Planck CollaborationArnaud, M.M.ArnaudAshdown, M.M.AshdownAtrio-Barandela, F.F.Atrio-BarandelaAumont, J.J.AumontBaccigalupi, C.C.BaccigalupiBanday, A. J.A. J.BandayBarreiro, R. B.R. B.BarreiroBattaner, E.E.BattanerBenabed, K.K.BenabedBenoit-Lévy, A.A.Benoit-LévyPratt, G. W.G. W.PrattPuget, J. -L.J. -L.PugetRachen, J. P.J. P.RachenReach, W. T.W. T.ReachReich, W.W.ReichReinecke, M.M.ReineckeBielewicz, P.P.BielewiczRemazeilles, M.M.RemazeillesRenault, C.C.RenaultRho, J.J.RhoDickinson, C.C.DickinsonRICCIARDI, SARASARARICCIARDIRiller, T.T.RillerRistorcelli, I.I.RistorcelliRocha, G.G.RochaRosset, C.C.RossetRoudier, G.G.RoudierRusholme, B.B.RusholmeBobin, J.J.BobinSANDRI, MAURAMAURASANDRISavini, G.G.SaviniDiego, J. M.J. M.DiegoScott, D.D.ScottStolyarov, V.V.StolyarovSutton, D.D.SuttonSuur-Uski, A. -S.A. -S.Suur-UskiSygnet, J. -F.J. -F.SygnetTauber, J. A.J. A.TauberTERENZI, LUCALUCATERENZIToffolatti, L.L.ToffolattiBond, J. R.J. R.BondTomasi, M.M.TomasiDonzelli, S.S.DonzelliTristram, M.M.TristramTucci, M.M.TucciUMANA, Grazia Maria GloriaGrazia Maria GloriaUMANAVALENZIANO, LUCALUCAVALENZIANOValiviita, J.J.ValiviitaVan Tent, B.B.Van TentVielva, P.P.VielvaVILLA, FABRIZIOFABRIZIOVILLAWade, L. A.L. A.WadeBorrill, J.J.BorrillDoré, O.O.DoréYvon, D.D.YvonZACCHEI, AndreaAndreaZACCHEIZonca, A.A.ZoncaBouchet, F. R.F. R.BouchetBrogan, C. L.C. L.BroganBURIGANA, CARLOCARLOBURIGANACardoso, J. -F.J. -F.CardosoCatalano, A.A.CatalanoChamballu, A.A.ChamballuChiang, H. C.H. C.ChiangDupac, X.X.DupacChristensen, P. R.P. R.ChristensenColombi, S.S.ColombiColombo, L. P. L.L. P. L.ColomboCrill, B. P.B. P.CrillCurto, A.A.CurtoCUTTAIA, FRANCESCOFRANCESCOCUTTAIADavies, R. D.R. D.DaviesDavis, R. J.R. J.Davisde Bernardis, P.P.de BernardisDe Rosa, A.A.De RosaEnßlin, T. A.T. A.Enßlinde Zotti, G.G.de ZottiDelabrouille, J.J.DelabrouilleDésert, F. -X.F. -X.DésertEriksen, H. K.H. K.EriksenFINELLI, FABIOFABIOFINELLIForni, O.O.ForniFRAILIS, MarcoMarcoFRAILISMortlock, D.D.MortlockFraisse, A. A.A. A.FraisseFRANCESCHI, ENRICOENRICOFRANCESCHIGALEOTTA, SamueleSamueleGALEOTTAGanga, K.K.GangaGiard, M.M.GiardGiraud-Héraud, Y.Y.Giraud-HéraudGonzález-Nuevo, J.J.González-NuevoGórski, K. M.K. M.GórskiGregorio, A.A.GregorioGRUPPUSO, ALESSANDROALESSANDROGRUPPUSOMunshi, D.D.MunshiHansen, F. K.F. K.HansenHarrison, D. L.D. L.HarrisonHernández-Monteagudo, C.C.Hernández-MonteagudoHerranz, D.D.HerranzHildebrandt, S. R.S. R.HildebrandtHobson, M.M.HobsonHolmes, W. A.W. A.HolmesHuffenberger, K. M.K. M.HuffenbergerJaffe, A. H.A. H.JaffeJaffe, T. R.T. R.JaffeMurphy, J. A.J. A.MurphyKeihänen, E.E.KeihänenKeskitalo, R.R.KeskitaloKisner, T. S.T. S.KisnerKneissl, R.R.KneisslKnoche, J.J.KnocheKunz, M.M.KunzKurki-Suonio, H.H.Kurki-SuonioLähteenmäki, A.A.LähteenmäkiLamarre, J. -M.J. -M.LamarreLasenby, A.A.LasenbyNaselsky, P.P.NaselskyLawrence, C. R.C. R.LawrenceLeonardi, R.R.LeonardiLiguori, M.M.LiguoriLilje, P. B.P. B.LiljeLinden-Vørnle, M.M.Linden-VørnleLópez-Caniego, M.M.López-CaniegoLubin, P. M.P. M.LubinMaino, D.D.MainoMARIS, MicheleMicheleMARISMarshall, D. J.D. J.MarshallNati, F.F.NatiMartin, P. G.P. G.MartinMartínez-González, E.E.Martínez-GonzálezMasi, S.S.MasiMatarrese, S.S.MatarreseMazzotta, P.P.MazzottaMelchiorri, A.A.MelchiorriMendes, L.L.MendesMennella, A.A.MennellaMigliaccio, M.M.MigliaccioMiville-Deschênes, M. -A.M. -A.Miville-DeschênesNoviello, F.F.NovielloMoneti, A.A.MonetiMontier, L.L.MontierMORGANTE, GIANLUCAGIANLUCAMORGANTENovikov, D.D.NovikovNovikov, I.I.NovikovOppermann, N.N.OppermannOxborrow, C. A.C. A.OxborrowBernard, J. -P.J. -P.BernardPagano, L.L.PaganoPajot, F.F.PajotPaladini, R.R.PaladiniPasian, F.F.PasianPeel, M.M.PeelPerdereau, O.O.PerdereauPerrotta, F.F.PerrottaPiacentini, F.F.PiacentiniPiat, M.M.PiatPietrobon, D.D.PietrobonBersanelli, M.M.BersanelliPlaszczynski, S.S.PlaszczynskiPointecouteau, E.E.PointecouteauPolenta, G.G.PolentaPopa, L.L.Popa2020-05-292020-05-2920160004-6361http://hdl.handle.net/20.500.12386/25291The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S<SUB>ν</SUB> ∝ ν<SUP>-α</SUP>, with the spectral index, α, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.STAMPAenPlanck intermediate results. XXXI. Microwave survey of Galactic supernova remnantsArticle10.1051/0004-6361/2014250222-s2.0-84958958774000369715900144https://www.aanda.org/articles/aa/abs/2016/02/aa25022-14/aa25022-14.html2016A&A...586A.134PFIS/05 - ASTRONOMIA E ASTROFISICAERC sectors::Physical Sciences and Engineering::PE9 Universe sciences: astro-physics/chemistry/biology; solar systems; stellar, galactic and extragalactic astronomy, planetary systems, cosmology, space science, instrumentation