Wang, L.L.WangGao, F.F.GaoDuncan, K. J.K. J.DuncanWilliams, W. L.W. L.WilliamsRowan-Robinson, M.M.Rowan-RobinsonSabater, J.J.SabaterShimwell, T. W.T. W.ShimwellBONATO, MATTEOMATTEOBONATOCalistro-Rivera, G.G.Calistro-RiveraChyży, K. T.K. T.ChyżyFarrah, D.D.FarrahGürkan, G.G.GürkanHardcastle, M. J.M. J.HardcastleMcCheyne, I.I.McCheynePRANDONI, ISABELLAISABELLAPRANDONIREAD, SHAUN CONISBEESHAUN CONISBEEREADRöttgering, H. J. A.H. J. A.RöttgeringSmith, D. J. B.D. J. B.Smith2021-01-292021-01-2920190004-6361http://hdl.handle.net/20.500.12386/30097<BR /> Aims: We aim to study the far-infrared radio correlation (FIRC) at 150 MHz in the local Universe (at a median redshift ⟨z⟩∼0.05) and improve the use of the rest-frame 150 MHz luminosity, L<SUB>150</SUB>, as a star-formation rate (SFR) tracer, which is unaffected by dust extinction. <BR /> Methods: We cross-match the 60 μm selected Revised IRAS Faint Source Survey Redshift (RIFSCz) catalogue and the 150 MHz selected LOFAR value-added source catalogue in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Spring Field. We estimate L<SUB>150</SUB> for the cross-matched sources and compare it with the total infrared (IR) luminosity, L<SUB>IR</SUB>, and various SFR tracers. <BR /> Results: We find a tight linear correlation between log L<SUB>150</SUB> and log L<SUB>IR</SUB> for star-forming galaxies, with a slope of 1.37. The median q<SUP>IR</SUP> value (defined as the logarithm of the L<SUB>IR</SUB> to L<SUB>150</SUB> ratio) and its rms scatter of our main sample are 2.14 and 0.34, respectively. We also find that log L<SUB>150</SUB> correlates tightly with the logarithm of SFR derived from three different tracers, i.e., SFR<SUB>Hα</SUB> based on the Hα line luminosity, SFR<SUB>60</SUB> based on the rest-frame 60 μm luminosity and SFR<SUB>IR</SUB> based on L<SUB>IR</SUB>, with a scatter of 0.3 dex. Our best-fit relations between L<SUB>150</SUB> and these SFR tracers are, log L<SUB>150</SUB> (L<SUB>☉</SUB>) = 1.35(±0.06) × log SFR<SUB>Hα</SUB> (M<SUB>☉</SUB> yr<SUP>-1</SUP>) + 3.20(±0.06), log L<SUB>150</SUB> (L<SUB>☉</SUB>) = 1.31(±0.05) × log SFR<SUB>60</SUB> (M<SUB>☉</SUB> yr<SUP>-1</SUP>) + 3.14(±0.06), and log L<SUB>150</SUB> (L<SUB>☉</SUB>) = 1.37 (±0.05) × log SFR<SUB>IR</SUB> (M<SUB>☉</SUB> yr<SUP>-1</SUP>) + 3.09(±0.05), which show excellent agreement with each other.STAMPAenA LOFAR-IRAS cross-match study: the far-infrared radio correlation and the 150 MHz luminosity as a star-formation rate tracerArticle10.1051/0004-6361/2019359132-s2.0-85089875385000515096100001http://arxiv.org/abs/1909.04489v1https://www.aanda.org/articles/aa/full_html/2019/11/aa35913-19/aa35913-19.html2019A&A...631A.109WFIS/05 - ASTRONOMIA E ASTROFISICAERC sectors::Physical Sciences and Engineering::PE9 Universe sciences: astro-physics/chemistry/biology; solar systems; stellar, galactic and extragalactic astronomy, planetary systems, cosmology, space science, instrumentation