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Abstract. We present a mathematical derivation of a discrete dynamical system by following
a Fourier-Galerkin approximation of the 3-D incompressible magnetohydrodynamic (MHD)
equations. In this way, a 6-D map, depending on 12 bifurcation parameters, is derived as a
truncated set of nonlinear ordinary differential equations (ODEs) to characterize incompressible
plasma dynamical behaviors, also conserving total energy and cross-helicity in the ideal MHD
approximation. Moreover, three different subspaces, associated with long-living non-trivial
solutions (e.g., fixed point solutions), have been found like the fluid, magnetic, and the Alfvénic
fixed points. Our set can be seen as a Lorenz-like model to investigate MHD phenomena.

1. Introduction
Magnetohydrodynamic (MHD) equations allow to describe the macroscopic properties of plasma
systems like large-scale structures, waves, as well as, turbulent and intermittent features [e.g.,
1–3]. A fascinating question in MHD is concerned with the possibility in “easily” gaining
information about plasma dynamics for any given initial condition, i.e., in predicting the final
state by looking at the phase-space evolution. This is the main focus of the dynamical systems
theory, describing the long-term behavior of complex systems [4]. Dealing with chaotic systems,
the focus is not in finding precise solutions, e.g., deterministic solutions, but rather to investigate
if there are steady states, if the system will move towards these steady states, and how its long-
term behavior depends on initial conditions, e.g., finding a qualitative long-term behavior [5].

With the term dynamical system we mean a deterministic mathematical rule describing the
time-evolution of system state variables x(t) [4] as

ẋ(t) = F(x, {µ}), for a continuous system, (1)

xn+1 = F(xn, {µ}), for a discrete system or map, (2)

being x(t) (or xn) an N -dimensional vector whose evolution is only depending on the function F,
on the choice of the initial condition x(t0) (or x0), and on the set of bifurcation parameters {µ},
such that given x(t0) (or x0) by means of F we can determine all its forward positions, i.e., a
collection of dynamical states known as trajectory or orbit. One of the most important concepts
in dynamical systems theory is that of fixed point or steady state which can be identified as the
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stationary solution x∗ (or x∗n) of Eqs. (1)-(2)

F(x∗, {µ}) = 0, (3)

F(x∗n, {µ}) = 0, (4)

whose nature can be characterized by looking at the eigenvalues λk of the Jacobian matrix J
associated with the dynamical system, e.g., Jlm = ∂ẋl

∂xm
, and more specifically by looking at the

sign of three different quantities characterizing J as its determinant Det(J) = Πkλk, its trace
Tr(J) =

∑
k λk, and its discriminant ∆(J) = Tr(J)2 − 4 Det(J).

Different physical systems belong to the class of chaotic systems like the well-known Lorenz
system [6], a low-order model for atmospheric convection, the Hénon map [7], a simplified model
of the Poincaré section of the Lorenz system, the energy-balance climate models [e.g., 8–10],
simplified numerical models for investigating climate transitions among different steady states,
as well as, turbulence in fluid flows and MHD systems [11; 12]. In the latter context, Frisch
[13] firstly introduced the concept of “poor man’s Navier-Stokes (PMNS) equation” to identify
a toy model for Navier-Stokes equation based on a logistic map as un+1 = 1− 2u2

n, being u the
flow speed. Then, both 2-D and 3-D extensions of the PMNS equation have been proposed to
investigate incompressible fluids properties [14], the emergence of different dynamical behaviors
[15], and the transition to chaos [16] when bifurcation parameters are changed.

Here, we derive a 6-D discrete map directly from MHD equations which depends on 12
bifurcation parameters of physical meaning and characterizing the dynamical behaviors of
plasma systems by following a Lorenz-like approach [6]. We also identify three different
subspaces, corresponding to three different steady-state solutions of MHD equations and
associated with non-trivial solutions, namely the fluid, the magnetic, and the Alfvénic solutions,
often encountered in natural and laboratory plasmas.

2. The poor man’s magnetohydrodynamic (PMMHD) equations
Magnetohydrodynamics is particularly suitable for describing plasma in a quasi-neutral single-
fluid approximation, implying that characteristic scales are much larger than the collision ones
[17]. In this way, moving from the exact microscopic description (e.g., Klimontovich equation),
passing through kinetic (e.g., Vlasov, Landau, Boltzmann, Lenard-Balescu approximations)
and multi-fluid descriptions, we can derive a single-fluid description, i.e., the well-known MHD
approximation [17]. In the incompressible limit, MHD equations can be written as

∂tZ
± +

(
Z∓ · ∇

)
Z± = −∇Ptot + ν+∇2Z+ + ν−∇2Z− (5)

∇ · Z± = 0 (6)

where

• Z±
.
= U± B√

4πρ0
are the Elsässer variables [18], being U and B the velocity and magnetic

fields, respectively, and ρ0 the plasma mass density;

• Ptot = P
ρ0

+ B2

8πρ0
is the total plasma pressure, i.e., the sum between the kinetic and the

magnetic pressure (in terms of the plasma mass density ρ0);

• ν± = ν±η
2 are the pseudo-viscosities, being ν and η the kinematic viscosity and magnetic

diffusivity.

