Probing z ≳ six massive black holes with gravitational waves
Date Issued
2023
Author(s)
Chakraborty, Srija
•
Gallerani, Simona
•
Zana, Tommaso
•
•
•
Izquierdo-Villalba, David
•
Di Mascia, Fabio
•
•
Abstract
We investigate the coalescence of massive black hole ($M_{\rm BH}\gtrsim 10^{6}~\rm {\rm M}_{\odot }$) binaries (MBHBs) at 6 < z < 10 by adopting a suite of cosmological hydrodynamical simulations of galaxy formation, zoomed-in on biased (>3σ) overdense regions (Mh ~ 1012 M⊙ dark matter haloes at z = 6) of the Universe. We first analyse the impact of different resolutions and AGN feedback prescriptions on the merger rate, assuming instantaneous mergers. Then, we compute the halo bias correction factor due to the overdense simulated region. Our simulations predict merger rates that range between 3 and 15 $\rm yr^{-1}$ at z ~6, depending on the run considered, and after correcting for a bias factor of ~20-30. For our fiducial model, we further consider the effect of delay in the MBHB coalescence due to dynamical friction. We find that 83 per cent of MBHBs will merge within the Hubble time, and 21 per cent within 1 Gyr, namely the age of the Universe at z > 6. We finally compute the expected properties of the gravitational wave (GW) signals and find the fraction of LISA detectable events with high signal-to-noise ratio (SNR > 5) to range between 66 per cent and 69 per cent. However, identifying the electro-magnetic counterpart of these events remains challenging due to the poor LISA sky localization that, for the loudest signals ($\mathcal {M}_c\sim 10^6~{{\rm M}_{\odot }}$ at z = 6), is around 10 $\rm deg^2$.
Volume
523
Issue
1
Start page
758
Issn Identifier
0035-8711
Ads BibCode
2023MNRAS.523..758C
Rights
open.access
File(s)![Thumbnail Image]()
Loading...
Name
chakra.pdf
Description
Pdf editoriale
Size
1.96 MB
Format
Adobe PDF
Checksum (MD5)
94debc47c968d5818f6752d95cb4fb38
