Galactocentric variation of the gas-to-dust ratio and its relation with metallicity
Journal
Date Issued
2017
Author(s)
•
•
König, C.
•
Urquhart, J. S.
•
Pillai, T.
•
•
Kauffmann, J.
•
Wyrowski, F.
•
Menten, K. M.
Abstract
Context. The assumption of a gas-to-dust mass ratio γ is a common approach to estimate the basic properties of molecular clouds, such as total mass and column density of molecular hydrogen, from (sub)mm continuum observations of the dust. In the Milky Way a single value is used at all galactocentric radii, independently of the observed metallicity gradients. Both models and extragalactic observations suggest that this quantity increases for decreasing metallicity Z, typical of the outer regions in disks, where fewer heavy elements are available to form dust grains.
Aims: We aim to investigate the variation of the gas-to-dust ratio as a function of galactocentric radius and metallicity, to allow a more accurate characterisation of the quantity of molecular gas across the galactic disk, as derived from observations of the dust.
Methods: Observations of the optically thin C18O (2-1) transition were obtained with the APEX telescope for a sample of 23 massive and dense star-forming regions in the far outer Galaxy (galactocentric distance greater than 14 kpc). From the modelling of this line and of the spectral energy distribution of the selected clumps we computed the gas-to-dust ratio and compared it to that of well-studied sources from the ATLASGAL TOP100 sample in the inner galactic disk.
Results: The gradient in γ is found to be 0.087+0.047-0.025 dex kpc-1 (or equivalently γ ∝ Z-1.4+0.3-1.0). The dust-to-metal ratio, decreases with galactocentric radius, which is the most common situation also for external late-type galaxies. This suggests that grain growth dominates over destruction. The predicted γ is in excellent agreement with the estimates in Magellanic clouds, for the appropriate value of Z.
Aims: We aim to investigate the variation of the gas-to-dust ratio as a function of galactocentric radius and metallicity, to allow a more accurate characterisation of the quantity of molecular gas across the galactic disk, as derived from observations of the dust.
Methods: Observations of the optically thin C18O (2-1) transition were obtained with the APEX telescope for a sample of 23 massive and dense star-forming regions in the far outer Galaxy (galactocentric distance greater than 14 kpc). From the modelling of this line and of the spectral energy distribution of the selected clumps we computed the gas-to-dust ratio and compared it to that of well-studied sources from the ATLASGAL TOP100 sample in the inner galactic disk.
Results: The gradient in γ is found to be 0.087+0.047-0.025 dex kpc-1 (or equivalently γ ∝ Z-1.4+0.3-1.0). The dust-to-metal ratio, decreases with galactocentric radius, which is the most common situation also for external late-type galaxies. This suggests that grain growth dominates over destruction. The predicted γ is in excellent agreement with the estimates in Magellanic clouds, for the appropriate value of Z.
Volume
606
Start page
L12
Issn Identifier
0004-6361
Ads BibCode
2017A&A...606L..12G
Rights
open.access
File(s)![Thumbnail Image]()
![Thumbnail Image]()
Loading...
Name
1710.05721.pdf
Description
postprint
Size
1.46 MB
Format
Adobe PDF
Checksum (MD5)
a2e32c42dd2d027f74752bc54cd27cf1
Loading...
Name
aa31728-17.pdf
Description
pdf editoriale
Size
1.86 MB
Format
Adobe PDF
Checksum (MD5)
1a75b0d79a15e1dcc39e6b877c3a46a2