Eqs. (5) can be solved by coupling them with a thermodynamic equation or by eliminating
the pressure term through a linear operator L(V) (being V a vector field) known as Leray
operator

L(V)
.
= V −∇

[
∇−2 (∇ ·V)

]
, (7)

having two interesting properties:
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(i) L(V) = V if ∇ ·V = 0,

(ii) L(∇f) = 0, being f a scalar function.

Due to property (i) all terms containing Z± in Eqs. (5) remain unchanged, since ∇ · Z± = 0,
while thanks to property (ii) the pressure gradient vanishes (L(∇Ptot) = 0, since Ptot is a scalar
function). Thus, by introducing a dimensionless form we can write Eqs. (5) as

∂tz
± + z∓ · ∇z± =

1

Re+
∇2z+ +

1

Re−
∇2z− (8)

where Elsässer variables have been dimensioned to U0+CA, being U0 and CA the typical flow and
Alfvén speed (e.g., CA = B0√

4πρ0
), respectively, while time and lengths to a typical time τ± and

length L±, respectively. In this way, we can introduce the Reynolds numbers Re±
.
= (U0+CA)L±

ν±
which, as expected from the first experiment by Reynolds [19], are the only control parameters
of our equations.

Following the seminal work by Lorenz [6], we can derive a set of ordinary differential equations
(ODEs) from the set of Eqs. (8), i.e., we can obtain a low-order dynamical system, by considering
a truncated Galerkin expansion [6]. Given a vector field V(x, t) ∈ L2, being L2 a Hilbert space,
we can write

V(x, t) =
∞∑

k=−∞
Vk(t)Φk(x), (9)

where Vk(t) is the k−th Galerkin coefficient, while {Φk(x)} is a complete orthonormal basis
through which the Galerkin triple product can be defined as Gklm

.
= (l +m) 〈Φk(x)Φl(x)Φm(x)〉,

being 〈. . . 〉 the inner product defined onto the L2 Hilbert space. Unless considering a Galerkin
truncation by selecting a subset of the wavenumbers k such that k < k∗ (i.e., by deriving a
shell model [11; 20]) or considering a fixed triad-interaction model [e.g., 21], we move towards
a dynamical system approach as in Lorenz [6] by retaining only a fixed wavevector [see also
14; 16].

Thus, after some algebra we derive the poor man’s MHD (PMMHD) equations

z±′i =
βi ± αi

2
z+
i +

βi ∓ αi
2

z−i + Γjiz
±
i z
∓j , (10)

a discrete dynamical system (i.e., a map) as in Frisch [13] in which for the sake of notation
simplicity z±′i = z±i (tn+1) and z±i = z±i (tn), being i = 1, 2, 3. We introduced the bifurcation
parameters βi and αi defined as

βi = 1− k2

Re

L

`i
, being Re =

U0L

ν
, (11)

αi = 1− k2

Rm

L

`i
, being Rm =

CAL

η
, (12)

depending on the so-called Taylor microscale `i falling in between the large scales L (i.e., the
integral scale) and the small scales ηK (i.e., the Kolmogorov length or microscale) [22]. Moreover,

we also introduced a negative third-order coupling tensor Γji , a symmetric matrix parametrizing

the space derivatives of Elsässer variables (e.g.,
∂z±i
∂xj

).
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3. Rugged invariants
The dynamical behavior of the system can be investigated by looking at the existence of rugged
invariants as usual for MHD equations [17; 21]. This can be done by introducing a more compact
form of Eqs. (10) as

Ψ′i = MΨi + NL[Ψi,Ψj ] (13)

being {Ψi}
.
= {z+

1 , z
+
2 , z

+
3 , z

−
1 , z

−
2 , z

−
3 }, M a matrix of the dissipative term depending on the

bifurcation parameters βi, αi, and NL[Ψi,Ψj ] a short-hand notation for the nonlinear term

depending on the bifurcation parameters Γji .
It is very simple to prove that, in the inviscid form (ν = η = ν± = 0 ⇒ Re, Rm, Re± → ∞),

i.e., when βi = αi = 1, the map admits all rugged invariants of the MHD equations, i.e.,

E =
1

2

3∑
i=1

u2
i + b2i , HC =

1

2

3∑
i=1

uibi, (14)

which, in terms of Elsässer variables correspond to the conservation of both of the pseudo-
energies

E+ =
1

2

3∑
i=1

Ψ2
i , E− =

1

2

6∑
i=4

Ψ2
i . (15)

Indeed, in the inviscid limit we can write Eqs. (13) as

Ψ′i = Ψi + NL[Ψi,Ψj ] (16)

that is a discrete Galerkin approximation of DΨi
Dt = 0, being D the Lagrangian derivative,

implying the conservation of the pseudo-energies E± [e.g., 17; 21].

4. Fixed points and steady states
As usual in dynamical systems theory, we investigate the existence of steady states or fixed point
solutions as described in Sect. 1 for which T [Ψ∗] = Ψ∗, being T : Ψ → Ψ′. In the following we
are looking for fixed points of the usual MHD equations [e.g., 21].

