Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array
Date Issued
2023
Author(s)
Falxa, M.
•
Babak, S.
•
Baker, P. T.
•
Becsy, B.
•
Chalumeau, A.
•
Chen, S.
•
Chen, Z.
•
Cornish, N. J.
•
Guillemot, L.
•
Hazboun, J. S.
•
Mingarelli, C. M.F.
•
Parthasarathy, A.
•
Petiteau, A.
•
Pol, N. S.
•
Sesana, A.
•
Spolaor, S. B.
•
Taylor, S. R.
•
Theureau, G.
•
Vallisneri, M.
•
Vigeland, S. J.
•
Witt, C. A.
•
Zhu, X.
•
Antoniadis, J.
•
Arzoumanian, Z.
•
Bailes, M.
•
Bhat, N. D.R.
•
Blecha, L.
•
Brazier, A.
•
Brook, P. R.
•
Caballero, N.
•
Cameron, A. D.
•
Casey-Clyde, J. A.
•
Champion, D.
•
Charisi, M.
•
Chatterjee, S.
•
Cognard, I.
•
Cordes, J. M.
•
Crawford, F.
•
Cromartie, H. T.
•
Crowter, K.
•
Dai, S.
•
Decesar, M. E.
•
Demorest, P. B.
•
Desvignes, G.
•
Dolch, T.
•
Drachler, B.
•
Feng, Y.
•
Ferrara, E. C.
•
Fiore, W.
•
Fonseca, E.
•
Garver-Daniels, N.
•
Glaser, J.
•
Goncharov, B.
•
Good, D. C.
•
Griessmeier, J.
•
Guo, Y. J.
•
Gültekin, K.
•
Hobbs, G.
•
Hu, H.
•
Islo, K.
•
Jang, J.
•
Jennings, R. J.
•
Johnson, A. D.
•
Jones, M. L.
•
Kaczmarek, J.
•
Kaiser, A. R.
•
Kaplan, D. L.
•
Keith, M.
•
Kelley, L. Z.
•
Kerr, M.
•
Key, J. S.
•
Laal, N.
•
Lam, M. T.
•
Lamb, W. G.
•
Lazio, T. J.W.
•
Liu, K.
•
Liu, T.
•
Luo, J.
•
Lynch, R. S.
•
Madison, D. R.
•
Main, R.
•
Manchester, R.
•
Mcewen, A.
•
Mckee, J.
•
Mclaughlin, M. A.
•
Ng, C.
•
Nice, D. J.
•
Ocker, S.
•
Olum, K. D.
•
Osłowski, S.
•
Pennucci, T. T.
•
Perera, B. B.P.
•
•
Porayko, N.
•
•
Quelquejay-Leclere, H.
•
Ransom, S. M.
•
Ray, P. S.
•
Reardon, D. J.
•
Russell, C. J.
•
Abstract
The International Pulsar Timing Array 2nd data release is the combination of data sets from worldwide collaborations. In this study, we search for continuous waves: gravitational wave signals produced by individual supermassive black hole binaries in the local universe. We consider binaries on circular orbits and neglect the evolution of orbital frequency over the observational span. We find no evidence for such signals and set sky averaged 95 per cent upper limits on their amplitude h95. The most sensitive frequency is 10 nHz with h95 = 9.1 × 10-15. We achieved the best upper limit to date at low and high frequencies of the PTA band thanks to improved effective cadence of observations. In our analysis, we have taken into account the recently discovered common red noise process, which has an impact at low frequencies. We also find that the peculiar noise features present in some pulsars data must be taken into account to reduce the false alarm. We show that using custom noise models is essential in searching for continuous gravitational wave signals and setting the upper limit.
Volume
521
Issue
4
Start page
5077
Issn Identifier
0035-8711
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
stad812.pdf
Description
Pdf editoriale
Size
1.84 MB
Format
Adobe PDF
Checksum (MD5)
ec231f21d9eca8b6f692e9df165944d4
