L.Jeremy L.TinkerTojeiro, RitaRitaTojeiroVazquez, Jose AlbertoJose AlbertoVazquezVIEL, MATTEOMATTEOVIELWake, David A.David A.WakeWeaver, Benjamin A.Benjamin A.WeaverWeinberg, David H.David H.WeinbergWood-Vasey, W. M.W. M.Wood-VaseyYèche, ChristopheChristopheYècheZehavi, IditIditZehaviZhao, Gong-BoGong-BoZhaoBOSS Collaboration2020-03-252020-03-2520151550-7998http://hdl.handle.net/20.500.12386/23538We derive constraints on cosmological parameters and tests of dark energy models from the combination of baryon acoustic oscillation (BAO) measurements with cosmic microwave background (CMB) data and a recent reanalysis of Type Ia supernova (SN) data. In particular, we take advantage of high-precision BAO measurements from galaxy clustering and the Lyman-α forest (LyaF) in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Treating the BAO scale as an uncalibrated standard ruler, BAO data alone yield a high confidence detection of dark energy; in combination with the CMB angular acoustic scale they further imply a nearly flat universe. Adding the CMB-calibrated physical scale of the sound horizon, the combination of BAO and SN data into an "inverse distance ladder" yields a measurement of H<SUB>0</SUB>=67.3 ±1.1 km s<SUP>-1</SUP> Mpc<SUP>-1</SUP> , with 1.7% precision. This measurement assumes standard prerecombination physics but is insensitive to assumptions about dark energy or space curvature, so agreement with CMB-based estimates that assume a flat Λ CDM cosmology is an important corroboration of this minimal cosmological model. For constant dark energy (Λ ), our BAO +SN +CMB combination yields matter density Ω<SUB>m</SUB>=0.301 ±0.008 and curvature Ω<SUB>k</SUB>=-0.003 ±0.003 . When we allow more general forms of evolving dark energy, the BAO +SN +CMB parameter constraints are always consistent with flat Λ CDM values at ≈1 σ . While the overall χ<SUP>2</SUP> of model fits is satisfactory, the LyaF BAO measurements are in moderate (2 - 2.5 σ ) tension with model predictions. Models with early dark energy that tracks the dominant energy component at high redshift remain consistent with our expansion history constraints, and they yield a higher H<SUB>0</SUB> and lower matter clustering amplitude, improving agreement with some low redshift observations. Expansion history alone yields an upper limit on the summed mass of neutrino species, ∑m<SUB>ν</SUB><0.56 eV (95% confidence), improving to ∑m<SUB>ν</SUB><0.25 eV if we include the lensing signal in the Planck CMB power spectrum. In a flat Λ CDM model that allows extra relativistic species, our data combination yields N<SUB>eff</SUB>=3.43 ±0.26 ; while the LyaF BAO data prefer higher N<SUB>eff</SUB> when excluding galaxy BAO, the galaxy BAO alone favor N<SUB>eff</SUB>≈3 . When structure growth is extrapolated forward from the CMB to low redshift, standard dark energy models constrained by our data predict a level of matter clustering that is high compared to most, but not all, observational estimates. <P />STAMPAenCosmological implications of baryon acoustic oscillation measurementsArticle10.1103/PhysRevD.92.1235162-s2.0-84952333924000366502800004http://arxiv.org/abs/1411.1074v3https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.1235162015PhRvD..92l3516AFIS/05 - ASTRONOMIA E ASTROFISICA