Particle Size-Frequency Distributions of the OSIRIS-REx Candidate Sample Sites on Asteroid (101955) Bennu
Journal
Date Issued
2021
Author(s)
Burke, Keara N.
•
DellaGiustina, Daniella N.
•
Bennett, Carina A.
•
Walsh, Kevin J.
•
•
Bierhaus, Edward B.
•
Nolan, Michael C.
•
Boynton, William V.
•
Brodbeck, Juliette I.
•
Connolly, Harold C., Jr.
•
Deshapriya, Jasinghege Don Prasanna
•
Dworkin, Jason P.
•
Elder, Catherine M.
•
Golish, Dathon R.
•
Hoover, Rachael H.
•
Jawin, Erica R.
•
McCoy, Timothy J.
•
Michel, Patrick
•
Molaro, Jamie L.
•
Nolau, Jennifer O.
•
Padilla, Jacob
•
Rizk, Bashar
•
Robbins, Stuart J.
•
Sahr, Eric M.
•
Smith, Peter H.
•
Stewart, Stephanie J.
•
Susorney, Hannah C. M.
•
Enos, Heather L.
•
Lauretta, Dante S.
Abstract
We manually mapped particles ranging in longest axis from 0.3 cm to 95 m on (101955) Bennu for the Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) asteroid sample return mission. This enabled the mission to identify candidate sample collection sites and shed light on the processes that have shaped the surface of this rubble-pile asteroid. Building on a global survey of particles, we used higher-resolution data from regional observations to calculate particle size-frequency distributions (PSFDs) and assess the viability of four candidate sites for sample collection (presence of unobstructed particles ≤ 2 cm). The four candidate sites have common characteristics: each is situated within a crater with a relative abundance of sampleable material. Their PSFDs, however, indicate that each site has experienced different geologic processing. The PSFD power-law slopes range from −3.0 ± 0.2 to −2.3 ± 0.1 across the four sites, based on images with a 0.01-m pixel scale. These values are consistent with, or shallower than, the global survey measurements. At one site, Osprey, the particle packing density appears to reach geometric saturation. We evaluate the uncertainty in these measurements and discuss their implications for other remotely sensed and mapped particles, and their importance to OSIRIS-REx sampling operations.
Volume
13
Issue
7
Start page
1315
Issn Identifier
2072-4292
Ads BibCode
2021RemS...13.1315B
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
Burke_et_al_2021__compressed.pdf
Description
Pdf editoriale
Size
847.52 KB
Format
Adobe PDF
Checksum (MD5)
80cb553862718c2f9f5eef1abee2dcc3
