Cullen, F.F.CullenMcLure, R. J.R. J.McLureDunlop, J. S.J. S.DunlopKhochfar, S.S.KhochfarDavé, R.R.DavéAmorín, R.R.AmorínBOLZONELLA, MICOLMICOLBOLZONELLACarnall, A. C.A. C.CarnallCASTELLANO, MARCOMARCOCASTELLANOCimatti, A.A.CimattiCirasuolo, M.M.CirasuoloCRESCI, GIOVANNIGIOVANNICRESCIFynbo, J. P. U.J. P. U.FynboFONTANOT, FabioFabioFONTANOTGARGIULO, ADRIANAADRIANAGARGIULOGARILLI, BIANCA MARIA ROSABIANCA MARIA ROSAGARILLIGuaita, L.L.GuaitaHathi, N.N.HathiHibon, P.P.HibonMANNUCCI, FILIPPOFILIPPOMANNUCCIMARCHI, FRANCESCAFRANCESCAMARCHIMcLeod, D. J.D. J.McLeodPENTERICCI, LauraLauraPENTERICCIPOZZETTI, LuciaLuciaPOZZETTIShapley, A. E.A. E.ShapleyTalia, M.M.TaliaZamorani, G.G.Zamorani2021-01-152021-01-1520190035-8711http://hdl.handle.net/20.500.12386/29788We present the results of a study utilizing ultradeep, rest-frame UV, spectroscopy to quantify the relationship between stellar mass and stellar metallicity for 681 star-forming galaxies at 2.5 < z < 5.0 (<z> = 3.5 ± 0.6) drawn from the VANDELS survey. Via a comparison with high-resolution stellar population synthesis models, we determine stellar metallicities (Z<SUB>∗</SUB>, here a proxy for the iron abundance) for a set of high signal-to-noise ratio composite spectra formed from subsamples selected by mass and redshift. Across the stellar mass range 8.5 < log(< M_{\ast } > /{M}_{☉ }) < 10.2, we find a strong correlation between stellar metallicity (Z<SUB>∗</SUB>/Z<SUB>☉</SUB>) and stellar mass, with stellar metallicity monotonically increasing from Z<SUB>∗</SUB>/Z<SUB>☉</SUB> < 0.09 at < M_{\ast } > = 3.2 × 10<SUP>8</SUP> {M}_{☉ } to Z<SUB>∗</SUB>/Z<SUB>☉</SUB> = 0.27 at < M_{\ast } > = 1.7 × 10^{10} {M}_{☉ }. In contrast, at a given stellar mass, we find no evidence for significant metallicity evolution across the redshift range of our sample. However, comparing our results to the z = 0 stellar mass-metallicity relation for star-forming galaxies, we find that the <z> = 3.5 relation is consistent with being shifted to lower metallicities by ≃0.6 dex at all stellar masses. Contrasting our derived stellar metallicities with estimates of the gas-phase metallicities of galaxies at similar redshifts and stellar masses, we find evidence for enhanced {O}/{Fe} ratios in z ≳ 2.5 star-forming galaxies of the order (O/Fe) ≳ 1.8 × (O/Fe)<SUB>☉</SUB>. Finally, by comparing our results to the predictions of three cosmological simulations, we find that the <z> = 3.5 stellar mass-metallicity relation is consistent with current predictions for how outflow strength scales with galaxy stellar mass. This conclusion is supported by an analysis of one-zone analytic chemical evolution models, and suggests that the mass-loading parameter (η =\dot{M}_{outflow}/M_{\ast }) scales as η ∝ M_{\ast }^{β } with β ≃ -0.4.STAMPAenThe VANDELS survey: the stellar metallicities of star-forming galaxies at 2.5 < z < 5.0Article10.1093/mnras/stz14022-s2.0-85071192517000474919700041https://academic.oup.com/mnras/article/487/2/2038/5493193https://arxiv.org/abs/1903.110812019MNRAS.487.2038CFIS/05 - ASTRONOMIA E ASTROFISICA