From the first stars to the first black holes
Date Issued
2016
Author(s)
Abstract
The growth of the first supermassive black holes (SMBHs) at z > 6 is still a major challenge for theoretical models. If it starts from black hole (BH) remnants of Population III stars (light seeds with mass ∼100 M☉), it requires super-Eddington accretion. An alternative route is to start from heavy seeds formed by the direct collapse of gas on to an ∼105 M☉ BH. Here we investigate the relative role of light and heavy seeds as BH progenitors of the first SMBHs. We use the cosmological, data constrained semi-analytic model GAMETE/QSODUST to simulate several independent merger histories of z > 6 quasars. Using physically motivated prescriptions to form light and heavy seeds in the progenitor galaxies, we find that the formation of a few heavy seeds (between 3 and 30 in our reference model) enables the Eddington-limited growth of SMBHs at z > 6. This conclusion depends sensitively on the interplay between chemical, radiative and mechanical feedback effects, which easily erase the conditions that allow the suppression of gas cooling in the low-metallicity gas (Z < Zcr and JLW > Jcr). We find that heavy seeds cannot form if dust cooling triggers gas fragmentation above a critical dust-to-gas mass ratio (D ≥ D_cr). In addition, the relative importance of light and heavy seeds depends on the adopted mass range for light seeds, as this dramatically affects the history of cold gas along the merger tree, by both SN- and AGN-driven winds.
Volume
457
Issue
3
Start page
3356
Issn Identifier
0035-8711
Ads BibCode
2016MNRAS.457.3356V
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
Valiante2016.pdf
Description
Pdf editoriale
Size
2.59 MB
Format
Adobe PDF
Checksum (MD5)
f8d69e864bb9ed916fc2cb34812f6440
