Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD
Date Issued
2020
Author(s)
Sekimoto, Y.
•
Ade, P. A. R.
•
Adler, A.
•
Allys, E.
•
Arnold, K.
•
Auguste, D.
•
Aumont, J.
•
Aurlien, R.
•
Austermann, J.
•
Baccigalupi, C.
•
Banday, A. J.
•
Banerji, R.
•
Barreiro, R. B.
•
Basak, S.
•
Beall, J.
•
Beck, D.
•
Beckman, S.
•
Bermejo, J.
•
de Bernardis, P.
•
Bersanelli, M.
•
Bonis, J.
•
Borrill, J.
•
Boulanger, F.
•
Bounissou, S.
•
Brilenkov, M.
•
Brown, M.
•
Bucher, M.
•
Calabrese, E.
•
Campeti, P.
•
Carones, A.
•
Casas, F. J.
•
Challinor, A.
•
Chan, V.
•
Cheung, K.
•
Chinone, Y.
•
Cliche, J. F.
•
Colombo, L.
•
Columbro, F.
•
Cubas, J.
•
Cukierman, A.
•
Curtis, D.
•
D'Alessandro, G.
•
Dachlythra, N.
•
De Petris, M.
•
Dickinson, C.
•
Diego-Palazuelos, P.
•
Dobbs, M.
•
Dotani, T.
•
Duband, L.
•
Duff, S.
•
Duval, J. M.
•
Ebisawa, K.
•
Elleflot, T.
•
Eriksen, H. K.
•
Errard, J.
•
Essinger-Hileman, T.
•
•
Flauger, R.
•
Franceschet, C.
•
Fuskeland, U.
•
Galloway, M.
•
Ganga, K.
•
Gao, J. R.
•
Genova-Santos, R.
•
Gerbino, M.
•
Gervasi, M.
•
Ghigna, T.
•
Gjerløw, E.
•
Gradziel, M. L.
•
Grain, J.
•
Grupp, F.
•
•
Gudmundsson, J. E.
•
de Haan, T.
•
Halverson, N. W.
•
Hargrave, P.
•
Hasebe, T.
•
Hasegawa, M.
•
Hattori, M.
•
Hazumi, M.
•
Henrot-Versillé, S.
•
Herman, D.
•
Herranz, D.
•
Hill, C. A.
•
Hilton, G.
•
Hirota, Y.
•
Hivon, E.
•
Hlozek, R. A.
•
Hoshino, Y.
•
de la Hoz, E.
•
Hubmayr, J.
•
Ichiki, K.
•
iida, T.
•
Imada, H.
•
Ishimura, K.
•
Ishino, H.
•
Jaehnig, G.
•
Kaga, T.
•
Kashima, S.
•
Katayama, N.
•
Kato, A.
•
Kawasaki, T.
•
Keskitalo, R.
•
Kisner, T.
•
Kobayashi, Y.
•
Kogiso, N.
•
Kogut, A.
•
Kohri, K.
•
Komatsu, E.
•
Komatsu, K.
•
Konishi, K.
•
Krachmalnicoff, N.
•
Kreykenbohm, I.
•
Kuo, C. L.
•
Kushino, A.
•
Lamagna, L.
•
Lanen, J. V.
•
•
Lee, A. T.
•
Leloup, C.
•
Levrier, F.
•
Linder, E.
•
Louis, T.
•
Luzzi, G.
•
Maciaszek, T.
•
Maffei, B.
•
Maino, D.
•
Maki, M.
•
Mandelli, S.
•
Martinez-Gonzalez, E.
•
Masi, S.
•
Matsumura, T.
•
Mennella, A.
•
Migliaccio, M.
•
Minanmi, Y.
•
Mitsuda, K.
•
Montgomery, J.
•
Montier, L.
•
•
Mot, B.
•
Murata, Y.
•
Murphy, J. A.
•
Nagai, M.
•
Nagano, Y.
•
Nagasaki, T.
•
Nagata, R.
•
Nakamura, S.
•
Namikawa, T.
•
Natoli, P.
•
Nerval, S.
•
Nishibori, T.
•
Nishino, H.
•
O'Sullivan, C.
•
Ogawa, H.
•
Ogawa, H.
•
Oguri, S.
•
Ohsaki, H.
•
Ohta, I. S.
•
Okada, N.
•
Okada, N.
•
Pagano, L.
•
Paiella, A.
•
•
Patanchon, G.
•
Peloton, J.
•
Piacentini, F.
•
Pisano, G.
•
Polenta, G.
•
Poletti, D.
•
Prouvé, T.
•
Puglisi, G.
•
Rambaud, D.
•
Raum, C.
•
Realini, S.
•
Reinecke, M.
•
Remazeilles, M.
•
Ritacco, A.
•
Roudil, G.
•
Rubino-Martin, J. A.
•
Russell, M.
•
Sakurai, H.
•
Sakurai, Y.
•
•
Sasaki, M.
•
Savini, G.
•
Scott, D.
•
Seibert, J.
•
Sherwin, B.
•
Shinozaki, K.
•
Shiraishi, M.
•
Shirron, P.
•
Signorelli, G.
•
Smecher, G.
•
Stever, S.
•
Stompor, R.
•
Sugai, H.
•
Sugiyama, S.
•
Suzuki, A.
•
Suzuki, J.
•
Svalheim, T. L.
•
Switzer, E.
•
Takaku, R.
•
Takakura, H.
•
Takakura, S.
•
Takase, Y.
•
Takeda, Y.
•
Tartari, A.
•
Taylor, E.
•
Terao, Y.
•
Thommesen, H.
•
Thompson, K. L.
•
Thorne, B.
•
Toda, T.
•
Tomasi, M.
•
Tominaga, M.
•
Trappe, N.
•
Tristram, M.
•
Tsuji, M.
•
Tsujimoto, M.
•
Tucker, C.
•
Ullom, J.
•
Vermeulen, G.
•
Vielva, P.
•
•
Vissers, M.
•
Vittorio, N.
•
Wehus, I.
•
Weller, J.
•
Westbrook, B.
•
Wilms, J.
•
Winter, B.
•
Wollack, E. J.
•
Yamasaki, N. Y.
•
Yoshida, T.
•
Yumoto, J.
•
Zannoni, M.
•
Zonca, A.
Abstract
LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90° are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
Coverage
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
All editors
Zmuidzinas, Jonas; Gao, Jian-Rong
Series
Volume
11453
Start page
1145310-1
Conferenece
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X
Conferenece place
Online Only, California, United States
Conferenece date
14-18 December, 2020
Issn Identifier
0277-786X
Ads BibCode
2020SPIE11453E..10S
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
1145310.pdf
Description
PDF editoriale
Size
4.98 MB
Format
Adobe PDF
Checksum (MD5)
837b8fa00bd8753bf8f8663d549c3313
