Euclid preparation: LI. Forecasting the recovery of galaxy physical properties and their relations with template-fitting and machine-learning methods
Journal
Date Issued
2024
Author(s)
Euclid Collaboration
•
Enia, A.
•
•
•
Humphrey, A.
•
Cunha, P. A. C.
•
Hartley, W. G.
•
Dubath, F.
•
Paltani, S.
•
Lopez Lopez, X.
•
Quai, S.
•
•
•
•
•
Ginolfi, M.
•
•
Siudek, M.
•
•
Zamorani, G.
•
Aghanim, N.
•
Altieri, B.
•
Amara, A.
•
•
•
Baccigalupi, C.
•
Baldi, M.
•
Bender, R.
•
Bodendorf, C.
•
•
•
•
Brinchmann, J.
•
Camera, S.
•
•
•
Carretero, J.
•
Casas, S.
•
Castander, F. J.
•
•
Castignani, G.
•
Cimatti, A.
•
Colodro-Conde, C.
•
Congedo, G.
•
Conselice, C. J.
•
Conversi, L.
•
Copin, Y.
•
•
Courbin, F.
•
Courtois, H. M.
•
Da Silva, A.
•
Degaudenzi, H.
•
•
Dinis, J.
•
Dupac, X.
•
Dusini, S.
•
Fabricius, M.
•
•
Farrens, S.
•
Ferriol, S.
•
Fosalba, P.
•
Fotopoulou, S.
•
•
•
•
•
Gillis, B.
•
•
Grupp, F.
•
Haugan, S. V. H.
•
Holmes, W.
•
Hook, I.
•
Hormuth, F.
•
Hornstrup, A.
•
Jahnke, K.
•
Joachimi, B.
•
Keihänen, E.
•
Kermiche, S.
•
Kiessling, A.
•
Kubik, B.
•
Kümmel, M.
•
Kunz, M.
•
Kurki-Suonio, H.
•
•
Lilje, P. B.
•
Lindholm, V.
•
Lloro, I.
•
•
•
Marggraf, O.
•
Markovic, K.
•
Martinelli, M.
•
Martinet, N.
•
Marulli, F.
•
Massey, R.
•
McCracken, H. J.
•
Medinaceli, E.
•
Mei, S.
•
Melchior, M.
•
Mellier, Y.
•
•
•
Meylan, G.
•
Moresco, M.
•
Moscardini, L.
•
•
Neissner, C.
•
Niemi, S. -M.
•
Nightingale, J. W.
•
Padilla, C.
•
Pasian, F.
•
Pedersen, K.
•
Pettorino, V.
•
Polenta, G.
•
Poncet, M.
•
Popa, L. A.
•
Raison, F.
•
Rebolo, R.
•
Renzi, A.
•
Rhodes, J.
•
•
•
Roncarelli, M.
•
Rossetti, E.
•
Saglia, R.
•
Sakr, Z.
•
Sapone, D.
•
Schneider, P.
•
Schrabback, T.
•
•
Secroun, A.
•
•
Seidel, G.
•
Serrano, S.
•
Sirignano, C.
•
Sirri, G.
•
Stanco, L.
•
Steinwagner, J.
•
Surace, C.
•
Tallada-Crespí, P.
•
•
Taylor, A. N.
•
Teplitz, H. I.
•
Tereno, I.
•
Toledo-Moreo, R.
•
Torradeflot, F.
•
Tutusaus, I.
•
•
Vassallo, T.
•
Verdoes Kleijn, G.
•
Veropalumbo, A.
•
Wang, Y.
•
Weller, J.
•
•
•
Boucaud, A.
•
•
Calabrese, M.
•
Escartin Vigo, J. A.
•
Gracia-Carpio, J.
•
Mauri, N.
•
Pezzotta, A.
•
Pöntinen, M.
•
Porciani, C.
•
Scottez, V.
•
Tenti, M.
•
•
Wiesmann, M.
•
Akrami, Y.
•
Allevato, V.
•
Anselmi, S.
•
Ballardini, M.
•
Bergamini, P.
•
Bethermin, M.
•
Blanchard, A.
•
Blot, L.
•
•
Bruton, S.
•
Cabanac, R.
•
Calabro, A.
•
Canas-Herrera, G.
•
•
Carvalho, C. S.
•
Castro, T.
•
Chambers, K. C.
•
Contarini, S.