4.1. The 1-D fluid fixed point
We start our investigation by looking at the 1-D case in order to find an analogy with the result
obtained by Frisch [13]. The 1-D case can be simply obtained by assuming z±i = z±, implying
that NL[Ψi,Ψj ] = NL[z±i , z

∓
j ] = NL[z±i , z

∓
i ], providing

z±′ =
β + α

2
z± +

β − α
2

z∓ − Γz±2. (17)

By looking for fixed points, i.e., z±′ = z± = z±∗ we reduce to

Γz±∗2 +

(
1− β + α

2

)
z±∗ − β − α

2
z∓∗ = 0, (18)

which admits the trivial solution z±∗ = z∓∗ reducing to u∗ ± b∗ = u∗ ∓ b∗ with the consequence
of b∗ = 0. This means that z±∗ = u∗ and we obtain

u′∗ = βu∗ − Γu∗2, (19)

i.e., a logistic evolution for the velocity field which represents a generalized version of the usual
1-D PMNS fluid case [13]. This map admits two fixed points: u∗(1) = 0 and u∗(2) = β−1

Γ , whose

corresponding eigenvalues are λ(1) = β and λ(2) = 2 − β. Since by definition β ≤ 1, we obtain
that u∗(1) is a stable fixed point (|λ(1)| ≤ 1), while u∗(2) is an unstable one (|λ(2)| ≥ 1).
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4.2. The 3-D fluid fixed point
MHD equations admit a fixed point which is a “fluid” fixed point, corresponding to z±i = ui for
which we trivially obtain the fluid map

u′i = βiui + Γjiuiu
j , (20)

that is, we reduce to the fluid map obtained by McDonough [16]. By searching for a fixed point

u′i = ui = u∗i we note that there exist two fixed points: one is u
∗(1)
i = 0, the other is obtained

by solving

Γiu
∗
i − γ

j
i u
∗
j = βi − 1, (21)

where we assumed that Γji = −Γiδ
j
i + γji , being δji the third-order identity matrix. The first one

is a stable fixed point as for the 1-D case since λ
(1)
i = βi with |λ(1)

i | < 1, while the stability of
the other fixed point depends on the particular choice of bifurcation parameters, moving from
a node to a saddle point [16].

4.3. The 3-D magnetic fixed point
The magnetic fixed point of MHD equations can be recovered when ui = 0 which obviously
implies that z±i = ±bi such that we obtain

b′i = αibi ∓ Γji bib
j (22)

which assumes a similar form of Eq. (20). This obviously leads to similar investigations like the

3-D fluid fixed point according to which there exist two fixed points: one is b
∗(1)
i = 0, which is

a stable fixed point, while the other one is obtained by solving

Γib
∗
i ± γ

j
i b
∗
j = αi − 1 (23)

whose stability depends on bifurcation parameters αi,Γi, γ
j
i .

4.4. The Alfvénic fixed points
The so-called “Alfvénic” fixed points [21] are defined as ui = ±bi or in terms of Elsässer variables

(i)A+ : z+
i 6= 0, z−i = 0, (ii)A− : z+

i = 0, z−i 6= 0. (24)

This means Eqs. (10) for both cases reduce to

z±′i =
βi + αi

2
z±i (25)

whose fixed points are stable only when βi+αi

2 = 1. In the inviscid limit, i.e., when βi, αi → 1,
this fixed point is stable and it exactly corresponds to the MHD case of an Alfvénic perturbation
[21].

5. Discussion and conclusions
In this work, we have derived and investigated a discrete dynamical system from three-
dimensional incompressible plasma equations. The model can be viewed as the simplest
way to investigate complex time behaviors of velocity and magnetic fields in the fluid-like
(MHD) approximation of a plasma system. Three different fixed points have been obtained,
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corresponding to different dynamical situations, i.e., the fluid case, the magnetic one, and
the “Alfvénic” points, when bifurcation parameters are changed. The first can be seen as a
3D extension of the well-known fixed point obtained by Frisch [13] and corresponding to the
hydrodynamic case; the second relates to magnetic equilibria solutions; finally, the Alfvénic
points describe the occurrence of an Alfvénic perturbation coupling z+ and z− via the dissipative
coefficients ν and η. The PMMHD equation can be seen as a Lorenz-like model which could help
in investigating different features and regimes as bifurcation parameters βi, αi,Γ

j
i are changed.

Clearly, this model, due to its truncated nature, cannot be used to investigate plasma dynamics
inside the MHD domain at all, as the multi-scale behavior and mode-coupling phenomena.
Notwithstanding, we think that our model is surely useful to understand the main features
and evolution of a MHD plasma system since it shares many properties of the full set of MHD
equations. Particularly, with a suitable choice of model parameters we are able in investigating
different dynamical behaviors like the Alfvénic solution which can be used to simply gain
new insights on alfvénic structures propagation. This means to deal with the problem of the
dissipative relaxation phenomena in MHD plasmas, being characterized by a non-trivial temporal
evolution of ideal invariants towards a minimum energy state known as Taylor’s vortex [21].
Further investigations will be devoted to the characterization of the above behaviors.
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