•
Contini, T.
•
Cooray, A. R.
•
•
Davini, S.
•
De Caro, B.
•
Desprez, G.
•
Díaz-Sánchez, A.
•
Di Domizio, S.
•
Dole, H.
•
Escoffier, S.
•
Ferrari, A. G.
•
Ferreira, P. G.
•
Ferrero, I.
•
Finoguenov, A.
•
Fornari, F.
•
Gabarra, L.
•
Ganga, K.
•
García-Bellido, J.
•
Gautard, V.
•
Gaztanaga, E.
•
Giacomini, F.
•
•
Gozaliasl, G.
•
Hall, A.
•
Hemmati, S.
•
Hildebrandt, H.
•
Hjorth, J.
•
Jimenez Muñoz, A.
•
Joudaki, S.
•
Kajava, J. J. E.
•
Kansal, V.
•
Karagiannis, D.
•
Kirkpatrick, C. C.
•
Le Graet, J.
•
Legrand, L.
•
Loureiro, A.
•
Macias-Perez, J.
•
•
•
Mancini, C.
•
•
Maoli, R.
•
Martins, C. J. A. P.
•
Matthew, S.
•
Maurin, L.
•
Metcalf, R. B.
•
•
Moretti, C.
•
•
Walton, Nicholas A.
•
Patrizii, L.
•
Popa, V.
•
Potter, D.
•
Risso, I.
•
Rocci, P. -F.
•
Sahlén, M.
•
Schneider, A.
•
Schultheis, M.
•
•
Simon, P.
•
Spurio Mancini, A.
•
Stanford, S. A.
•
Tanidis, K.
•
Tao, C.
•
Testera, G.
•
Teyssier, R.
•
Toft, S.
•
Tosi, S.
•
Troja, A.
•
Tucci, M.
•
Valieri, C.
•
Valiviita, J.
•
•
Verza, G.
•
Zinchenko, I. A.
•
Rodighiero, G.
•
Talia, M.
Abstract
Euclid will collect an enormous amount of data during the mission's lifetime, observing billions of galaxies in the extragalactic sky. Along with traditional template-fitting methods, numerous machine learning (ML) algorithms have been presented for computing their photometric redshifts and physical parameters (PPs), requiring significantly less computing effort while producing equivalent performance measures. However, their performance is limited by the quality and amount of input information entering the model (the features), to a level where the recovery of some well-established physical relationships between parameters might not be guaranteed – for example, the star-forming main sequence (SFMS). To forecast the reliability of Euclid photo-zs and PPs calculations, we produced two mock catalogs simulating the photometry with the UNIONS ugriz and Euclid filters. We simulated the Euclid Wide Survey (EWS) and Euclid Deep Fields (EDF), alongside two auxiliary fields. We tested the performance of a template-fitting algorithm (Phosphoros) and four ML methods in recovering photo-zs, PPs (stellar masses and star formation rates), and the SFMS on the simulated Euclid fields. To mimic the Euclid processing as closely as possible, the models were trained with Phosphoros-recovered labels and tested on the simulated ground truth. For the EWS, we found that the best results are achieved with a mixed labels approach, training the models with wide survey features and labels from the Phosphoros results on deeper photometry, that is, with the best possible set of labels for a given photometry. This imposes a prior to the input features, helping the models to better discern cases in degenerate regions of feature space, that is, when galaxies have similar magnitudes and colors but different redshifts and PPs, with performance metrics even better than those found with Phosphoros. We found no more than 3% performance degradation using a COSMOS-like reference sample or removing u band data, which will not be available until after data release DR1. The best results are obtained for the EDF, with appropriate recovery of photo-z, PPs, and the SFMS.
Volume
691
Start page
A175
Issn Identifier
0004-6361
Ads BibCode
2024A&A...691A.175E
Rights
open.access
File(s)![Thumbnail Image]()
![Thumbnail Image]()
Loading...
Name
LIb.pdf
Type
Pdf Editoriale
Description
pagg.13-14
Size
9.97 MB
Format
Adobe PDF
Checksum (MD5)
0a0a76fb2b3f889f9c5c444d1ec5099f
Loading...
Name
LIa.pdf
Type
Pdf Editoriale
Description
pagg.1-12
Size
8.35 MB
Format
Adobe PDF
Checksum (MD5)
d5f1339d9d4d6b107f003661958621f9
